Linear Locally Decodable Codes Fall 2016

Lecture 3: Low-degree extension/Reed-Muller code

Lecturer: Zeev Duvir Scribe: Kalina Petrova

In this lecture, we consider the Reed-Muller code. It is not a Locally Decodable Code, but
there is an LDC with the same image as it. After defining Reed-Muller codes, we will do
a change of basis, which will yield that LDC.

t+d
Claim 3.1. Fgﬁd) B~]F(g ¢), where Fggd) [21,. .., 2] is the field of polynomials of

degree at most d on t variables.

Proof. The dimension of the field of polynomials of degree at most d on t variables is (ttd)
because that is the number of monomials in ¢ variables of degree d. To see this, imagine
d objects on a line, some or all of which can be variables among the ¢ variables. Next,
imagine using ¢ separators, positioning them among the d objects. Here is how we can
interpret a particular positioning of the separator as a monomial. Every object on the
left of the i-th separator (and on the right of the i — 1-th, in case i > 1), stands for the
1-th variable among the ¢ we have. Everything on the right of the ¢-th separator is not a
variable (we discard it). To get a monomial, we multiply all instances of variables that the
objects stand for. There are (ttd) ways to position the separators, and each positioning
corresponds to a unique monomial, so that is also the number of different monomials.

0
t+d

Definition 3.1. A Reed-Muller code is a code RMy; : IF(S ") —]th. We can think of
the code as taking as input a polynomial of degree at most d on ¢ variables in F,, that is

feF,lz1,...,2) Then E(f) = (f(z))ZE]FZ.

Let us now consider a specific case of Reed-Muller, the case of ¢t = 1, which is also known
as the Reed-Solomon code. We only have one variable, if we call it a, then the possible
monomials are 1,a,a?,...,a%. Suppose F, = {aj,as,...,a,}. The generating matrix of
this code is a ¢ by d + 1 matrix, where the entry on row ¢, column j is affl. Since two
distinct polynomials on one variable of degree d can agree on at most d points, we have
that if f # g, dist(E(f),E(g)) > q —d, so Min_dist(FE) = q — d. This means that by 1.3,
we can uniquely decode from approximately %l errors (but it does not follow from this
that it is locally decodable, because it is not guaranteed that we will only query a constant

number of digits.

Lemma 3.1 (Schwartz-Zippel, [Zip79], [Sch80]). Let f € F,[z1,..., 2], f # 0, that is, f
is a non-zero polynomial on ¢ variables in F,, and if the degree of f is d, then VB C I,

{a € B'|f(a) =0} < d|B|'"".

3-1

Lecture 3: Low-degree extension/Reed-Muller code 3-2

Proof. We are going to prove the lemma by induction on ¢. The base case, t = 1, holds
because a polynomial on one variable of degree d can have at most d zeros. Now suppose
t > 1. Without loss of generality, suppose that the degree d; of z; in f is not zero, that is,
z1 appears in f. Then we can write

di

flz1,..,20) = Zz{gj(?«% e 2t),

J=0

for some polynomials gg, g1, ..., 94, On 29,..., 2, where g4, #Z 0 and the degree of g4, is at
most d — d;. Then

{a € B'|f(a) = 0} < [{b € B""[ga, (b) = O}|B| + [{b € B""|ga, (b) # O}|d
< (d—dy)|B|"*|B| + B dy
— d|B|"™"

The first inequality holds because for each b such that g4 (b) = 0, there are | B| choices for
21, and for each b such that fy, (b) # 0, Z;llzo 2 gj(22,...,2) is a polynomial on one variable
z1 of degree dy, so it cannot have more than d; roots. The second inequality holds because
{b € B"™!gq,(b) = 0}] < (d — dy)q"? by induction, and |[{b € B !|g4 (b) # 0} < |B|*!

since [{b € B""'}| = |B|'"L.
O]

Going back to Reed-Muller codes, by the Schwartz-Zippel Lemma, which is the case B = TF,
t+d

of Lemma 3.1, we have that for any f, g € Fg ‘), if the polynomial A is such that h = f—g,

then

dist(RMqa.(f), RMas(g)) = [{a € Fylh(a) # 0} > ¢' —dg'™" = (¢ — d)q"".

