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We will start by proving a result that may seem unrelated to Locally Decodable Codes, but will
be useful in proving a lower bound for 2-LDCs.

Definition 2.1. A hypercube is the graph Hk on the vertex set V = {0, 1}k, with edges E =
{(x,y)|dist(x,y) = 1}.

Lemma 2.1 (Edge-Isoperimetric Inequality for the Hypercube). Let S ⊆ {0, 1}k, denote F (S) =
{(x,y) ∈ S2|dist(x,y) = 1}. Then |F (S)| ≤ |S| log |S|.

Proof. We are going to prove the lemma by induction on |S|. The base cases are |S| = 2, which
is trivial, since |F (S)| ≤ 1 < 2, and |S| = 1, which is also trivial, since |F (S)| = 0 ≤ 1× log 1 = 0.
Now suppose |S| > 2. Choose i such that S has an edge in direction i (that is, there are x,y ∈ S
such that (x,y) ∈ F (S) and x−y = ei). Let S0 = {x ∈ S|xi = 0} and S1 = {x ∈ S|xi = 1}. Now
the edges in S are the union of the edges in S0, the edges in S1 and the edges between S0 and S1.
The edges between S0 and S1 have to all be of the form (v,w), where v−w = ei. Each element
u of S0 can have at most one neighbour in S1, namely u− ei, and analogically each element of S1

can have at most one neighbour in S0. Therefore,

|F (S)| ≤ |F (S0)|+ |F (S1)|+min{|S0|, |S1|}

Suppose without loss of generality that |S0| = d ≤ |S|
2 . Set n = |S|. Then by induction:

|F (S)| ≤ d log d+ (n− d) log (n− d) + d

= d log (2d) + (n− d) log (n− d)

≤ d log n+ (n− d) log n

= n log n

Exercise 2.1 (Improved Edge-Isoperimetric Inequality for the Hypercube). As above, let S ⊆
{0, 1}k, and denote F (S) = {(x,y) ∈ S2|dist(x,y) = 1}. Show that |F (S)| ≤ 1

2 |S| log |S|.

The main result we prove in this lecture is a lower bound for Locally Decodable Codes on n in
terms of k. We will first show a special case of the lower bound for F2, and then we will generalize
it to Fq.

Theorem 2.1 ( [GKST02]). Let E : Fk
2 → Fn

2 be a (2, δ, ε)-LDC without repetitions, then
n ≥ 2Ω(δk).

Proof. Let v1, . . . ,vn ∈ {0, 1}k = Fk
2 be the rows of the generating matrix of E, and suppose for

now that E is without repetitions. Using Theorem 1.1, let E be given in matching form by the k
2-matchings on [n] M1, . . . ,Mk and the n vectors v1, . . . ,vn. Each pair (vj ,v

′
j) ∈ M i is of one of

the following two types.
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1. ei = vj or ei = vj′ .

2. vj and vj′ differ only at the i-th coordinate.

Out of all pairs from all M i’s, at most n are of Type 1. This is because for each j, vj can equal ei
for at most one value of i, which means that each vj can participate in at most one pair of Type
1 (since for each i, vj can participate in at most one pair in M i), and there are n vj ’s.

We are now going to use Lemma 2.1 to prove the theorem. Set S = {v1, . . . ,vn}, and let F (S) be
the set of vector pairs (vj ,vj′) such that for some i ∈ [k], (vj ,vj′) ∈ M i. Then Lemma 2.1 gives
us |F (S)| ≤ n log n. Note that we can apply the Lemma because E is without repetitions. Going
back to our two types of pairs in the matchings M i, since at most n of them are of Type 1, then
at least

∑k
i=1 |M i| − n ≥ δnk

2 − n must be of Type 2. However, the pairs of Type 2 are members
of F (S). Thus, we get

n log n ≥ |F (S)| ≥ δnk

2
− n

log n ≥ δk

2
− 1

n ≥ 2
δk
2 −1

This completes the proof of the theorem for q = 2 and code without repetitions.

Exercise 2.2. Prove the 2-LDC lower bound for codes with repetitions over F2.

Field reduction for 2-LDCs
Lemma 2.2 ( [DS07]). Let E : Fk

q → Fn
q be a (2, δ, ε)-LDC. Then there exists a (2, δ′, ε′)-LDC

E′ : F
k
2
2 → Fn

2 such that δ′ = O(δ) and ε′ = O(δ).

Proof. Suppose E is given by (v1,v2, . . .vn) ∈
(
Fk
q

)n
and 2-matchings M1, . . . ,Mk. By Exercise

1.5, we can always construct another (2, δ2, ε2)-LDC E2 : Fk
q → Fn

q given by (v’1,v’2, . . . ,v’n) ∈(
Fk
q

)n
and 2-matchings M ′1, . . . ,M ′k, such that ∀i,∀(v’j ,v’j′) ∈ M ′i, either v’j − v’j′ = ei or

v’j −v’j′ = −ei, and δ2 = O(δ) and ε2 = O(ε). By the same argument as in the proof of Theorem
2.1, for at least δkn

2 − n matching pairs
(
v’j ,v’j′

)
∈ M i for some i, v’j and v’j′ differ only in the

i-th coordinate. Call these matching pairs good pairs. Now take a random map T : Fq → {0, 1}.
For any good pair (v’j ,v’j′) in M ′i, the probability of

(
T (v’j), T (v’j′)

)
being a good pair is 1

2 ,
since all digits of the two vectors apart from the i-th will map to the same value (since they are
the same), and the i-th digits will map to different values with probability 1

2 . In the second case,
{T (v’j), T (v’j′)} will span ei. Thus, by linearity of expectation, the expected value of good pairs
among T (v’1), T (v’2), . . . , T (v’n) is at least

1
2

(
δkn
2 −n

)
. Thus we have a new code E1 : Fk

q → Fn
q ,

given by vectors T (v’1), T (v’2), . . . , T (v’n) and 2-matchings M ′′1, . . . ,M ′′k. Then we have that∑k
i=1 |M ′′i| ≥ α

∑k
i=1 |M ′i|, where α = O(δ2). Now by Exercise 1.6, we can use E1 to obtain a

(2, δ′, ε′)-LDC E′ : F
k
2
q → Fn

q with δ′ = O(α) = O(δ2) = O(δ) and ε = O(α) = O(δ2) = O(δ).

Corollary 2.1. Let E : Fk
q → Fn

q be a (2, δ, ε)-LDC, then n ≥ 2Ω(δk).
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Proof. By Theorem 2.2, there is a (2, δ′, ε′)-LDC E′ : F
k
2
2 → Fn

2 for some δ′ = O(δ) and ε′ = O(δ).

Next, by Theorem 2.1, n ≥ 2Ω(δ′ k
2 ), therefore n ≥ 2Ω(δk).

Notice that in the proof of Corollary 2.1 we did not use the fact that the field we were working
with is finite, so Corollary 2.1 holds for R and C as well.

Open Problem 2.1 (Removing repetition). Let E : Fk
q → Fn

q be an r-LDC. Show that there

exists a r′-LDC E′ : Fk
q → Fn′

q without repetitions for some r′ = O(r) and with n′ = poly(n) that
can be obtained from E.

Exercise 2.3 ( [KS07]). Show that a random code E : Fk
2 → Fn

2 of size n = poly(k) is not an
r-LDC with high probability. For what value of n (in terms of k) does this argument break? Show
that a random code E : Fk

2 → Fn
2 with k = log n is an r-LDC with high probability.
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