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Abstract

By repeating the procedure of deriving momentum from conjugate gradient, one can derive from
conjugate residual an algorithm similar to consensus optimization.

1 Warm-up: Deriving Momentum from Conjugate Gradient

Let us first see how we can derive momentum from CG. This can be found in Bach [2019] and Hardt [2018].
Consider a quadratic minimization problem minx

1
2x

TAx−bTx, where A is positive definite with eigen-
values in the interval [m,L]. The solution to the problem is x∗ = A−1b, thus it is natural to consider using
CG to solve it. Here, we won’t use the actual update rule of CG, and would consider it as a Krylov subspace
algorithm instead. Define the order-t Krylov subspace as

Kt(A,b) = span
{
b,Ab, · · · ,At−1b

}
.

Kt can be thought as the space reachable via t gradient evaluations starting from the origin. The t-th iterate
of CG is exactly

xt = arg min
x∈Kt(A,b)

1

2
xTAx− bTx = arg min

x∈Kt(A,b)

1

2
(x− x∗)TA(x− x∗).

Now, instead of considering the Krylov subspace, let us consider polynomials. Kt(A,b) is essentially the
same as {p(A)b|p is polynomial with degree ≤ t−1}. Suppose that xt = p(A)b, then x∗−xt = x∗−p(A)b =
(I − p(A)A)x∗. If p can be an arbitrary polynomial with degree ≤ t − 1, then q(x) = 1 − xp(x) can be an
arbitrary polynomial in the set

Πt := {Polynomials with degree ≤ t such that q(0) = 1} .

In other words, in CG, x∗ − xt = qt(A)x∗, where

qt ← arg min
q∈Πt

{
(x∗)T qt(A)Aqt(A)x∗

}
Thus

(xt − x∗)TA(xt − x∗) = min
q∈Πt

‖q(A)x∗‖A ≤ min
q∈Πt

‖q(A)‖2‖x∗‖H

= ‖x∗‖H · min
q∈Πt

max
λ∈sp(A)

|q(λ)|.

Because the spectrum of A is contained in [m,L],

min
q∈Πt

max
λ∈sp(A)

|q(λ)| ≤ min
q∈Πt

max
λ∈[m,L]

|q(λ)|.
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By polynomial approximation theory,

min
q∈Πt

max
λ∈[m,L]

|q(λ)| ≤ 2


√

L
m − 1√
L
m + 1

t

,

which gives the well-known bound on CG’s convergence. What we have done so far is upper bounding the
performance of CG by the minimax polynomial. What if we use the minimax polynomial directly?

To answer this question, we’ll have to look at the minimax polynomial on [m,L], which is given by

qt(z) :=
Ct(h(z))

Ct(h(0))
, h(z) :=

2z −m− L
L−m

,

where Ct(·) is the t-th Chebyshev polynomial. qt is essentially the t-th Chebyshev polynomial translated
then rescaled. Chebyshev polynomials satisfies the recursion property:

Ct+1(x) = 2zCt(x)− Ct−1(x).

We can exploit this to get a recursion on qt:

qt+1(x) =
2h(x)Ct(h(0))

2h(0)Ct(h(0))− Ct−1(h(0))
· qt(x)− Ct−1(h(0))

2h(0)Ct(h(0))− Ct−1(h(0))
· qt−1(x).

Assuming L >> m and using asymptotic properties of Chebyshev polynomials, we get

qt+1(x) ≈ qt(x)− 2

L
xqt(x) +

(
1− 4

√
m

L

)
(qt(x)− qt−1(x)).

This looks awfully familiar. Indeed, by plugging back into x∗ − xt = qt(A)x∗, this is exactly Polyak’s
momentum (heavy-ball method):

xt+1 ≈ xt −
2

L
A(xt − x∗) +

(
1− 4

√
m

L

)
(xt − xt−1).

2 What is Momentum for Minimax Optimization?

Now, what happens if we repeat the same procedure for minimax optimization?
Consider a quadratic saddle point problem

min
x

max
y

f(x,y) :=
1

2
xTAx + xTBy − 1

2
yTCy + uTx + vTy.

Let H :=

[
A B
BT −C

]
, b = −

[
u
v

]
, and z = [x;y]. We assume that A ∈ Rn×n < mxI, C ∈ Rm×m < myI,

B ∈ Rn×m, ‖H‖2 ≤ L.

Fact 1. H :=

[
A B
BT −C

]
is indefinite, and the its eigenvalues fall in [−L,−my] ∪ [mx, L].

