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Lecture 6: Grolmusz’ construction of a Matching Vector family

Lecturer: Zeev Duvir Scribe: Kalina Petrova

Degree of the OR function

Definition 6.1. A polynomial g € Z,,[x1,...,X,] represents a Boolean function f :
{0,1}" — {0,1} mod m if

=0 modm if f(x)
#0 modm if f(x)

0
1

vx € {0,1}", g(x) {

Note that without loss of generality we can take g to be multilinear, that is, Vi € [n], deg(x;) <
1 in g. This is because if a € {0,1}, then VA > 1,a" = a.

Definition 6.2. Let deg,(f) = min{deg(g)|g represents f mod p}

Lemma 6.1. Suppose f € F,[xy,...,%,|, where p is prime, is a multilinear non-zero
polynomial of degree at most d, where d > 0. Then:

{a € {0,1}"f(a) = 0} < 2" — 2",
where equality is achieved for f = Hle X;.

Proof. We can prove the lemma by induction on n. In the base case, n = 1, we have d = 1,
so f is an expression linear in x;, and thus can have at most one zero, so the inequality
holds. Suppose we have shown the inequality holds for polynomials of n — 1 variables. We
show that it also holds for any polynomial f with of n variables. We can express f in the
following way: f(x1,...,X,) = x19(Xsa,...,X,)+h(Xa,...,X,). Notice that the polynomial
g is of degree at most d — 1. Then, if we let K = [{a € {0,1}""!|g(a) = 0}|, we have:

[{a € {0,1}"|f(a) = 0}| < 2[{a € {0,1}"[g(a) = 0}] + [{a € {0, 1}"[g(a) # O}
— 2K + (2" — K)
— K_|_2n—l
< 2n71 o 2n717d+1 + 217,71
—on _ 2n—d’

6-1



Lecture 6: Grolmusz’ construction of a Matching Vector family 6-2

where the first inequality holds because if g(xs,...x,) # 0, there is exactly one value of
x1, for which f(x) =0, but if g(xa,...x,) = 0, there might be up to two values of x; such
that f(x) = 0. The second inequality holds by the inductive step.

0
0 ifVieln],x;=0

1  otherwise

Example 6.1. Let f(x) = OR(x1,Xa,...,X,) = {

Claim 6.1. If p is prime, then deg,(f) > -"5.

Proof. Suppose that g € F[x1,...,x,] represents f. Take h =1 — g?~*(x). Then

h(x) =

1 ifVie[n],x;=0
0 otherwise '

Let h(x) be the multilinear polynomial such that Ya € {0,1}", h(a) = h(a). We can get

h from h by replacing all occurrences of x} with x; for any ¢ € [n] and & > 1. Notice

that deg(h) < deg(h) < (p — 1)deg(g). Now by Lemma 6.1, |a € {0,1}"|h(a) =0| <

on — gn=deg(h) - Op the other hand, we know that h has exactly 2" — 1 zeros, so we get that

on — 1 < 2n — on=des(®) therefore deg(h) > n. From here and from (p — 1) deg(g) > deg(h)

we get that deg(g) > =

[
Note that Claim 6.1 also holds if p is a power of some prime number [TB9S].

Surprisingly, replacing I, with Z,,, where m is composite, allows a representation of OR
to have much smaller degree.

Theorem 6.1 ( [BBR92|). There exists a polynomial g € Zg[xy,...,%,| that represents
the OR function mod 6 with deg(g) < O(y/n).

Proof. We are going to use the following theorem:

Theorem 6.2 (Chinese Remainder Theorem [Ste08]). Let m = pg, where p and ¢ are
different primes. Then Z,, = Z, x Z,, where the isomorphism ¢ : Z,, — Z, X Z, is given
by ¢(k) = (k mod p,k mod gq).

Corollary 6.1. Let m = pq for p and ¢ distinct primes. If £ = 0 mod p and k£ = 0
mod ¢, then £ =0 mod m.

Example 6.2. Let m = 6,p = 2,q = 3. Then Zg = Zy X Z3. The table below gives the
isomorphism from Zg to Zo X Zs3.
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Notice that addition and multiplication is preserved under ¢, that is ¢(k1 + ka) = w(k1) +
@(k2). For instance, 2+4 =0 mod 6 in Zg, and (0,2)+ (0,1) = (0,3) = (0,0) in Zy X Zs.

Definition 6.3. k € Zg \ {0} is a zero divisor if 3¢ € Zg \ {0} such that k- ¢ = 0.

Notice that k is a zero divisor if and only if at least one of the two elements of the pair
(k) is zero.

The Chinese Remainder Theorem extends to polynomials, that is, if p and ¢ are prime
numbers with m = pq, then Z,,[x1,...,X,] = Zy[x1,...,X,| X Zy[X1,...,X,], where the
isomorphism ¢ : Zp,[X1, ..., X, = Zp[X1, ..., Xn] X Zy[X1,...,X,] is given by ¢(f(z)) =
(f(x) mod p, f(x) mod ¢). The reason why this extension of the ¢ we defined above
works is because a polynomial on n variables modulo some number ¢ is an expression that
uses sums and products and so we can simply apply ¢ on all the coefficients.

