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A Private Information Retrival protocol (PIR protocol) is a protocol that allows a user
to extract an item from a database without revealing to the server which item has been
retrieved. This is useful in many settings in which the privacy of the user is important.

Let us denote the data saved at the server with a ∈ {0, 1}s. Now suppose the user wants
to retrieve item ai with high probability for some i ∈ [s], without revealing i to the server.
More formally, we would like a scheme such that the messages sent from a user to the
server do not depend on i. We would like to minimize the communication cost, which is
defined as the total number of bits sent from the user to the server and back.

Claim 7.1. All PIR protocols with one server such that the messages sent has no random-
ness in it and does not depend on i have communication cost at least s.

Proof. Suppose the communication cost is N < s. Then there are at most 2N possible
communication transcripts. However, there are 2s > 2N options for a, which means that
there are a′ ∈ {0, 1}s and a′′ ∈ {0, 1}s, a′ ̸= a′′, with identical communication transcripts.
Then if i ∈ [s] is such that a′

i ̸= a′′
i , if the user wants to find the i-th item, he/she would

get the same information for a′ as for a′′, which would be wrong.

Notice that we can trivially get a protocol with cost s if the server simply sends a to the
user.

Exercise 7.1. Extend the proof above so that it holds even if the messages sent can have
randomness in them.

There are two ways to overcome this barrier.

• Using cryptography: defining computational privacy and requiring not that the com-
munication transcript does not depend on i, but that finding i is at least as hard for
the server as some hard computational problem, for instance factoring.

• Using more than one server.

We will only deal with the second method here since it is closely related to Locally Decod-
able Codes.
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Definition 7.1. An r-server PIR is a protocol (U, S1, . . . , Sr)(a) between a user U and r
servers S1, . . . , Sr such that ∀a ∈ {0, 1}s, U(i) retrieves ai with high probability (say ≥ 3

4
)

after communicating with S1, . . . , Sr and such that ∀j ∈ [r], the distribution of messages
between U and Sj is independent of i.

The following is a more restrictive definition of PIR that captures all known constructions.

Definition 7.2. A 1-round PIR is a protocol (U, S1, . . . , Sr)(a) between a user U and r
servers S1, . . . , Sr, where S1, . . . , Sr get a ∈ {0, 1}s and U gets i ∈ [s]. Then U sends
messages (Q1(i), . . . , Qr(i)) to S1, . . . , Sr respectively. Each Qj(i) ∈ {0, 1}L is a ran-
dom variable uniformly distributed on {0, 1}L, but (Q1, . . . , Qr) is not necessarily uni-
form on {0, 1}L×r. After that, each Sj answers deterministically with Aj(Qj(i), a) ∈
{0, 1}R. U outputs O(A1(Q1(i), a), . . . , Ar(Qr(i), a), i), and with probability at least 3

4
,

O(A1(Q1(i), a), . . . , Ar(Qr(i), a), i) = ai.

We will now reduce an r-query LDC with a special property to an r-server PIR, after which
we will reduce an r-server PIR to an r-query LDC. The first reduction requires that each
individual query in the LDC is completely uniform. All codes discussed in these lecture
notes - Hadamard, Reed-Muller, MV-codes, have this property. We will call codes that
have it perfectly smooth codes.

Theorem 7.1. Let E : {0, 1}k → {0, 1}n be a perfectly smooth r-query LDC. Then there
exists an r-server PIR protocol with cost log n+ 1 and s = k.

Proof. Let U be the user and S1, . . . Sr be the servers. Given i ∈ [s], U will use the local
decoder D of E to decode ai, sending each query location to a different server. Suppose
the local decoder D(i) needs to query locations l1, . . . , lr ∈ [n]. ∀j ∈ [r], U will send lj to
Sj and Sj will respond with E(a)lj . Since E is perfectly smooth, ∀j ∈ [r], lj is uniform,
which implies privacy. Notice that ∀j ∈ [r], lj has length log n and E(a)lj is one bit long,
so the cost of the PIR protocol is log n+ 1.

Notice that the protocol we get has the extra property that each server’s answer is only
1-bit long. When going from PIR to LDC, this is not necessarily the case, as can be seen
from the following theorem.

Theorem 7.2. Suppose (U, S1, . . . , Sr) is a 1-round PIR protocol with |Qj| = L and
|Aj| = R. Then there exists an r-query LDC E : {0, 1}k → Σn with Σ = {0, 1}R, n = r2L,
and k = s.

