Linear Locally Decodable Codes

Fall 2016

Lecture 2: Lower Bound for 2-LDCs

Lecturer: Zeev Dvir

Scribe: Kalina Petrova

We will start by proving a result that may seem unrelated to Locally Decodable Codes, but will be useful in proving a lower bound for 2-LDCs.

Definition 2.1. A hypercube is the graph H_k on the vertex set $V = \{0,1\}^k$, with edges $E = \{(\mathbf{x}, \mathbf{y}) | dist(\mathbf{x}, \mathbf{y}) = 1\}.$

Lemma 2.1 (Edge-Isoperimetric Inequality for the Hypercube). Let $S \subseteq \{0,1\}^k$, denote $F(S) = \{(\mathbf{x}, \mathbf{y}) \in S^2 | dist(\mathbf{x}, \mathbf{y}) = 1\}$. Then $|F(S)| \leq |S| \log |S|$.

Proof. We are going to prove the lemma by induction on |S|. The base cases are |S| = 2, which is trivial, since $|F(S)| \le 1 < 2$, and |S| = 1, which is also trivial, since $|F(S)| = 0 \le 1 \times \log 1 = 0$. Now suppose |S| > 2. Choose *i* such that *S* has an edge in direction *i* (that is, there are $\mathbf{x}, \mathbf{y} \in S$ such that $(\mathbf{x}, \mathbf{y}) \in F(S)$ and $\mathbf{x} - \mathbf{y} = \mathbf{e}_i$). Let $S_0 = \{x \in S | x_i = 0\}$ and $S_1 = \{x \in S | x_i = 1\}$. Now the edges in *S* are the union of the edges in S_0 , the edges in S_1 and the edges between S_0 and S_1 . The edges between S_0 and S_1 have to all be of the form (\mathbf{v}, \mathbf{w}) , where $\mathbf{v} - \mathbf{w} = \mathbf{e}_i$. Each element \mathbf{u} of S_0 can have at most one neighbour in S_1 , namely $\mathbf{u} - \mathbf{e}_i$, and analogically each element of S_1 can have at most one neighbour in S_0 . Therefore,

$$|F(S)| \le |F(S_0)| + |F(S_1)| + \min\{|S_0|, |S_1|\}$$

Suppose without loss of generality that $|S_0| = d \leq \frac{|S|}{2}$. Set n = |S|. Then by induction:

$$|F(S)| \le d \log d + (n-d) \log (n-d) + d$$

= $d \log (2d) + (n-d) \log (n-d)$
 $\le d \log n + (n-d) \log n$
= $n \log n$

Exercise 2.1 (Improved Edge-Isoperimetric Inequality for the Hypercube). As above, let $S \subseteq \{0,1\}^k$, and denote $F(S) = \{(\mathbf{x}, \mathbf{y}) \in S^2 | dist(\mathbf{x}, \mathbf{y}) = 1\}$. Show that $|F(S)| \leq \frac{1}{2}|S| \log |S|$.

The main result we prove in this lecture is a lower bound for Locally Decodable Codes on n in terms of k. We will first show a special case of the lower bound for \mathbb{F}_2 , and then we will generalize it to \mathbb{F}_q .

Theorem 2.1 ([GKST02]). Let $E : \mathbb{F}_2^k \to \mathbb{F}_2^n$ be a $(2, \delta, \varepsilon)$ -LDC without repetitions, then $n \ge 2^{\Omega(\delta k)}$.

Proof. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \{0, 1\}^k = \mathbb{F}_2^k$ be the rows of the generating matrix of E, and suppose for now that E is without repetitions. Using Theorem 1.1, let E be given in matching form by the k 2-matchings on $[n] M^1, \ldots, M^k$ and the n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Each pair $(\mathbf{v}_j, \mathbf{v}'_j) \in M^i$ is of one of the following two types.

- 1. $\mathbf{e}_i = \mathbf{v}_j$ or $\mathbf{e}_i = \mathbf{v}_{j'}$.
- 2. \mathbf{v}_{j} and $\mathbf{v}_{j'}$ differ only at the *i*-th coordinate.

Out of all pairs from all M^i 's, at most n are of Type 1. This is because for each j, \mathbf{v}_j can equal \mathbf{e}_i for at most one value of i, which means that each \mathbf{v}_j can participate in at most one pair of Type 1 (since for each i, \mathbf{v}_j can participate in at most one pair in M^i), and there are $n \mathbf{v}_j$'s.

We are now going to use Lemma 2.1 to prove the theorem. Set $S = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$, and let F(S) be the set of vector pairs $(\mathbf{v}_j, \mathbf{v}_{j'})$ such that for some $i \in [k], (\mathbf{v}_j, \mathbf{v}_{j'}) \in M^i$. Then Lemma 2.1 gives us $|F(S)| \leq n \log n$. Note that we can apply the Lemma because E is without repetitions. Going back to our two types of pairs in the matchings M^i , since at most n of them are of Type 1, then at least $\sum_{i=1}^k |M^i| - n \geq \frac{\delta nk}{2} - n$ must be of Type 2. However, the pairs of Type 2 are members of F(S). Thus, we get

$$n \log n \ge |F(S)| \ge \frac{\delta nk}{2} - n$$
$$\log n \ge \frac{\delta k}{2} - 1$$
$$n \ge 2^{\frac{\delta k}{2} - 1}$$

This completes the proof of the theorem for q = 2 and code without repetitions.