Now we are going to show that there is a locally decodable code with the same image as the
Reed-Muller code. To do this, we need to change the generating matrix of the Reed-Muller
code.

Definition 3.2. S C [} is an interpolating set for degree d polynomials if ¥Vf # g of
degree at most d, there is some a € S such that f(a) # g(a). We will refer to a minimal
interpolating set as a MIS.

Lemma 3.2. If S is a MIS for degree d, then |S| = (*}7).

t

Lecture 3: Low-degree extension/Reed-Muller code 3-3

t+d

Proof. Take the map E' : Fg) —]qusl defined in the following way: E'(f) = (f(z))zes,
where f is a polynomial on ¢ variables of degree at most d. Then E’ is an injective map,
since Vf # g, there is some a € S such that f(a) # g(a). This means that |S| > (ttd). If

|S| > (ttd’), then the matrix of £’ has an invertible sub-matrix, so S is not minimal.

O

Example 3.1. Let B = {0,1,2,...,d}, let d < ¢ and let ¢ be prime. By Lemma 3.1,
the set B' C I, contains an MIS for degree d. This is because {0,1,2,...,d}" is an
Interpolating Set itself, since by Lemma 3.1, any two polynomials f, g with f # g agree on
at most d|B[*"! inputs, and |B| = (d + 1) > d(d + 1)""' = d|B|""!, so there is an input
in B, on which f and g don’t agree. From this Interpolating Set, we can get a Minirﬂal
Interpolating Set. This is because if we consider the matrix A such that for any x € F(g i >,
representing a polynomial f of degree at most d, Ax = (f(z>)z€{0,1,2,...,d}“ its rank must

be dg'~!, therefore it has an invertible sub-matrix. This invertible sub-matrix corresponds
to the Minimal Interpolating Set - the rows included in it correspond to the elements of
{0,1,...,d}" that are included in the MIS.

Definition 3.3 (Low-Degree Extension). Let S be a MIS for degree d. Note that Vv €
IE‘LS‘, there exists a unique degree d polynomial f, such that Ya € S, f,(a) = v,. Let
LDE;; : IF‘qS‘ — th, the Low-Degree Extension, be defined as follows:

LDEq(v) = (fv(a))aelﬁg

Now Im(LDE;;) = Im(RMg;), the image being just the evaluations of all degree d poly-
nomials.

Lemma 3.3. LDE,, is locally-decodable with d + 1 queries if d < ¢ —2 and ¢ < #.

Proof. We are going to work with the Low-Degree Extension LDFEy; : IFLS| — th of the
code, where S is a MIS and |S| = (ttd). Now LDEs(v) = (fv(a)) To decode

aclFt’
va = fyv(a), a € 5, pick a random b € F, then consider the line L, = {a + cblc € F,}.
We have that |L,p| = ¢. Now take the restriction of f to g, g(c¢) = f(a + cb), then
deg(g) < deg(f). Read d + 1 of the following ¢ — 1 values: {g(c) = f(a+ cb)}.z0. Since
q— 1> d, we can pick d + 1 of these values, and they determine g, so use interpolation to
find g, and then output ¢g(0) = f(a). By the Union Bound, the probability of error is at
most (d+ 1)d, since for each of the d + 1 queries we have error with probability §. Since §

is smaller than #, we get constant smaller than 1 error probability.

]

t+d
Usually, d = aq is taken for some constant o, so that we have LDFEg; : IF(S ") — IFS;”W.

Lecture 3: Low-degree extension/Reed-Muller code 3-4

We will refer to the length of the encoded message as n and to the length of the input of
LDEy; as k. LDE,; is a good LDC when ¢ is small, since in that case we get k ~ d' and
n=d' son =k Iftislarge and d,q = O(1), then we get k ~ t¢ and n = d', so n grows
approximately exponentially with k.

Exercise 3.1. Consider the Low-Degree Extension code with super-constant degree.
1. What encoding length can you get (as a function of message length) for large ¢ (say
q = polylog(n) or g = n®)?

2. Can these codes tolerate constant 67

References

[Sch80] Jack T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. 1979.