Example 6.3. If m = 6,p = 2,q = 3, take f(z) = 4x} + 3x;% + 5x; + 1 € Zg[x1, Xa).
Then we have o(f(x)) = (x1x2 + x1 + 1,2x3 4+ 2x; + 1).

Moreover, the extension works in the other direction as well: given two polynomials f, €
LplXx1,...,x,] and f, € Z,[x1,...,X,], there exists a unique polynomial f € Z,[x1, ..., Xy)
such that f mod p = f, and f mod ¢ = f, and deg(f) = max{deg(f,), deg(f,)}-

We give an outline of the proof of Theorem 6.1 here. For any a € {0,1}", let ||a|| = |{i €
[n]|a; = 1}, also referred to as the Hamming weight of a. We construct two polynomials
fo € Zo[xy,...,%X,) and f3 € Zs[xy,...,x,]| such that, if 2¢ ~ \/n and 3° ~ \/n, we have
that Va € {0,1}"™

f2(a) =0 < |jall =0 mod 24
fs(a) =0 < ||lal| =0 mod 3°

We make sure that f, and f3 have degree approximately y/n. Intuitively, the reason we
can do this is because by the Schwartz-Zippel lemma, the number of zeros of f; and f3,
if they have degree approximately y/n, is at most y/n2""!, and the number of values of
a such that the above condition requires that fy(a) = 0 or fs(a) = 0 is far smaller than
V2"t — it’s approximately Zg (Z\%) < Zg 21 = /n2"~1. Then, using the Chinese
Remainder Theorem, we combine f and f3 to get f = (fo, f3) € Zg[x1, . ..,X,]. This gives
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us

f(a) =0« fa(a) =0and f3(a) =0
& Jlal =0 mod 2% and |jal| =0 mod 3°,

and using the Chinese Remainder Theorem on Zgis X Zge = Zgaze, we have that
|a]l =0 mod 2% and ||a]| =0 mod 3° < |laj] =0 mod 23°.
If we make sure that 293¢ > n, then we get

la]l =0 mod 293° < |jal| =0
< a=0,

where we use a = 0 to denote Vi € [n],a; = 0. Putting it all together, we get f(a) =0 <
a = 0, which is what we wanted to show.

Now we give the details of this intuition. We use the following lemma.

Lemma 6.2. If p is a fixed prime number, then Vd € N, there exists a polynomial f, €
Zp|x1, - .., %,) such that deg(f) < p?—1and Va € {0,1}", f,(a) =0 < |lal| =0 mod p?.

Proof. Let w = |ja|| € {0,1,...,n}. Write w in its base p expansion: w = > 772 w;p’,
with each w; € Z, = {0,1,...,p — 1}. Then we define f, as a symmetric function in
Wo, W1, ..., Wg_1 of degree at most d(p—1). More specifically, let f,(a) = H;l;é(l—wg_l)—l
mod p. Now we show that f,(a) =0 < |ja]| =0 mod p?.

e First, suppose that [ja]] = w = 0 mod p?. This means that Vj € {0,1,...,d —
1},w; = 0. Then f,(a) = H?;é(l — W§_1) —1 mod p= H?;é 1—1 modp=1-1
mod p = 0.

e Now suppose that f,(a) = 0. Suppose that for some j € {0,1,...,d — 1}, w; # 0.
Then by Fermat’s Little Theorem W§_1 =1 mod p, so f,(a) = H;l;(l)(l - W?_l) -1
mod p=0—1 mod p=p—1+# 0. We have reached a contradiction assuming that
for some j € {0,1,...,d — 1},w; # 0. Therefore, Vj € {0,1,...,d — 1}, w; = 0,

which implies that w = 0 mod p®.

Now we need to show that Vi € {0,1,...,d — 1}, we can write w;(a) as a low degree
polynomial in Z,[a;, as, . .., a,], so that f,(a) has degree at most p? — 1. We make use of
Lucas’ Theorem.

Theorem 6.3 (Lucas’ Theorem [AL12]). Let p be a prime number and let r, s € N. If the
base p expansions of r and s are r = 3 % r;p’ and s = > e s;p’, then (7) =172, (%)

s 7=0 s‘j
mod p, where we define (:’;‘) =0 in case m < n.
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We use Lucas’ Theorem to show the following claim, which in turn will help us finish the
proof of Lemma 6.2.

Claim 6.2. For any j € {0,1,...,d — 1}, w;(x) = Sym,i(x) mod p, where Sym,(x),s €
[n], is the s-th elementary symmetric polynomial, defined in the following way:

Syms(x) = Z ij.

SC[n],|S|=s j€S

Proof. Notice that Sym,;(a) = (;‘;), and by Theorem 6.3, (;‘;) = ("7) 1 (") = (") =
W;.

Using Claim 6.2, we get that f,(x) = Hj;é(l - Symgj_l(x)) — 1. This gives us deg(f,) <
Z?;é deg(Symy: (x))(p —1) = Z;.l;épj(p — 1) = p? — 1. Thus, we have a polynomial f, of
degree at most p? — 1 such that f,(a) =0 mod p if and only if ||al| = 0 mod p?, which
completes the proof of Lemma 6.2.

