
Linear Locally Decodable Codes Fall 2016

Lecture 3: Low-degree extension/Reed-Muller code
Lecturer: Zeev Dvir Scribe: Kalina Petrova

In this lecture, we consider the Reed-Muller code. It is not a Locally Decodable Code, but
there is an LDC with the same image as it. After defining Reed-Muller codes, we will do
a change of basis, which will yield that LDC.

Claim 3.1. F(≤d)
q [z1, . . . , zt] ∼= F(

t+d
t )

q , where F(≤d)
q [z1, . . . , zt] is the field of polynomials of

degree at most d on t variables.

Proof. The dimension of the field of polynomials of degree at most d on t variables is
(
t+d
t

)
because that is the number of monomials in t variables of degree d. To see this, imagine
d objects on a line, some or all of which can be variables among the t variables. Next,
imagine using t separators, positioning them among the d objects. Here is how we can
interpret a particular positioning of the separator as a monomial. Every object on the
left of the i-th separator (and on the right of the i − 1-th, in case i > 1), stands for the
i-th variable among the t we have. Everything on the right of the t-th separator is not a
variable (we discard it). To get a monomial, we multiply all instances of variables that the
objects stand for. There are

(
t+d
t

)
ways to position the separators, and each positioning

corresponds to a unique monomial, so that is also the number of different monomials.

Definition 3.1. A Reed-Muller code is a code RMd,t : F(
t+d
t )

q → Fqt

q . We can think of
the code as taking as input a polynomial of degree at most d on t variables in Fq, that is
f ∈ Fq[z1, . . . , zt]. Then E(f) =

(
f(z)

)
z∈Ft

q
.

Let us now consider a specific case of Reed-Muller, the case of t = 1, which is also known
as the Reed-Solomon code. We only have one variable, if we call it a, then the possible
monomials are 1, a, a2, . . . , ad. Suppose Fq = {a1, a2, . . . , aq}. The generating matrix of
this code is a q by d + 1 matrix, where the entry on row i, column j is aj−1

i . Since two
distinct polynomials on one variable of degree d can agree on at most d points, we have
that if f ̸= g, dist(E(f), E(g)) ≥ q − d, so Min dist(E) = q − d. This means that by 1.3,
we can uniquely decode from approximately q−d

2
errors (but it does not follow from this

that it is locally decodable, because it is not guaranteed that we will only query a constant
number of digits.

Lemma 3.1 (Schwartz-Zippel, [Zip79], [Sch80]). Let f ∈ Fq[z1, . . . , zt], f ̸≡ 0, that is, f
is a non-zero polynomial on t variables in Fq, and if the degree of f is d, then ∀B ⊆ Fq

|{a ∈ Bt|f(a) = 0}| ≤ d|B|t−1.

3-1



Lecture 3: Low-degree extension/Reed-Muller code 3-2

Proof. We are going to prove the lemma by induction on t. The base case, t = 1, holds
because a polynomial on one variable of degree d can have at most d zeros. Now suppose
t > 1. Without loss of generality, suppose that the degree d1 of z1 in f is not zero, that is,
z1 appears in f . Then we can write

f(z1, . . . , zt) =

d1∑
j=0

zj1gj(z2, . . . , zt),

for some polynomials g0, g1, . . . , gd1 on z2, . . . , zt, where gd1 ̸≡ 0 and the degree of gd1 is at
most d− d1. Then

|{a ∈ Bt|f(a) = 0}| ≤ |{b ∈ Bt−1|gd1(b) = 0}||B|+ |{b ∈ Bt−1|gd1(b) ̸= 0}|d1
≤ (d− d1)|B|t−2|B|+ |B|t−1d1

= d|B|t−1

The first inequality holds because for each b such that gd1(b) = 0, there are |B| choices for
z1, and for each b such that fd1(b) ̸= 0,

∑d1
j=0 z

j
1gj(z2, . . . , zt) is a polynomial on one variable

z1 of degree d1, so it cannot have more than d1 roots. The second inequality holds because
|{b ∈ Bt−1|gd1(b) = 0}| ≤ (d − d1)q

t−2 by induction, and |{b ∈ Bt−1|gd1(b) ̸= 0}| ≤ |B|t−1

since |{b ∈ Bt−1}| = |B|t−1.

Going back to Reed-Muller codes, by the Schwartz-Zippel Lemma, which is the case B = Fq

of Lemma 3.1, we have that for any f, g ∈ F(
t+d
t )

q , if the polynomial h is such that h = f−g,
then

dist(RMd,t(f), RMd,t(g)) = |{a ∈ Ft
q|h(a) ̸= 0}| ≥ qt − dqt−1 = (q − d)qt−1.

