
Ø VM memory size grows from 128MB to 3072MB (i.e. 3GB)
with step size 128MB.

SnapFaaS: Fast Serverless Function Cold-boot through VM Snapshot Restoration

Motivation
• Function-as-a-Service (FaaS), or serverless, systems

allow many bursty “functions” to share relatively few
datacenter resources.

• Because many of these applications are short-lived
(typically hundreds of milliseconds), their cold-boot costs
dominate their resource consumption.

• As a result, serverless providers must heavily over-
provision resources and cache unused functions for long
periods of time.

• Amazon’s Firecracker providing strong isolation already
cuts cold-boot latencies down to hundreds of milliseconds.
However, hundreds of milliseconds is still high for typical
serverless functions.

SnapFaaS Design
1. Provisioning through snapshot restoration: we create a

function environment by restoring from a VM snapshot.
A restored VM already has the kernel and language
runtime initialized and running.

2. Snapshot generality: Snapshots in SnapFaaS are taken
after language runtime initialization to maximize the
application stack’s commonality for a whole category of
functions. A Node.js snapshot can run all Node.js apps.

3. In-memory snapshot store: SnapFaaS VM launch
latency is largely determined by how fast snapshots are
loaded into guest memory. Thus, we keep snapshots in
memory for fast copying to maximize latency reduction.

How Fast Is Firecracker
• We measure that it takes 296ms, 390ms, and 262ms on

average to initialize complete Python2, Node.js, and C
environments, respectively

• And that dirty memory is 37MB for Python2 and 40MB
for Node.js after the language runtime initialization.

• Taken together, we note that on modern hardware, loading
a 37MB file from the page cache into memory takes only
a few milliseconds. Even loading it from disk at 500MB/s
takes only 78ms – a quarter of the time it takes the VM to
initialize the same memory.

VM

VM VM

VM

Request
ManagerController

In-memory
snapshots

Runtimefs
&

Appfs

Route to
an Idle VM
Launch a
new VM

Booting VM

Request

Idle VM

ZƵŶŶŝŶŐ�VM

response

allocate(λ)
VM

free(vm)

Ø A VM snapshot consists of registers, device (e.g. block device) states and
dirty memory.

Ø Runtimefs includes typical operating system utilities (e.g. bash, ls, cat),
and other standard UNIX utilities, common libraries (e.g. libc, libm,
libgmp, etc), as well as the language interpreter and standard libraries (e.g.
Python or Node.js).

Ø Appfs contains all function specific files — including the handler code and
any necessary libraries or executables not provided by the runtimefs.

Results
1. 6x speed-up: SnapFaaS currently restores memory

through memory copying and achieves 50ms instead of
296ms boot latency for Python2 VMs with 128MB
memory.

2. In-memory snapshots are justifiable and desirable: In
total, it takes about 1.5GB memory to store all Python2
snapshots. All snapshots for ~10 language runtimes will
take about 15GB. Booting from in-memory snapshots is
at least 2x faster than from on-disk snapshots.

3. The size or location of appfs has no impact: on
snapshot sizes or boot latencies.

Load kernel image

Boot kernel

init process

Initialize language runtime

Load and run function

Load snapshot

Load and run function

Ø fc_vmm includes launching a VMM and configuring a VM. init
runs OpenRC init and starts a minimum set of system services.

Ø Booting from a snapshot turns kernel booting, init process, and
language runtime initialization into memory restoration.

from subprocess import call, Popen
import multiprocessing as mp
import imp, sys
send out snapshot signal from each vcpu
for i in range(1, mp.cpu_count()):

Popen('taskset -c %d outl 124 0x3f0'%(i), shell=True)
call('taskset -c 0 outl 124 0x3f0', shell=True)
mount appfs
call('mount -r /dev/vdb /srv', shell=True)
signal boot completion
call('outl 126 0x3f0', shell=True)
load app dependencies
sys.path.append('/srv/package')
load app
app = imp.load_source('app', '/srv/workload')
invoke app.handler upon requests...

vMemory restoration can be further sped up through on-
demand restoration.

vMounting appfs costs 10ms. We think this latency can be
cut down.

vWe need to add support for network devices.

Yue Tan: yuetan@cs.princeton.edu David H. Liu: hao.liu@princeton.edu Amit Levy: aalevy@cs.princeotn.edu

Further Work

Ø Snapshot boot latencies consists of three parts: memory
restoration, mounting appfs, and other (including launching
a VMM and configuring a VM)

Code repository: https://github.com/princeton-sns/firecracker-tools

Py
th

on
2

W
ra

pp
er

