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Preliminaries
We start with some notation that will be used throughout these notes.

• [k] = {1, 2, . . . , k};

• Fq is a finite field of q elements;

• ∀x,y ∈ Fn
q , we will use dist(x,y) to denote the Hamming distance between x and y, that

is, the number of positions in which x and y differ.

• We will use log x to denote log2 x for any x.

Definition 1.1. A linear map E : Fk
q → Fn

q is an (r, δ, ε)-LDC (Locally Decodable Code) if there
exists a randomized procedure D such that

1. For each x ∈ Fk
q and ∀y ∈ Fn

q s.t. dist(E(x),y) ≤ δn, we have ∀i ∈ [k], P r[D(y, i) = xi] ≥
1− ε > 1

q .

2. D makes at most r non-adaptive queries to y.

In other words, a linear map E is a Locally Decodable Code if each coordinate of the original
message can be decoded with high probability querying only r coordinates of the encoded message.
The reason why we need this high probability to be higher than 1

q is that a procedure which makes

a uniformly random guess for the coordinate in question will have a success probability 1
q , since

there are q symbols in use.

Sometimes we will omit δ, ε, saying E is an r-LDC if it is an (r, δ, ε)-LDC for some δ, ε > 0.

Note that if we can afford to increase O(r) by multiplying it with a constant, then we can fix
ε = 1

4 . This is because an LDC with error 1
4 can always be amplified to obtain an LDC with error

ε′, where ε′ can be arbitrarily small. We can do this by running the decoding algorithm repeatedly
and then taking the majority answer. Thus, by modifying r by a constant, we can get an LDC
with any error.

Example 1.1. Hadamard code

In the case of Hadamard code, for any field Fq, we have n = 2k, r = 2. The coordinates of E(x) are
indexed by elements of {0, 1}k, and if Ev(x) denotes the v-th coordinate of E(x), v ∈ {0, 1}k ⊆ Fk

q ,

then Ev(x) =
⟨
x,v

⟩
, that is, the dot product of x and v, which is defined as

⟨
x,v

⟩
=

∑
1≤i≤k vixi.

The local decoder D(y, i) operates in the following manner. Pick a v ∈ {0, 1}k uniformly at
random. Let ṽ be obtained from v by flipping the i-th bit. Then our guess for xi is

D(y, i) =

{
yv − yṽ, if vi = 1

yṽ − yv, if vi = 0

If both yv = Ev(x) and yṽ = Eṽ(x), then we will get the right answer, because:
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• If vi = 1, then yv − yṽ = Ev(x)− Eṽ(x) =
∑

1≤j≤k,vj=1 xj −
∑

1≤j≤k,ṽj=1 xj = xi, since
v and ṽ only differ in the i-th bit.

• If vi = 0, then yṽ − yv = Eṽ(x)− Ev(x) =
∑

1≤j≤k,ṽj=1 xj −
∑

1≤j≤k,vj=1 xj = xi, since
v and ṽ only differ in the i-th bit.

Now since v and ṽ are both chosen uniformly at random (although not independently), the
probability that yv ̸= Ev(x) is δ, and the probability that yṽ ̸= Eṽ(x) is also δ, and thus the
probability that at least one of these happens is no more than 2δ by the Union Bound (Pr[∪iAi] ≤∑

i Pr[Ai], where A1, A2, A3, . . . is a countable set of events). Thus Pr[D(y, i) = xi] ≥ 1− 2δ, so
we can set ε = 2δ, and this works for any δ < 1

2 .

Notice that for each coordinate i of the original message, there is a perfect matching on pairs of
codeword coordinates, among which the decoder picks one pair uniformly at random. We will
later prove such a matching structure always exists.

Observe that the Hadamard code is a systematic code, which means that the message is part of
the encoding (xi is at position vi in the message, where vi is such that its only non-zero bit is the
i-th bit).

Any linear LDC E : Fk
q → Fn

q is non-degenerate, which means that Im(E) ⊆ Fn
q is k-dimensional

(otherwise there would be collisions, that is, there would exist x ̸= x’ with E(x) = E(x’), and we
wouldn’t be able to recover each bit of the original message with high probability).

Definition 1.2. The rate of an LDC is rate(E) = k
n , since for any k symbols of information, the

code generates n symbols.

There are two ways to define a linear LDC:

1. E(x) = Ax, where A is an n × k matrix, called the generating matrix. For instance, the
generating matrix of the Hadamard code is a 2k×k matrix whose rows are all binary vectors.