]

Now we finish the proof of Theorem 6.1. Take d and e such that \/n < 2¢ < 2,/n and
Vvn < 3° < 3y/n. By Lemma 6.2, there are two polynomials fo € Za[xy,...,X,] and
f3 € Zs[xy, . ..,%,] such that deg(f2) < 2% —1, deg(f3) < 3°—1, and fo(a) = 0 iff |a]| =0
mod 2¢, fs(a) = 0 iff ||JaJ| = 0 mod 3°. Now by the Chinese Remainder Theorem for
polynomials, f = (fa, f3) € Zg[x1, . . . ,X,] has degree at most max(deg(f2), deg(f3)), which
is at most 3/n, and f(a) = 0 iff ||aj| = 0 mod 293°. Since 293¢ > n, ||a|| = 0 mod 2%3°
iff ||lal| = 0 iff Vi € [n],a; = 0. So f(a) =0 iff Vi € [n],a; = 0. Thus, f represents the OR

function.

]

Obtaining a Matching Vector family

Using Theorem 6.1, we can get a Matching Vector family.

Clogt
Theorem 6.4 ( [Gro00]). There exists a Matching Vector family over Z§ of size (10> iog ,
where C' = 8—11.

Proof. We will use Theorem 6.1. If h is the number of variables in the OR function we
are looking at, then the polynomial f € Zg[xy,...,Xy], which represents OR has deg(f) =
O(V/h). Define the following 2" polynomials: Vb € {0, 1}", let gp(x) = f((b —x)?), where

(ar,...,a)? = (a},...,a?). We will use the following claim:
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Claim 6.3.

Vac {01} @) 0 MO0 AT

#0 mod6 ifa#b
Proof. If a = b, then gp(a) = f(0) = 0. Otherwise, (a —b)? # 0, so f((a—b)?) # 0
mod 6. O

We now have two sets of vectors of size 2", a € {0,1}" and b € {0, 1}", with the property
outlined in Claim 6.3. This has a similar structure to Matching Vector families, but is not
quite what we want — we want the dot product of a and b to have the property that gy, (a)
has. To achieve this, we will ”linearize” the two sets of vectors. We will need the following
definitions.

Definition 6.4. For any polynomial g € Zg[x1,...,x,] with deg(g) < d, let Coef(g) €

h+d)

Zg * 7 be the coefficient vector of g under some fixed order of monomials.

h+d
Definition 6.5. Let Vg : Z — Zé ¢ ), the degree < d Veronese embedding, be such that
Vg € Zg[x1, ..., xp) with deg(g) < d, and Va € Z{, we have g(a) = (Coef(g), V<a(a))

Example 6.4. Let h =2, d = 2. If a = (a;,ay), then Veo(a) = (1,a;, a9, a2y, a3, a3) and
Coef(g) = (90, 91, 92, 93, 9a, g5 ), where g(x) = go + G1X1 + g2Xa + gsX1Xa + gaX; + g5X5.

Now we can set (vb = Coef(gb)>b€{0,1}h and (ua = ng(a)>a€{0?1}h~ Then <(Vb)be{0,1}h’

(ua)ae{o 1}h> is a Matching Vector family of size 2". This is because Va,b € {0,1}",
<ua, vb> = gp(a), which is 0 modulo 6 if and only if a = b. We have that Va,b € {0, 1}",

htd
Vb, Uy € Zg ¢ ) Note that d < 3v/h. Set [ = (hjl'd). Then we have that [ = % =
) (i)t d) < (97)4 < 213V, Now the size of our Matching Vector family is 2", and

B Clogl 1 . Clogl C log2 l L
we'll show that 2% > [les?1ost | where C' = ¢7. Since [los?lost = 210s%l0al it is enough to show

that h > Cloe’t
= log?log!l”
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C'log?1
log?logl —

(3\/_log(2h)>2
811og? (3\/_103; 2h))

9h log® 9hlog™(2h)
81log (\/ﬁ)

h (2 log(v/h) + 1)2
<
9log*(v/h)

9hlog®(Vh)
9log*(Vh)

logl
Thus, we have a Matching Vector family of size [FTios? g

]

Exercise 6.1. Extend the construction given in the proof of Theorem 6.4 to Z,,, where
m =pi...p;, where py,...,p; are distinct primes, ¢t > 2. What is the size of the Matching
Vector family we can get in the case of ¢ primes?

Exercise 6.2. Show that if p is prime, then any function f : Z; — {0,1} can be computed
exactly by a polynomial g € Z,[xy,...,x,]. Show that this is not true if we replace Z,
with Z,, for p and ¢ prime.

Exercise 6.3. Let f: {0,1}*" — {0,1} be defined in the following way:

) 0 ifa=Db
Va,b € {0,1}", f(a,b) = {1 ifa#b

Find a polynomial g € Zg[x1,...,Xn,¥1,---,Y,] that represents f with deg(g) = O(y/n).
Is there a polynomial ¢’ € Zy[x1,...,X,,¥1,-..,¥,) for p prime with deg(¢’) = O(y/n) that
represents f7
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