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Degree of the OR function

Definition 6.1. A polynomial g ∈ Zm[x1, . . . ,xn] represents a Boolean function f :
{0, 1}n → {0, 1} mod m if

∀x ∈ {0, 1}n, g(x)

{
= 0 mod m if f(x) = 0

̸= 0 mod m if f(x) = 1

Note that without loss of generality we can take g to be multilinear, that is, ∀i ∈ [n], deg(xi) ≤
1 in g. This is because if a ∈ {0, 1}, then ∀h ≥ 1, ah = a.

Definition 6.2. Let degp(f) = min{deg(g)|g represents f mod p}

Lemma 6.1. Suppose f ∈ Fp[x1, . . . ,xn], where p is prime, is a multilinear non-zero
polynomial of degree at most d, where d > 0. Then:

|{a ∈ {0, 1}n|f(a) = 0}| ≤ 2n − 2n−d,

where equality is achieved for f =
∏d

i=1 xi.

Proof. We can prove the lemma by induction on n. In the base case, n = 1, we have d = 1,
so f is an expression linear in x1, and thus can have at most one zero, so the inequality
holds. Suppose we have shown the inequality holds for polynomials of n− 1 variables. We
show that it also holds for any polynomial f with of n variables. We can express f in the
following way: f(x1, . . . ,xn) = x1g(x2, . . . ,xn)+h(x2, . . . ,xn). Notice that the polynomial
g is of degree at most d− 1. Then, if we let K = |{a ∈ {0, 1}n−1|g(a) = 0}|, we have:

|{a ∈ {0, 1}n|f(a) = 0}| ≤ 2|{a ∈ {0, 1}n−1|g(a) = 0}|+ |{a ∈ {0, 1}n−1|g(a) ̸= 0}|
= 2K + (2n−1 −K)

= K + 2n−1

≤ 2n−1 − 2n−1−d+1 + 2n−1

= 2n − 2n−d,
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where the first inequality holds because if g(x2, . . .xn) ̸= 0, there is exactly one value of
x1, for which f(x) = 0, but if g(x2, . . .xn) = 0, there might be up to two values of x1 such
that f(x) = 0. The second inequality holds by the inductive step.

Example 6.1. Let f(x) = OR(x1,x2, . . . ,xn) =

{
0 if ∀i ∈ [n],xi = 0

1 otherwise

Claim 6.1. If p is prime, then degp(f) ≥ n
p−1

.

Proof. Suppose that g ∈ Fp[x1, . . . ,xn] represents f . Take h = 1− gp−1(x). Then

h(x) =

{
1 if ∀i ∈ [n],xi = 0

0 otherwise
.

Let h̃(x) be the multilinear polynomial such that ∀a ∈ {0, 1}n, h̃(a) = h(a). We can get
h̃ from h by replacing all occurrences of xk

i with xi for any i ∈ [n] and k ≥ 1. Notice
that deg(h̃) ≤ deg(h) ≤ (p − 1) deg(g). Now by Lemma 6.1, |a ∈ {0, 1}n|h̃(a) = 0| ≤
2n − 2n−deg(h̃). On the other hand, we know that h̃ has exactly 2n − 1 zeros, so we get that
2n − 1 ≤ 2n − 2n−deg(h̃), therefore deg(h̃) ≥ n. From here and from (p− 1) deg(g) ≥ deg(h̃)
we get that deg(g) ≥ n

p−1
.

Note that Claim 6.1 also holds if p is a power of some prime number [TB98].

Surprisingly, replacing Fp with Zm, where m is composite, allows a representation of OR
to have much smaller degree.

Theorem 6.1 ( [BBR92]). There exists a polynomial g ∈ Z6[x1, . . . ,xn] that represents
the OR function mod 6 with deg(g) ≤ O(

√
n).

Proof. We are going to use the following theorem:

Theorem 6.2 (Chinese Remainder Theorem [Ste08]). Let m = pq, where p and q are
different primes. Then Zm

∼= Zp × Zq, where the isomorphism φ : Zm → Zp × Zq is given
by φ(k) = (k mod p, k mod q).

Corollary 6.1. Let m = pq for p and q distinct primes. If k = 0 mod p and k = 0
mod q, then k = 0 mod m.

