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Notice that the Hadamard code and the Reed-Muller code have the following stronger
properties than simply what is characteristic for Locally Decodable Codes.

• The message is part of the codeword, which is to say that the code is systematic.
This means that if the code is E : Fk

q → Fn
q , then the identity matrix of size k is part

of the generating matrix.

• The decoder can locally decode not only any symbol from the message, but also any
symbol from the codeword.

Example 8.1. For instance, the Hadamard code E : Fk
2 → Fn

2 , where n = 2k, is given by

E(x) =
(
⟨x, a⟩

)
a∈Fk

2

. To decode some element of E(x) indexed by some a ∈ Fk
2, we need to

find ⟨x, a⟩, but since this element of the codeword might have an error, we pick a random
b ∈ Fk

2, and we calculate what we’re looking for using the formula ⟨x, a⟩ = ⟨x,b⟩+⟨x,b+a⟩.
The probability of error is the same as the probability of error when calculating some
element of the original message since the method of calculation is the same.

These properties are at the heart of the concept Locally Correctable Codes.

Definition 8.1. An r-query Linear Locally Correctable Code with error δ is a linear map
E : Fk

p → Fn
p such that there is a decoder D(i,y), i ∈ [n], that queries at most r positions

in y and, if dist(y, E(x)) ≤ δ, returns E(x)i with probability at least 3
4
.

By the same argument as for Theorem 1.1 for LDC’s, we can show the following theorem.

Theorem 8.1 (Structure Theorem). Let E : Fk
p → Fn

p be an r-query Locally Correctable
Code with error δ. Let v1, . . . ,vn ∈ Fk

p be the rows of the generating matrix of E, which is
to say that E(x)i = ⟨vi,x⟩. Then ∀i ∈ [n], there exists an r-matching M i = (T i

1, . . . , T
i
mi
)

on [n] such that mi ≥ δn
r
and ∀T i

j ∈ M i, we have vi ∈ span{vj|j ∈ T i
j}.

Note that the statement of Theorem 8.1 is invariant under change of generating matrix.
This means that being a Locally Correctable Code is a property of the subspace V =
Im(E) ⊆ Fn

p , and we are interested in k = dim(V ) as a function of n.

From now on, we will specify a Locally Correctable Code E using a list {v1, . . . ,vn} ∈ Fk
p

– the rows of the generating matrix of E, and n r-matchings {M1, . . . ,Mn} as above, with
∀i ∈ [n], |M i| ≥ δn

r
= Ω(n).
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Example 8.2. The Hadamard code is specified by a list {v1, . . . ,vn} = Fk
2 and 2-matchings

{Mb = {(a, a+ b)}a∈Fk
2
|∀b ∈ Fk

2}. We have that |Mb| = 2k−1 = n
2
.

Exercise 8.1. Determine the set of matchings that define the Low-Degree Extension
code/Reed-Muller code as a Locally Correctable Code.

Exercise 8.2. Show that from any Locally Correctable Code we can obtain a Locally
Decodable Code with the same parameters.

The main question we are interested in is whether LCC’s are actually stronger than LDC’s,
that is, whether there are LDC’s from which we cannot obtain LCC’s with the same
parameters.

Exercise 8.3. Identify why the construction of Matching Vector codes does not yield a
Locally Correctable Code in any obvious way.

For this reason it is believed that Matching Vector codes are not LCC’s.

Currently, the best (and only) r-query Locally Correctable Codes for any r are those coming

from Reed-Muller Codes. They have the form RMd,t : F
(t+d

t )
q → Fqt

q and d + 1 queries, so

n = qt ≥ 2t and k =
(
t+d
d

)
≤ (t+ d)d ≤ tr−1, so we have t ≥ k

1
r−1 and thus n ≥ 2t ≥ 2k

1
r−1

.
It is conjectured that this is optimal.

Conjecture 8.1. There is no Locally Correctable code with n < 2k
1

r−1
.