Exercise 2.2. Prove the 2-LDC lower bound for codes with repetitions over \mathbb{F}_2 .

Field reduction for 2-LDCs

Lemma 2.2 ([DS07]). Let $E : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be a $(2, \delta, \varepsilon)$ -LDC. Then there exists a $(2, \delta', \varepsilon')$ -LDC $E' : \mathbb{F}_2^{\frac{k}{2}} \to \mathbb{F}_2^n$ such that $\delta' = O(\delta)$ and $\varepsilon' = O(\delta)$.

Proof. Suppose E is given by $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \in (\mathbb{F}_q^k)^n$ and 2-matchings M^1, \dots, M^k . By Exercise 1.5, we can always construct another $(2, \delta_2, \varepsilon_2)$ -LDC $E_2 : \mathbb{F}_q^k \to \mathbb{F}_q^n$ given by $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \in (\mathbb{F}_q^k)^n$ and 2-matchings M'^1, \dots, M'^k , such that $\forall i, \forall (\mathbf{v}_j, \mathbf{v}_{j'}) \in M'^i$, either $\mathbf{v}_j - \mathbf{v}_{j'} = \mathbf{e}_i$ or $\mathbf{v}_j - \mathbf{v}_{j'} = -\mathbf{e}_i$, and $\delta_2 = O(\delta)$ and $\varepsilon_2 = O(\varepsilon)$. By the same argument as in the proof of Theorem 2.1, for at least $\frac{\delta kn}{2} - n$ matching pairs $(\mathbf{v}_j, \mathbf{v}_{j'}) \in M^i$ for some i, \mathbf{v}_j and $\mathbf{v}_{j'}$ differ only in the *i*-th coordinate. Call these matching pairs good pairs. Now take a random map $T : \mathbb{F}_q \to \{0, 1\}$. For any good pair $(\mathbf{v}_j, \mathbf{v}_{j'})$ in M'^i , the probability of $(T(\mathbf{v}_j), T(\mathbf{v}_{j'}))$ being a good pair is $\frac{1}{2}$, since all digits of the two vectors apart from the *i*-th will map to the same value (since they are the same), and the *i*-th digits will map to different values with probability $\frac{1}{2}$. In the second case, $\{T(\mathbf{v}_j), T(\mathbf{v}_j), T(\mathbf{v}_j), \dots, T(\mathbf{v}_n)$ is at least $\frac{1}{2}(\frac{\delta kn}{2} - n)$. Thus we have a new code $E_1 : \mathbb{F}_q^k \to \mathbb{F}_q^n$, given by vectors $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)$ and 2-matchings M''^1, \dots, M''^k . Then we have that $\sum_{i=1}^k |M''^i| \ge \alpha \sum_{i=1}^k |M'^i|$, where $\alpha = O(\delta_2)$. Now by Exercise 1.6, we can use E_1 to obtain a $(2, \delta', \varepsilon')$ -LDC $E' : \mathbb{F}_q^k \to \mathbb{F}_q^n$ with $\delta' = O(\alpha) = O(\delta_2) = O(\delta)$ and $\varepsilon = O(\alpha) = O(\delta_2) = O(\delta)$.

Corollary 2.1. Let $E : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be a $(2, \delta, \varepsilon)$ -LDC, then $n \ge 2^{\Omega(\delta k)}$.

Proof. By Theorem 2.2, there is a $(2, \delta', \varepsilon')$ -LDC $E' : \mathbb{F}_2^{\frac{k}{2}} \to \mathbb{F}_2^n$ for some $\delta' = O(\delta)$ and $\varepsilon' = O(\delta)$. Next, by Theorem 2.1, $n \ge 2^{\Omega(\delta' \frac{k}{2})}$, therefore $n \ge 2^{\Omega(\delta k)}$.

Notice that in the proof of Corollary 2.1 we did not use the fact that the field we were working with is finite, so Corollary 2.1 holds for \mathbb{R} and \mathbb{C} as well.

Open Problem 2.1 (Removing repetition). Let $E : \mathbb{F}_q^k \to \mathbb{F}_q^n$ be an *r*-LDC. Show that there exists a r'-LDC $E' : \mathbb{F}_q^k \to \mathbb{F}_q^{n'}$ without repetitions for some r' = O(r) and with n' = poly(n) that can be obtained from E.

Exercise 2.3 ([KS07]). Show that a random code $E : \mathbb{F}_2^k \to \mathbb{F}_2^n$ of size n = poly(k) is not an *r*-LDC with high probability. For what value of *n* (in terms of *k*) does this argument break? Show that a random code $E : \mathbb{F}_2^k \to \mathbb{F}_2^n$ with $k = \log n$ is an *r*-LDC with high probability.

References

- [DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. *SIAM Journal on Computing*, 36:1404–1434, 2007.
- [GKST02] O. Goldreich, H. Karloff, L.J. Schulman, and L. Trevisan. Lower bounds for linear locally decodable codes and private information retrieval. In *Proceedings 17th IEEE* Annual Conference on Computational Complexity, 2002.
- [KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and testable. In Foundations of Computer Science, 2007. FOCS '07. 48th Annual IEEE Symposium on, 2007.