Now we are going to show that there is a locally decodable code with the same image as the
Reed-Muller code. To do this, we need to change the generating matrix of the Reed-Muller
code.

Definition 3.2. S ⊆ Ft
q is an interpolating set for degree d polynomials if ∀f ̸= g of

degree at most d, there is some a ∈ S such that f(a) ̸= g(a). We will refer to a minimal
interpolating set as a MIS.

Lemma 3.2. If S is a MIS for degree d, then |S| =
(
t+d
t

)
.



Lecture 3: Low-degree extension/Reed-Muller code 3-3

Proof. Take the map E ′ : F(
t+d
t )

q → F|S|
q defined in the following way: E ′(f) =

(
f(z)

)
z∈S,

where f is a polynomial on t variables of degree at most d. Then E ′ is an injective map,
since ∀f ̸= g, there is some a ∈ S such that f(a) ̸= g(a). This means that |S| ≥

(
t+d
t

)
. If

|S| >
(
t+d
t

)
, then the matrix of E ′ has an invertible sub-matrix, so S is not minimal.

Example 3.1. Let B = {0, 1, 2, . . . , d}, let d < q and let q be prime. By Lemma 3.1,
the set Bt ⊆ Ft

q contains an MIS for degree d. This is because {0, 1, 2, . . . , d}t is an
Interpolating Set itself, since by Lemma 3.1, any two polynomials f, g with f ̸= g agree on
at most d|B|t−1 inputs, and |Bt| = (d + 1)t > d(d + 1)t−1 = d|B|t−1, so there is an input
in Bt, on which f and g don’t agree. From this Interpolating Set, we can get a Minimal

Interpolating Set. This is because if we consider the matrix A such that for any x ∈ F(
t+d
t )

q ,
representing a polynomial f of degree at most d, Ax =

(
f(z)

)
z∈{0,1,2,...,d}t , its rank must

be dqt−1, therefore it has an invertible sub-matrix. This invertible sub-matrix corresponds
to the Minimal Interpolating Set - the rows included in it correspond to the elements of
{0, 1, . . . , d}t that are included in the MIS.

Definition 3.3 (Low-Degree Extension). Let S be a MIS for degree d. Note that ∀v ∈
F|S|
q , there exists a unique degree d polynomial fv such that ∀a ∈ S, fv(a) = va. Let

LDEd,t : F|S|
q → Fqt

q , the Low-Degree Extension, be defined as follows:

LDEd,t(v) =
(
fv(a)

)
a∈Ft

q

Now Im(LDEd,t) = Im(RMd,t), the image being just the evaluations of all degree d poly-
nomials.

Lemma 3.3. LDEd,t is locally-decodable with d+ 1 queries if d ≤ q − 2 and δ < 1
d+1

.

Proof. We are going to work with the Low-Degree Extension LDEd,t : F|S|
q → Fqt

q of the

code, where S is a MIS and |S| =
(
t+d
t

)
. Now LDEd,t(v) =

(
fv(a)

)
a∈Ft

q
. To decode

va = fv(a), a ∈ S, pick a random b ∈ Ft
q, then consider the line La,b = {a + cb|c ∈ Fq}.

We have that |La,b| = q. Now take the restriction of f to g, g(c) = f(a + cb), then
deg(g) ≤ deg(f). Read d + 1 of the following q − 1 values: {g(c) = f(a + cb)}c̸=0. Since
q − 1 > d, we can pick d+ 1 of these values, and they determine g, so use interpolation to
find g, and then output g(0) = f(a). By the Union Bound, the probability of error is at
most (d+ 1)δ, since for each of the d+ 1 queries we have error with probability δ. Since δ
is smaller than 1

d+1
, we get constant smaller than 1 error probability.

Usually, d = αq is taken for some constant α, so that we have LDEd,t : F
(t+d

t )
q → F(αq)t

q .



Lecture 3: Low-degree extension/Reed-Muller code 3-4

We will refer to the length of the encoded message as n and to the length of the input of
LDEd,t as k. LDEd,t is a good LDC when t is small, since in that case we get k ≈ dt and
n = dt, so n ≈ k. If t is large and d, q = O(1), then we get k ≈ td and n = dt, so n grows
approximately exponentially with k.

Exercise 3.1. Consider the Low-Degree Extension code with super-constant degree.

1. What encoding length can you get (as a function of message length) for large q (say
q = polylog(n) or q = nε)?

2. Can these codes tolerate constant δ?

References

[Sch80] Jack T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. 1979.