Proof. Define E(a) to be the string of S1’s answers to all possible questions of U , followed
by S2’s answers to all possible questions of U , . . . , followed by Sr’s answers to all possible
questions of U . Thus we have that E(a) ∈ Σr×2L , where Σ = {0, 1}R, since there are r
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servers, 2L possible questions of U and each answer has length R. Then the local decoder
D simulates the behavior of U from the PIR protocol by randomly permuting the servers.
Thus, D will get D(i) = ai with probability at least 3

4
.

Corollary 7.1. There exists a 3-server PIR protocol with cost so(1).

Proof. By Corollary 5.2 and the comment under it, there exists a 3-query LDC E : Fk
q → Fn

q

with n = 2k
o(1)

. As can be seen from the proof of Theorem 5.1, any LDC obtained from
a Matching Vector family is perfectly smooth, therefore E is perfectly smooth. Then by
Theorem 7.1, there exists a 3-server PIR protocol with s = k and cost log n+ 1 = so(1).

The next question we can ask ourselves is whether we can get a 2-server PIR. If we restrict
ourselves to using Σ = {0, 1} as alphabet for the respective LDC, then we cannot get cost
better than Ω(s), where a ∈ {0, 1}s. This is for the following reason. Suppose that there
is a 1-round 2-server PIR protocol with cost C < Ω(s). If L is the maximum length of a
question asked by the user, and R is the maximum length of an answer given by a server,
then L+R = C. Now by Theorem 7.2, there exists a 2-query LDC E : {0, 1}k → {0, 1}n,
where n = 2×R× 2L < 2C+1, and k = s. Since C < Ω(s), n < 2Ω(k). But by Theorem 2.1,
this is impossible. Therefore, there is no 1-round 2-server PIR protocol with cost better
than Ω(s) and alphabet {0, 1}.

Notice, however, that there are 2-query LDCs with large Σ and small encoding length.

Theorem 7.3. There exists a 2-server PIR with cost s
1
3 .

Proof. Suppose p > 3 is prime. Let ℓ and s be such that s =
(
ℓ+3
3

)
and let S =

{v1, . . . ,vs} ⊆ Fℓ
p be a Minimal Interpolating Set for degree ≤ 3 polynomials f ∈ Fp[x1,

. . . , xℓ]. Thus, ∀a ∈ Fs
p, ∃ a polynomial of degree at most 3 fa ∈ Fp[x1, . . . ,xd] such

that ∀i ∈ [s], fa(vi) = ai. Now we will describe the behavior of U when it gets i as an
input. U(i) operates in the following way. It picks a random b ∈ Fℓ

p and considers the
line L = {vi + t · b|t ∈ Fp}. Then it sends to the two servers the following questions:
Q1(i) = vi + b and Q2(i) = vi + 2 · b. Next we describe the behavior of the servers. A
server takes as input the message it receives from the user y and the data a. We have
that A1(y, a) = A2(y, a) =

(
fa(y),

δfa
δx1

(y), . . . , δfa
δxℓ

(y)
)
. Upon receiving A1(Q1(i), a) and

A2(Q2(i), a), U aims at finding ai. The way to do this is as follows. Let g(t) = fa(vi+t ·b).
Then g is a degree 3 univariate polynomial. We want to find g(0) = fa(vi) = ai. We have
that
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g(1) = fa(vi + b)

g(2) = fa(vi + 2b)

g′(1) =
(dfa(vi + tb)

dt

)∣∣∣
t=1

=
l∑

j=1

(δfa(vi + b)

δxj

)
· bj

g′(2) =
(dfa(vi + tb)

dt

)∣∣∣
t=2

=
l∑

j=1

(δfa(vi + 2b)

δxj

)
· bj

U has the values of g(1), g(2), g′(1), and g′(2) since they can be calculated from the answers
it gets from the two servers. From g(1), g(2), g′(1), and g′(2), U can recover g completely,
since it is a polynomial of degree 3 and therefore has 4 coefficients, so 4 values are enough
to reconstruct it.

Now we calculate the cost of this protocol. The user sends l · log p ≈ s
1
3 bits since p = O(1).

Servers answer with loge p · (l + 1) ≈ s
1
3 bits.

Corollary 7.2. There exists a 2-query LDC E : {0, 1}k → Σn with Σ = {0, 1}k
1
3 and

n = 2k
1
3 .

A more recent result [DG15] shows the existence of a 2-server PIR with cost so(1) using
Matching Vector codes and partial derivatives.
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