The unique saddle point in this case is z∗ = H−1b. However, one can no longer us CG to invert H,
since it is indefinite. An alternative is to use Conjugate Residual [Hestenes et al., 1952], which can be
used to solve linear systems that are symmetric but indefinite. Conjugate Residual is also a Krylov subspace
algorithm. Define

Kt(H,b) = span
{
b,Hb, · · · ,Ht−1b

}
,
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then CR generates
zt ← arg min

z∈Kt(H,b)

‖Hz− b‖2.

Converting to polynomials, this is equivalent to

q = arg min
q∈Πt

‖q(H)b‖, Hzt − b = q(H)b.

Here Πt is the set of polynomials with degree at most t such that q(0) = 1. Note that

min
q∈Πt

‖q(H)b‖ ≤ min
q∈Πt

‖q(H)‖2 · ‖b‖2

= min
q∈Πt

max
λ∈sp(H)

|q(λ)| · ‖b‖2

≤ min
q∈Πt

max
λ∈[−L,−µy]∪[µx,L]

|q(λ)| · ‖b‖2.

Therefore we can now upper bound the convergence of Conjugate Residual with the performance with the
minimax polynomial on the union of two intervals. According to Greenbaum [1997, 3.13], the t-th order
min-max polynomial for [−L,−µy] ∪ [µx, L] is given by

qt(z) :=
Cl(h(z))

Cl(h(0))
, h(z) := 1 +

2(z + µy)(z − µx)

−L2 + µxµy
, l := bt/2c

whereCl(·) is the l-th order Chebyshev polynomial. Now, let us try to recover a recurrence for qt(z).

qt+2(z) =
2h(z)Tl(h(0))

2h(0)Cl(h(0))− Cl−1(h(0))
· qt(z)−

Cl−1(h(0))

2h(0)Cl(h(0))− Cl−1(h(0))
· qt−2(z)

≈ qt(z) +

(
1−
√
mxmy

L

)
(qt(z)− qt−2(z))− my −mx

L2
zqt(z)−

1

L2
z2qt(z).

Using zt = z∗ + q(H)x∗, one derives the following update rule for zt:

zt+1 ≈ zt +

(
1−
√
mxmy

L

)
(zt − zt−1)− my −mx

L2
H(zt − z∗)− H2

L2
H2(zt − z∗). (1)

Here, H2(zt − z∗) = ∇( 1
2‖∇f(xt,yt)‖2), H(zt − z∗) = ∇f(xt,yt). So (1) can also be written as

zt+1 ≈ zt −
1

L2
∇
(

1

2
‖∇f(xt,yt)‖2

)
− my −mx

L2
∇f(xt,yt) + θ(zt − zt−1). (2)

This is essentially gradient descent with momentum on a different loss

g(z) :=
1

2
‖∇f(x,y)‖2 + (my −mx)f(x,y),

This algorithm looks very similar to consensus optimization Mescheder et al. [2017], except that apart from
doing gradient descent on the gradient norm, it does gradient descent or ascent on f , depending which of
mx and my is larger. In comparison, consensus optimization does gradient descent on the gradient norm,
but does gradient descent-ascent on f .

This subtle difference may mean something. There is one very interesting fact about g(z). In the quadratic
case, 1

2‖∇f(x,y)‖2 is min{mx,my}2-strongly convex, while f(x,y) is neither convex nor concave. However,
when they are added together, g(z) becomes mxmy-strongly convex. When mx � my or mx � my, the
condition number of g(z) is much smaller than that of 1

2‖∇f(x,y)‖2.

Fact 2. g(z) is mxmy-strongly convex and 2L2-smooth.
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This implies that by minimizing g(z) instead of the gradient norm, one gets of rate of O
(√

L2

mxmy
ln
(

1
ε

))
instead of O

((
L
mx

+ L
my

)
ln
(

1
ε

))
. (By the way, the lower bound for quadratic minimax optimization is

Ω
(√

L2

mxmy
ln
(

1
ε

))
[Zhang et al., 2019].)

Proof. The Hessian of g(z) is H2 + (my −mx)H. Suppose λ is an eigenvalue of H, then the corresponding
eigenvalue of H2 + (my −mx)H is r(λ) = λ2 + (my −mx)λ. Obviously

−my < −
my −mx

2
< mx,

thus when λ ∈ [−L,−my]∪ [mx, L], the minimum of λ2 +(my−mx)λ is achieved when λ = −my or λ = mx.
Hence

λ2 + (my −mx)λ ≥ r(−my) = r(mx) = mxmy.

Meanwhile,

|λ2 + (my −mx)λ| ≤ L2 + |my −mx|L ≤ 2L2.
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