Example 6.2. Let m = 6, p = 2, q = 3. Then Z6
∼= Z2 × Z3. The table below gives the

isomorphism from Z6 to Z2 × Z3.
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k φ(k)
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)

Notice that addition and multiplication is preserved under φ, that is φ(k1 + k2) = φ(k1) +
φ(k2). For instance, 2+ 4 = 0 mod 6 in Z6, and (0, 2)+ (0, 1) = (0, 3) = (0, 0) in Z2 ×Z3.

Definition 6.3. k ∈ Z6 \ {0} is a zero divisor if ∃ℓ ∈ Z6 \ {0} such that k · ℓ = 0.

Notice that k is a zero divisor if and only if at least one of the two elements of the pair
φ(k) is zero.

The Chinese Remainder Theorem extends to polynomials, that is, if p and q are prime
numbers with m = pq, then Zm[x1, . . . ,xn] ∼= Zp[x1, . . . ,xn] × Zq[x1, . . . ,xn], where the
isomorphism φ : Zm[x1, . . . ,xn] → Zp[x1, . . . ,xn] × Zq[x1, . . . ,xn] is given by φ(f(x)) =
(f(x) mod p, f(x) mod q). The reason why this extension of the φ we defined above
works is because a polynomial on n variables modulo some number t is an expression that
uses sums and products and so we can simply apply φ on all the coefficients.

Example 6.3. If m = 6, p = 2, q = 3, take f(x) = 4x2
1 + 3x1x2 + 5x1 + 1 ∈ Z6[x1,x2].

Then we have φ(f(x)) = (x1x2 + x1 + 1, 2x2
1 + 2x1 + 1).

Moreover, the extension works in the other direction as well: given two polynomials fp ∈
Zp[x1, . . . ,xn] and fq ∈ Zq[x1, . . . ,xn], there exists a unique polynomial f ∈ Zm[x1, . . . ,xn]
such that f mod p = fp and f mod q = fq and deg(f) = max{deg(fp), deg(fq)}.

We give an outline of the proof of Theorem 6.1 here. For any a ∈ {0, 1}n, let ∥a∥ = |{i ∈
[n]|ai = 1}|, also referred to as the Hamming weight of a. We construct two polynomials
f2 ∈ Z2[x1, . . . ,xn] and f3 ∈ Z3[x1, . . . ,xn] such that, if 2d ≈

√
n and 3e ≈

√
n, we have

that ∀a ∈ {0, 1}n:

f2(a) =0 ⇔ ∥a∥ = 0 mod 2d

f3(a) =0 ⇔ ∥a∥ = 0 mod 3e

We make sure that f2 and f3 have degree approximately
√
n. Intuitively, the reason we

can do this is because by the Schwartz-Zippel lemma, the number of zeros of f2 and f3,
if they have degree approximately

√
n, is at most

√
n2n−1, and the number of values of

a such that the above condition requires that f2(a) = 0 or f3(a) = 0 is far smaller than√
n2n−1 – it’s approximately

∑√
n

i=1

(
n

i
√
n

)
≤

∑√
n

i=1 2
n−1 =

√
n2n−1. Then, using the Chinese

Remainder Theorem, we combine f2 and f3 to get f = (f2, f3) ∈ Z6[x1, . . . ,xn]. This gives
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us

f(a) = 0 ⇔ f2(a) = 0 and f3(a) = 0

⇔ ∥a∥ = 0 mod 2d and ∥a∥ = 0 mod 3e,

and using the Chinese Remainder Theorem on Z2d × Z3e
∼= Z2d3e , we have that

∥a∥ = 0 mod 2d and ∥a∥ = 0 mod 3e ⇔ ∥a∥ = 0 mod 2d3e.

If we make sure that 2d3e > n, then we get

∥a∥ = 0 mod 2d3e ⇔ ∥a∥ = 0

⇔ a = 0,

where we use a = 0 to denote ∀i ∈ [n], ai = 0. Putting it all together, we get f(a) = 0 ⇔
a = 0, which is what we wanted to show.

Now we give the details of this intuition. We use the following lemma.

Lemma 6.2. If p is a fixed prime number, then ∀d ∈ N, there exists a polynomial fp ∈
Zp[x1, . . . ,xn] such that deg(f) ≤ pd − 1 and ∀a ∈ {0, 1}n, fp(a) = 0 ⇔ ∥a∥ = 0 mod pd.

Proof. Let w = ∥a∥ ∈ {0, 1, . . . , n}. Write w in its base p expansion: w =
∑∞

j=0 wjp
j,

with each wj ∈ Zp = {0, 1, . . . , p − 1}. Then we define fp as a symmetric function in

w0,w1, . . . ,wd−1 of degree at most d(p−1). More specifically, let fp(a) =
∏d−1

j=0(1−wp−1
j )−1

mod p. Now we show that fp(a) = 0 ⇔ ∥a∥ = 0 mod pd.