Choice of ground field
Notice that the Hadamard code can be extended over any field Fp as a 2-LDC. We have
E : Fk

p → Fn
p , where n = 2k, E(x) =

(
⟨a,x⟩

)
a∈{0,1}k . The rows of the generating matrix

are {0, 1}k ⊆ Fk
p. Indeed, we can locally decode any xi by picking a random b ∈ {0, 1}k

and if bi = 1, taking xi = ⟨b,x⟩ − ⟨b∧i,x⟩, where b
∧i is b with the i-th bit flipped, and if

bi = 0, taking xi = ⟨b∧i,x⟩ − ⟨b,x⟩. However, this does not work in general if we want to
claim that E is an LCC, because then we would need to be able to obtain ⟨a,x⟩ for any
a ∈ {0, 1}k as a combination of two other entries of E(x), and ⟨a,x⟩ = ⟨b,x⟩+ ⟨b+ a,x⟩
does not hold for any Fk

p, because for each i such that ai = 0 and bi = 1, the contribution of
the i-th coordinate to ⟨b,x⟩+ ⟨b+ a,x⟩ is 2xi and the contribution of the i-th coordinate
to ⟨a,x⟩ is 0. A natural question to ask is whether we can get a 2-LCC analogous to
Hadamard code, for instance with n = 2k, over larger fields. The answer is yes: we can
take Fq with q = 2l. Since F2 is a subfield of Fq, char(Fq) = 2, because any subfield
of a field has the same characteristic as the field does. Then we have E : Fk

2l
→ Fn

2l
,

where n = 2k, and E(x) =
(
⟨a,x⟩

)
a∈{0,1}k . Notice that ∀a,b ∈ {0, 1}k, ∀i ∈ [k], xiai =

xibi+xi

(
a+b

)
i
, since xi+xi = 0 in Fq because char(Fq) = 2. Therefore, ∀a,b ∈ {0, 1}k,

⟨x, a⟩ = ⟨x,b⟩+ ⟨x, a+ b⟩, so any position of E(x) can be decoded as before.
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Is there an LCC over Fp, where p > 2 is prime? The only known such 2-LCC has n = pk

and E(x) =
(
⟨x, a⟩

)
a∈Fk

p
. Then if we want to decode E(x)a for some a ∈ Fk

p, we can take

a random b ∈ Fk
p and notice that ⟨x, a⟩ = ⟨x,b⟩+ ⟨x, a− b⟩.

Theorem 8.2. [BDSS11] A 2-LCC over Fk
p, where p is prime, has to have n ≥ Cp,δp

Ω(δk).

If we fix p, we see that this theorem implies n grows at least exponentially in k.

Proof. It is easier to think about bounding k = dim(span{v1, . . . ,vn}) as a function of n.
It is enough to show that k ≤ Cp,δ +O(1

δ
logp n), where Cp,δ is some constant that depends

only on p and δ. We will first show a lemma which we will then use to prove this.

Lemma 8.1. Let V = {v1, . . . ,vn} ⊆ Fk
p be a 2-LCC with error δ. Suppose there are no

repetitions in V , that is, ∀i, j ∈ [n] such that i ̸= j, ∀α ∈ R, vi ̸= αvj. Then ∃V ′ ⊆ V with
|V ′| ≥

(
δ
p

)c
n, where c is some absolute constant, such that dim(V ′) = dim(span{vj|∀vj ∈

V ′}) ≤ Cp,δ + logp n.

Proof. The proof uses two tools from additive combinatorics. The first one is the Balog-
Szemeredi-Gowers Lemma.

Lemma 8.2. [BS94,Gow98] Let A ⊆ G, where G is any finite abelian group (say G = Fk
p).

Suppose that |{(a1, a2) ∈ A × A|a1 + a2 ∈ A}| ≥ α|A|2. Then ∃A′ ⊆ A such that
|A′| ≥ αc|A| and |A′ + A′| ≤ α−c|A′|, where c is an absolute constant and A′ + A′ =
{a1 + a2|a1, a2 ∈ A′} is called the sum-set of A′.

