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Lecture 2: Lower Bound for 2-LDCs

Lecturer: Zeev Duir Scribe: Kalina Petrova

We will start by proving a result that may seem unrelated to Locally Decodable Codes, but will
be useful in proving a lower bound for 2-LDCs.

Definition 2.1. A hypercube is the graph Hj on the vertex set V = {0,1}*, with edges F =
{(x y)ldist(x,y) = 1}.

Lemma 2.1 (Edge-Isoperimetric Inequality for the Hypercube). Let S C {0, 1}*, denote F(S) =
{(x,y) € S?|dist(x,y) = 1}. Then |F(S)| < |S|log|S|.

Proof. We are going to prove the lemma by induction on |S|. The base cases are |S| = 2, which
is trivial, since |F(S)| <1 < 2, and |S| = 1, which is also trivial, since |F(S)]=0<1x1logl =0.
Now suppose |S| > 2. Choose i such that S has an edge in direction 4 (that is, there are x,y € S
such that (x,y) € F(S) and x—y = €;). Let Sg = {z € S|z; =0} and S; = {x € S|z; = 1}. Now
the edges in S are the union of the edges in Sy, the edges in S; and the edges between Sy and S;.
The edges between Sy and S; have to all be of the form (v, w), where v — w = e;. Each element
u of Sy can have at most one neighbour in S7, namely u — e;, and analogically each element of S;
can have at most one neighbour in Sy. Therefore,

[E(S)] < [F(So)| + [F(S1)| + min{|So, [S1}

Suppose without loss of generality that |Sy| = d < @ Set n = |S|. Then by induction:

|F(S)| < dlogd+ (n—d)log(n—d)+d
= dlog (2d) + (n — d) log (n — d)
< dlogn+ (n—d)logn

=nlogn

O

Exercise 2.1 (Improved Edge-Isoperimetric Inequality for the Hypercube). As above, let S C
{0,1}*, and denote F(S) = {(x,y) € S?|dist(x,y) = 1}. Show that [F(S)| < 3|S|log|9|.

The main result we prove in this lecture is a lower bound for Locally Decodable Codes on n in
terms of k. We will first show a special case of the lower bound for 5, and then we will generalize
it to [Fy.

Theorem 2.1 ( [GKST02]). Let E : F§ — F% be a (2,4,¢)-LDC without repetitions, then

Proof. Let vi,...,v, € {0,1}* = F% be the rows of the generating matrix of E, and suppose for
now that F is without repetitions. Using Theorem 1.1, let E be given in matching form by the &
2-matchings on [n] M*, ..., M* and the n vectors vi,...,v,. Each pair (v;, v/;) € M is of one of
the following two types.
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1. €; =V; Or € = Vjr.

2. v; and v differ only at the i-th coordinate.

Out of all pairs from all M’s, at most n are of Type 1. This is because for each j, v; can equal e;
for at most one value of 4, which means that each v; can participate in at most one pair of Type
1 (since for each ¢, v; can participate in at most one pair in M*), and there are n v;’s.

We are now going to use Lemma 2.1 to prove the theorem. Set S = {v1,...,v,}, and let F(S) be
the set of vector pairs (v;,v;/) such that for some i € [k], (v;,v;/) € M'. Then Lemma 2.1 gives
us |F(S)| < nlogn. Note that we can apply the Lemma because E is without repetitions. Going
back to our two types of pairs in the matchings M?, since at most n of them are of Type 1, then
at least Zle | MY —n > ‘5”7’“ — n must be of Type 2. However, the pairs of Type 2 are members
of F(S). Thus, we get

nlogn > |F(S)| = Il -n

ok
logn > 7—1

This completes the proof of the theorem for ¢ = 2 and code without repetitions.

Exercise 2.2. Prove the 2-LDC lower bound for codes with repetitions over F.

Field reduction for 2-LDCs

Lemma 2.2 ( [DS07]). Let E : F¥ — F7 be a (2,4,)-LDC. Then there exists a (2,6’,¢')-LDC
E':F; — F} such that & = O(6) and &’ = O(3).

Proof. Suppose F is given by (vq,va,...v,) € (F(lj)n and 2-matchings M!,..., M*. By Exercise

1.5, we can always construct another (2,d2,e5)-LDC FEj : IF’; — Ty given by (v’1,v’2,...,v",) €
(IFZ)” and 2-matchings M, ... M'® such that Vi,V(v’;,v’;) € M", either v’; — v’;; = e; or
v’ —v’j = —e;, and 02 = O(6) and €2 = O(e). By the same argument as in the proof of Theorem

2.1, for at least 5’;” — n matching pairs (v’j7 v’j/) € M* for some i, v’; and v’j differ only in the
i-th coordinate. Call these matching pairs good pairs. Now take a random map T : F, — {0, 1}.
For any good pair (v’;,v’;/) in M"%, the probability of (T'(v’;),T(v’;/)) being a good pair is 3,
since all digits of the two vectors apart from the i-th will map to the same value (since they are
the same), and the i-th digits will map to different values with probability % In the second case,
{T'(v’;),T(v’j:)} will span e;. Thus, by linearity of expectation, the expected value of good pairs
among T (v’1),T(v’3),...,T(v’,) is at least %(MT” —n). Thus we have a new code Ey : FF — F7,
given by vectors T'(v’y), T(v’2),...,T(v’,) and 2-matchings M’ ..., M"*. Then we have that

Zle | M > aZle |M'|, where a = O(82). Now by Exercise 1.6, we can use E; to obtain a
k
(2,0",€")-LDC B : F§ — Fy with ¢’ = O(a) = O(02) = O(9) and £ = O(a) = O(d2) = O(9).
O
Corollary 2.1. Let E : IFZ — F} be a (2,6,¢)-LDC, then n > 262(0k)
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k
Proof. By Theorem 2.2, there is a (2,¢’,¢')-LDC E’ : FZ — F} for some ¢’ = O(d) and ¢’ = O(0).
Next, by Theorem 2.1, n > 29(5/5), therefore n > 2¢2(0k)

O

Notice that in the proof of Corollary 2.1 we did not use the fact that the field we were working
with is finite, so Corollary 2.1 holds for R and C as well.

Open Problem 2.1 (Removing repetition). Let E : Ff — F? be an 7-LDC. Show that there
exists a r’-LDC E' : F¥ — FZ/ without repetitions for some ' = O(r) and with n’ = poly(n) that
can be obtained from F.

Exercise 2.3 ( [KS07]). Show that a random code E : F§ — F% of size n = poly(k) is not an
r-LDC with high probability. For what value of n (in terms of k) does this argument break? Show
that a random code F : F§ — F3 with k = logn is an 7-LDC with high probability.
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