2. Using a parity-check (n− k)× n matrix T such that Im(E) = Ker(T ), that is, y ∈ Im(E)
if and only if Ty = 0. Note that this representation is not unique (we could perform any
sequence of invertible row-operations on the parity-check matrix and its kernel will be the
same).

Exercise 1.1. Define the Hadamard code using a parity-check matrix.

Definition 1.3. The minimum distance of E is defined as the minimum Hamming distance
between any two distinct codewords of E, Min dist(E) = miny,y’∈Im(E),y̸=y’{dist(y,y’)}.

Exercise 1.2. Show that if E is decodable (locally or not) from δn errors (adversarial, that is,
we can’t assume the errors are in random positions), then Min dist(E) > 2δn.

Exercise 1.3. Show that if Min dist(E) > 2δn, then E is decodable from δn adversarial errors
(where we allow the decoder to run in exponential time).

Structure of linear LDCs
We will prove an important property of the structure of linear LDCs, which will be useful for
proving lower bounds.

Definition 1.4. An r-matching on [n] is a family of disjoint r-tuples M = (T1, T2, . . . , T|M |),
where ∀i, 1 ≤ i ≤ |M |, Ti ⊆ [n], |Ti| = r, and ∀i, j, 1 ≤ i < j ≤ |M |, Ti ∩ Tj = ∅.
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Definition 1.5. For any i ∈ [k], let ei ∈ Fk
q be the i-th standard basis vector.

Theorem 1.1 (Structure Theorem). If E : Fk
q → Fn

q is an (r, δ, ε)-LDC such that ∀i ∈ [n], Ei(x) =⟨
vi,x

⟩
, that is, v1,v2, . . . ,vn ∈ Fk

q are the rows of the generating matrix of E, then ∀i ∈ [k], ∃ an

r-matching M i = (T i
1, T

i
2, . . . , T

i
mi

),mi ≥ δn
r , such that ∀j ∈ [mi], ei ∈ span{vl|l ∈ T i

j}. That is,

each tuple in M i spans ei so it can be used to recover xi =
⟨
ei,x

⟩
.

Proof. For each i, there is a distribution µi on the r-tuples that are subsets of [n] defined by
D(y, i). Since E is a Locally Decodable Code, ∀x ∈ Fk

q , ∀y ∈ Fn
q with dist(y, E(x)) ≤ δn,

Pr[D(y, i) = xi] ≥ 1− ε. Then for a fixed i, we have the following (we start out with no error in
the encoded message and we will add the error gradually):

ET∼µi [D(E(x), i) = xi|D reads T ] ≥ 1− ε.

Now we randomize uniformly over x ∼ Fk
q , and we get:

ET∼µiPrx∼Fk
q
[D(E(x), i) = xi|D reads T ] ≥ 1− ε.

Let us define PT = Prx∼Fk
q
[D(E(x), i) = xi|D reads T ] for any T ∼ µi.

Then there exists T ⊆ [n] such that PT ≥ 1 − ε > 1
q . This means that there is a probabilistic

function f that takes {
⟨
vj ,x

⟩
, j ∈ T} as input and returns

⟨
ei,x

⟩
with probability more than 1

q

(the function is computed byD when it reads T ). But this can only happen if ei ∈ span{vj , j ∈ T}.
To see why, consider some fixed w1,w2, . . . ,wk ∈ Fk

q such that wk /∈ span{wi|1 ≤ i ≤ k− 1}, and
some x ∈ Fk

q chosen uniformly at random so that
⟨
w1,x

⟩
,
⟨
w2,x

⟩
, . . . ,

⟨
wk−1,x

⟩
are fixed, then⟨

wk,x
⟩
is still uniformly distributed, therefore it cannot be predicted with probability better than

1
q .

We have found one of the sets in the matching. Let T1 = T and continue as follows. Let E(x)|∼T

denote the random variable obtained from E(x) by assigning uniformly random values to entries
in T . As before, since |T | ≤ δn, we have:

ET∼µiPrx∈Fk
q
[D(E(x)|∼T1 , i) = xi|D reads T ] ≥ 1− ε.

Set P ′
T = Prx∈Fk

q
[D(E(x)|∼T1 , i) = xi|D reads T ]. From the inequality above it follows that there

is a T2 ∼ µi such that P ′
T2

≥ 1− ε > 1
q . Without loss of generality, T2∩T1 = ∅, since entries in T1

are random noise and do not help us in finding xi (so we can just ignore them). In this manner,
some sets might end up having size smaller than r, in which case we can complete them by adding
arbitrary coordinates to them. Using the same argument as above, ei ∈ span{vj |j ∈ T2}.