• First, suppose that ∥a∥ = w = 0 mod pd. This means that ∀j ∈ {0, 1, . . . , d −
1},wj = 0. Then fp(a) =

∏d−1
j=0(1−wp−1

j )− 1 mod p =
∏d−1

j=0 1− 1 mod p = 1− 1
mod p = 0.

• Now suppose that fp(a) = 0. Suppose that for some j ∈ {0, 1, . . . , d − 1}, wj ̸= 0.

Then by Fermat’s Little Theorem wp−1
j = 1 mod p, so fp(a) =

∏d−1
j=0(1−wp−1

j )− 1
mod p = 0− 1 mod p = p− 1 ̸= 0. We have reached a contradiction assuming that
for some j ∈ {0, 1, . . . , d − 1},wj ̸= 0. Therefore, ∀j ∈ {0, 1, . . . , d − 1},wj = 0,
which implies that w = 0 mod pd.

Now we need to show that ∀i ∈ {0, 1, . . . , d − 1}, we can write wj(a) as a low degree
polynomial in Zp[a1, a2, . . . , an], so that fp(a) has degree at most pd − 1. We make use of
Lucas’ Theorem.

Theorem 6.3 (Lucas’ Theorem [AL12]). Let p be a prime number and let r, s ∈ N. If the
base p expansions of r and s are r =

∑∞
j=0 rjp

j and s =
∑∞

j=0 sjp
j, then

(
r
s

)
=

∏∞
j=0

(
rj
sj

)
mod p, where we define

(
m
n

)
= 0 in case m < n.
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We use Lucas’ Theorem to show the following claim, which in turn will help us finish the
proof of Lemma 6.2.

Claim 6.2. For any j ∈ {0, 1, . . . , d− 1}, wj(x) = Sympj(x) mod p, where Syms(x), s ∈
[n], is the s-th elementary symmetric polynomial, defined in the following way:

Syms(x) =
∑

S⊆[n],|S|=s

∏
j∈S

xj.

Proof. Notice that Sympj(a) =
(
w
pj

)
, and by Theorem 6.3,

(
w
pj

)
=

(
wj

1

)∏
j′ ̸=j

(
wj′
0

)
=

(
wj

1

)
=

wj.

Using Claim 6.2, we get that fp(x) =
∏d−1

j=0(1− Symp−1
pj

(x))− 1. This gives us deg(fp) ≤∑d−1
j=0 deg(Sympj(x))(p− 1) =

∑d−1
j=0 p

j(p− 1) = pd − 1. Thus, we have a polynomial fp of

degree at most pd − 1 such that fp(a) = 0 mod p if and only if ∥a∥ = 0 mod pd, which
completes the proof of Lemma 6.2.

Now we finish the proof of Theorem 6.1. Take d and e such that
√
n < 2d ≤ 2

√
n and√

n < 3e ≤ 3
√
n. By Lemma 6.2, there are two polynomials f2 ∈ Z2[x1, . . . ,xn] and

f3 ∈ Z3[x1, . . . ,xn] such that deg(f2) ≤ 2d − 1, deg(f3) ≤ 3e − 1, and f2(a) = 0 iff ∥a∥ = 0
mod 2d, f3(a) = 0 iff ∥a∥ = 0 mod 3e. Now by the Chinese Remainder Theorem for
polynomials, f = (f2, f3) ∈ Z6[x1, . . . ,xn] has degree at most max(deg(f2), deg(f3)), which
is at most 3

√
n, and f(a) = 0 iff ∥a∥ = 0 mod 2d3e. Since 2d3e > n, ∥a∥ = 0 mod 2d3e

iff ∥a∥ = 0 iff ∀i ∈ [n], ai = 0. So f(a) = 0 iff ∀i ∈ [n], ai = 0. Thus, f represents the OR
function.

Obtaining a Matching Vector family
Using Theorem 6.1, we can get a Matching Vector family.

Theorem 6.4 ( [Gro00]). There exists a Matching Vector family over Zℓ
6 of size ℓ

C log ℓ

log2 log ℓ ,
where C = 1

81
.

