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1 Setting

Consider a an uncorrupted i.i.d. dataset {(x;, y;) }ic[n) ~ D such that y; = x; 0% + ¢,
where &; is mean-zero and 1—subgaussian. Assume that the adversary corrupts m = en
of the labels y; and the algorithm observes corrupted labels {y; };c[,]. In other words,
there exists b € R™ such that ||b]lo < m, ||b||cc < 1 such that

yi =%, 0" + & + bi.
We make the following additional assumption on the distribution on x:

Assumption 1 ((C, 4)-hypercontractivity). 3C > 0: Vv € R,
Exen|(x 0)*] < C - (Bxup[(x v)%])".

Note that this property is invariant under arbitrary linear transformation and is sat-
isfied by any Gaussian distribution [[I]]. For a (C, 4)-hypercontractive distribution, we
have the following facts.

Fact 1 (Fact 3.4 [1]]). Define €1 := \C/—% and Y := Eypxx". With probability 1 — §,
1 n
1-e)X= - ;xixiT < (1+46)X.

Fact 2. If the distribution of x is (C, 4)-hypercontractive and isotropic (i.e. Exx' =

1), then
C' - poly(d)
t4

Prlx[2 > #] <
Proof. Consider a random v ~ N (0, I).
Ev(xTv)4 = |Ix|*- EgNN(o,1)f4 =0O(1) - [Ix||*.

Therefore,
E.[lIx||*] < ©(1) ~Ex7v(xTU)4 <CO(1)-E, (IEx(xTv)z)2
<C-0(1) -E,|v||* = C - poly(d).
The claim follows from Markov’s inequality. U



Fact 3. If D is (C,4)-hypercontractive and isotropic, X1, - ,Xp, are i.i.d. samples
from D. Denote o () to be the decreasing order of ||x;||2. Then with probability 1 — 46,

D %o llz < 640 Am? Apoly(C, d).
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Proof. Fix k € [m]. Sett = a (S2) "~ poly(d). By Fact 2,

n
Pilliaqoll > 1 < () Prilx] > 1

n C - poly(d) k
() (=5
nk Kk e \*
=k atkpk = (J) '
Choosing a = Q(671/%) gives Pr{||x, ()2 > ¢] < 6/k?. Thus, by a union bound,
with probability 1 — (72/6)4,
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m m - Cn -
Z 1X0(y |2 < Z(S 1/4 (k) poly(d) < 6~ /4p 4m3/4poly(C, d).
= k=1

2  Why Least Square Works

We now show that the ordinary least square estimator achieves robustness against ad-
versarial corruption. Define

n -1 n
) T
= E XiX; E XiYi-
i=1 =1

Define . := fxl T Then

1 n

- (Z +X1 §z+§z' z>
n =1

(zx@ € +b) )

0
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Hence
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The first term is known to be O (\%) with high probability. It remains to bound

the second term. Define z; := X ~!/2x; to be the whitened inputs. By Definition 1,
the distribution of z; is also (C, 4)-hypercontractive. Also, Ez;z;] = I. Thus Fact 3
applies. By Fact 3, with probability 1 — ¢

Z zil|2 - I[b; # 0] < 6~ V4nY4m3/ 4poly(C, d).
i=1

It follows that with probability 1 — §

2_1 i Xibi
i=1

<D ISV b2
b)) i=1

=Y =V2ETIS 224

=1

n
<SSRy Y |zl - I[bi # 0]

i=1
Cd2>

< (14 =) 6 Y*n*m3 *poly(C,d

( Vné poly(C, d)

=ne’ ™ - poly(C,d, 1/6).
In other words, with probability 1 — 6,

d?In(1/6)

0—0x <O
16— 615 < ( -

) +0 (60‘75poly(C7 d,1/6)).
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