This process can continue until |
∪m

j=1 Tj | > δn, because before that the encoded message has no

more than δn errors. Thus mi ≥ δn
r .

Theorem 1.2 (Converse of the Structure Theorem). Let v1, . . . ,vn ∈ Fk
q be such that ∀i ∈ [k], ∃

an r-matching M i of size mi = αn so that ∀T ⊆ M i, ei ∈ span{vj |j ∈ T}. Then E : Fk
q → Fn

q

defined by Ej(x) =
⟨
x,vj

⟩
is an (r, δ, ε)-LDC ∀δ, ε such that δ ≤ εα.

Proof. The decoder D(y, i) for E works in the following way. It first picks an r-tuple T uniformly
at random from M i, then queries {yj |j ∈ T}. Now since ei ∈ span{vj |j ∈ T}, there exist
coefficients {aj |j ∈ T} such that ei =

∑
j∈T ajvj . Then notice that
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xi =
⟨
x, ei

⟩
=

⟨
x,

∑
j∈T

ajvj

⟩
=

∑
j∈T

⟨
x, ajvj

⟩
=

∑
j∈T

aj
⟨
x,vj

⟩
=

∑
j∈T

ajEj(x).

So after querying {yj |j ∈ T}, D returns
∑

j∈T ajyj . A potential error can only come from an
error in y. There are at most δn errors in y by definition, which means that at most δn out of mi

members of M i can contain an error. Thus, if we’re picking an r-tuple uniformly at random from
M i, then the probability of hitting a member that contains an error is at most δn

mi
= δ

α ≤ ε.

This means that up to a factor of 1
r for δ, the two definitions of LDCs are equivalent. Since we

will mostly be interested in r = O(1), this is a minor loss.

Definition 1.6. We will say that a code E : Fk
q → Fn

q is an r-LDC given in matching form if

it is specified by k r-matchings M1, . . . ,Mk such that ∀i, T ∈ M i, ei ∈ span{vj |j ∈ T}, where
(v1, . . . ,vn) ∈

(
Fk
q

)n
are the rows of the generating matrix of E. That is, an r-LDC can simply be

given as a set of vectors (v1, . . . ,vn) ∈
(
Fk
q

)n
with k r-matchings M1, . . . ,Mk (δ and ε are given

by δ = ε
α ).

Definition 1.7. We will say that a code E : Fk
q → Fn

q with rows of the generating matrix

v1, . . . ,vn is a code without repetitions, if ∀i ̸= j,vi ̸= vj . We will say that a code E : Fk
q → Fn

q

with rows of the generating matrix v1, . . . ,vn is a code with repetitions if it is possible for it to
not be without repetitions.

Exercise 1.4. Show that if E : Fk
q → Fn

q is a (1, δ, ε)-LDC then δ ≤ 1
k . Show a code matching

these parameters.

Exercise 1.5. In the Hadamard code construction, the coefficients used in the linear combinations
used for decoding are 1 and −1. Show that from any (2, δ, ε)-LDC E1 we can construct a (2, δ′, ε′)-
LDC E2 that has this property, where δ′ = O(δ) and ε′ = O(ε).

Hint. ∀v ∈ Fk
q , let ṽ = λv such that for imin = mini∈[k],vi ̸=0{i}, ṽimin = 1, replace v1, . . . ,vn

from E1 with ṽ1, . . . , ṽn in E2.

Exercise 1.6. Suppose E : Fk
q → Fn

q is a code given by v1, . . . ,vn ∈ Fk
q and r-matchings

M1, . . . ,Mk, so that 1
k

∑k
i=1 |M i| ≥ δn

r for some δ (instead of each |M i| ≥ δn
r ). Show how

to use E to construct an (r, δ′, ε′)-LDC E′ : F
k
2
q → Fn

q , where δ′ = O(δ) and ε′ = O(δ).

Exercise 1.7. Consider the Hadamard code over E : Fk
2 → F2k

2 . Suppose that the goal of the

decoder is to recover the sum of message bits
∑k

i=1 xi ∈ F2 locally, by making at most 2 queries.
Show how this can be done. What about other linear combinations? Will this still work in
Fq, q > 2?