Proof. We will use Theorem 6.1. If h is the number of variables in the OR function we
are looking at, then the polynomial f ∈ Z6[x1, . . . ,xh], which represents OR has deg(f) =
O(

√
h). Define the following 2h polynomials: ∀b ∈ {0, 1}h, let gb(x) = f((b−x)·2), where

(a1, . . . , ah)
·2 = (a2

1, . . . , a
2
h). We will use the following claim:
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Claim 6.3.

∀a ∈ {0, 1}h, gb(a)

{
= 0 mod 6 if a = b

̸= 0 mod 6 if a ̸= b

Proof. If a = b, then gb(a) = f(0) = 0. Otherwise, (a − b)·2 ̸= 0, so f((a − b)·2) ̸= 0
mod 6.

We now have two sets of vectors of size 2h, a ∈ {0, 1}h and b ∈ {0, 1}h, with the property
outlined in Claim 6.3. This has a similar structure to Matching Vector families, but is not
quite what we want – we want the dot product of a and b to have the property that gb(a)
has. To achieve this, we will ”linearize” the two sets of vectors. We will need the following
definitions.

Definition 6.4. For any polynomial g ∈ Z6[x1, . . . ,xh] with deg(g) ≤ d, let Coef(g) ∈
Z(

h+d
d )

6 be the coefficient vector of g under some fixed order of monomials.

Definition 6.5. Let V≤d : Zh
6 → Z(

h+d
d )

6 , the degree ≤ d Veronese embedding, be such that
∀g ∈ Z6[x1, . . . ,xh] with deg(g) ≤ d, and ∀a ∈ Zh

6 , we have g(a) =
⟨
Coef(g), V≤d(a)

⟩
Example 6.4. Let h = 2, d = 2. If a = (a1, a2), then V≤2(a) = (1, a1, a2, a1a2, a

2
1, a

2
2) and

Coef(g) = (g0, g1, g2, g3, g4, g5), where g(x) = g0 + g1x1 + g2x2 + g3x1x2 + g4x
2
1 + g5x

2
2.

Now we can set
(
vb = Coef(gb)

)
b∈{0,1}h

and
(
ua = V≤d(a)

)
a∈{0,1}h

. Then
((

vb

)
b∈{0,1}h ,(

ua

)
a∈{0,1}h

)
is a Matching Vector family of size 2h. This is because ∀a,b ∈ {0, 1}h,⟨

ua,vb

⟩
= gb(a), which is 0 modulo 6 if and only if a = b. We have that ∀a,b ∈ {0, 1}h,

vb,ua ∈ Z(
h+d
d )

6 . Note that d ≤ 3
√
h. Set l =

(
h+d
d

)
. Then we have that l = (h+d)!

h!d!
=

(h+1)·(h+1)·····(h+d)
1·2·····d ≤ (2h)d ≤ 2h3

√
h. Now the size of our Matching Vector family is 2h, and

we’ll show that 2h ≥ l
C log l

log2 log l , where C = 1
81
. Since l

C log l

log2 log l = 2
C log2 l

log2 log l , it is enough to show

that h ≥ C log2 l
log2 log l

.



Lecture 6: Grolmusz’ construction of a Matching Vector family 6-7

C log2 l

log2 log l
≤(

3
√
h log(2h)

)2

81 log2
(
3
√
h log(2h)

) ≤

9h log2(2h)

81 log2(
√
h)

=

h
(
2 log(

√
h) + 1

)2

9 log2(
√
h)

≤

9h log2(
√
h)

9 log2(
√
h)

= h

Thus, we have a Matching Vector family of size l
log l

81 log2 log l .

Exercise 6.1. Extend the construction given in the proof of Theorem 6.4 to Zm, where
m = p1 . . . pt, where p1, . . . , pt are distinct primes, t > 2. What is the size of the Matching
Vector family we can get in the case of t primes?

Exercise 6.2. Show that if p is prime, then any function f : Zn
p → {0, 1} can be computed

exactly by a polynomial g ∈ Zp[x1, . . . ,xn]. Show that this is not true if we replace Zp

with Zpq for p and q prime.

Exercise 6.3. Let f : {0, 1}2n → {0, 1} be defined in the following way:

∀a,b ∈ {0, 1}n, f(a,b) =

{
0 if a = b

1 if a ̸= b

Find a polynomial g ∈ Z6[x1, . . . ,xn,y1, . . . ,yn] that represents f with deg(g) = O(
√
n).

Is there a polynomial g′ ∈ Zp[x1, . . . ,xn,y1, . . . ,yn] for p prime with deg(g′) = O(
√
n) that

represents f?
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