Intuitively, the lemma above states that if A does not grow much when added to itself,
then there exists a large A′ ⊆ A with small sum-set.

The second tool we use is Ruzsa’s theorem.

Theorem 8.3. [GR07]

Let A ⊆ Fk
p be such that |A+ A| ≤ µ|A|, then there exists a subspace W of Fk

p such that

1. A ⊆ W

2. |W | ≤ µcpµ
c |A|, where c is an absolute constant.

These two statements imply that dim(A) ≤ logp |W | ≤ Cp,µ + logp |A|, where Cp,µ is a
constant that depends only on p and µ.

Here we continue the proof of Lemma 8.1. We are given the 2-LCC V = {v1, . . . ,vn} ⊆
Fk
p. Let U ⊆ Fk

p be defined as U = {avi|a ∈ Fp, a ̸= 0,vi ∈ V }. Since our 2-LCC
has no repetitions, we have |U | = (p − 1)n, as v1, 2v1, . . . , (p − 1)v1,v2, 2v2, . . . , (p −
1)v2, . . . ,vn, 2vn, . . . , (p− 1)vn are all different. We use the following claim.
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Claim. |{(u, u′) ∈ U × U |u+ u′ ∈ U}| ≥ Ω( δ
p
)|U |2.

Proof. For any u = avi ∈ U , consider the matching M i from the 2-LCC. We have that
|M i| ≥ δn

2
. For some pair (vj,vk) ∈ M i, suppose vi = bvj + cvk. Then we have that ∀a ∈

Fp, a ̸= 0, avi + (−ab)vj = (ac)vk ∈ U , so (avi, (−ab)vj) ∈ {(u, u′) ∈ U × U |u + u′ ∈ U}.
Thus for each element of U avi, we get that it participates in Ω(δn) pairs like this, so there
are a total of Ω(δnpn) = Ω( δ

p
)|U |2 pairs in U with sum inside U . Notice that it is possible

to have counted some pairs twice by changing the order of the two elements of U within
the pair, but this does not change the order of magnitude, and we have not counted any
pair more than twice.

Using this claim, we finish the proof of Lemma 8.1. By the Balog-Szemeredi-Gowers
Lemma, since |{(u, u′) ∈ U × U |u + u′ ∈ U}| ≥ Ω( δ

p
)|U |2, then ∃U ′ ⊆ U such that

|U ′| ≥ ( δ
p
)c|U | and |U ′ + U ′| ≤ ( δ

p
)−c|U ′|. Then applying Ruzsa’s Theorem by setting

A = U ′ and µ = ( δ
p
)−c, we get that dim(U ′) ≤ Cp,δ + logp |U ′|. Now we can modify

U ′ to obtain U ′′ ⊆ V by doing the following. For each avi ∈ U ′, where vi ∈ V and
a ∈ Fp, take vi ∈ U ′′. In this way we lose at most a factor of p in the size, that is,
|U ′′| ≥ 1

p
|U ′| ≥ ( δ

p
)c

′|U | ≥ ( δ
p
)c

′′
n for some constants c′ and c′′ since |U | = pn, and it still

holds that dim(U ′′) ≤ Cp,δ + logp |U ′| ≤ Cp,δ + logp (pn) ≤ C ′
p,δ + logp n. This completes

the proof of Lemma 8.1.

To finish the proof of Theorem 8.2, we amplify V ′ (we expand it until it turns into V )
without increasing its dimension too much. This is done in two steps, but we do not
discuss the details here since they are highly technical. We refer the interested reader to
the original paper [BDSS11].

Exercise 8.4. Show that replacing A with A′ is necessary in Lemma 8.2. That is, give an

A with |{a ∈ A|a+ a ∈ A}| ≥ |A|2
k

but such that A+ A is very large.
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