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1 Setting
Consider a an uncorrupted i.i.d. dataset {(xi, y∗i )}i∈[n] ∼ D such that y∗i = x>i θ

∗+ξi,
where ξi is mean-zero and 1−subgaussian. Assume that the adversary corruptsm = εn
of the labels y∗i and the algorithm observes corrupted labels {yi}i∈[n]. In other words,
there exists b ∈ Rn such that ‖b‖0 ≤ m, ‖b‖∞ ≤ 1 such that

yi = x>i θ
∗ + ξi + bi.

We make the following additional assumption on the distribution on x:

Assumption 1 ((C, 4)-hypercontractivity). ∃C > 0: ∀v ∈ Rd,

Ex∼D[(x>v)4] ≤ C ·
(
Ex∼D[(x>v)2]

)2
.

Note that this property is invariant under arbitrary linear transformation and is sat-
isfied by any Gaussian distribution [1]. For a (C, 4)-hypercontractive distribution, we
have the following facts.

Fact 1 (Fact 3.4 [1]). Define ε1 := Cd2√
nδ

and Σ := Ex∼Dxx
>. With probability 1− δ,

(1− ε1)Σ 4
1

n

n∑
i=1

xix
>
i 4 (1 + ε1)Σ.

Fact 2. If the distribution of x is (C, 4)-hypercontractive and isotropic (i.e. Exx> =
I), then

Pr[‖x‖2 > t] ≤ C · poly(d)

t4
.

Proof. Consider a random v ∼ N(0, I).

Ev(x>v)4 = ‖x‖4 · Eξ∼N(0,1)ξ
4 = Θ(1) · ‖x‖4.

Therefore,

Ex[‖x‖4] ≤ Θ(1) · Ex,v(x
>v)4 ≤ CΘ(1) · Ev

(
Ex(x>v)2

)2
≤ C ·Θ(1) · Ev‖v‖4 = C · poly(d).

The claim follows from Markov’s inequality.
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Fact 3. If D is (C, 4)-hypercontractive and isotropic, x1, · · · ,xn are i.i.d. samples
from D. Denote σ(·) to be the decreasing order of ‖xi‖2. Then with probability 1− δ,

m∑
i=1

‖xσ(i)‖2 ≤ δ−1/4n1/4m3/4poly(C, d).

Proof. Fix k ∈ [m]. Set t = α
(
Cn
k

)1/4
poly(d). By Fact 2,

Pr[‖xσ(k)‖2 > t] ≤
(
n

k

)
Pr[‖x‖ > t]k

≤
(
n

k

)
·
(
C · poly(d)

t4

)k
≤ nk

k!
· kk

α4knk
≤
( e

α4

)k
.

Choosing α = Ω(δ−1/4) gives Pr[‖xσ(k)‖2 > t] ≤ δ/k2. Thus, by a union bound,
with probability 1− (π2/6)δ,

m∑
i=1

‖xσ(i)‖2 ≤
m∑
k=1

δ−1/4

(
Cn

k

)1/4

poly(d) ≤ δ−1/4n1/4m3/4poly(C, d).

2 Why Least Square Works
We now show that the ordinary least square estimator achieves robustness against ad-
versarial corruption. Define

θ̂ :=

(
n∑
i=1

xix
>
i

)−1 n∑
i=1

xiyi.

Define Σ̂ := 1
nxix

>
i . Then

θ̂ =
1

n
Σ̂−1

(
n∑
i=1

xi · (x>i θ∗) + xi · ξi + ξi · bi

)

= θ∗ +
1

n
Σ̂−1

(
n∑
i=1

xi · (ξi + bi)

)
.

Hence

‖θ̂ − θ∗‖Σ ≤
1

n

∥∥∥∥∥∥Σ̂−1
∑
i∈[n]

xiξi

∥∥∥∥∥∥
Σ

+
1

n

∥∥∥∥∥∥Σ̂−1
∑
i∈[n]

xibi

∥∥∥∥∥∥
Σ

.
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The first term is known to be O
(
d2√
n

)
with high probability. It remains to bound

the second term. Define zi := Σ−1/2xi to be the whitened inputs. By Definition 1,
the distribution of zi is also (C, 4)-hypercontractive. Also, Eziz>i = I. Thus Fact 3
applies. By Fact 3, with probability 1− δ

n∑
i=1

‖zi‖2 · I[bi 6= 0] ≤ δ−1/4n1/4m3/4poly(C, d).

It follows that with probability 1− δ∥∥∥∥∥Σ̂−1
n∑
i=1

xibi

∥∥∥∥∥
Σ

≤
n∑
i=1

‖Σ1/2Σ̂−1xibi‖2

=

n∑
i=1

‖Σ1/2Σ̂−1Σ1/2zibi‖2

≤ ‖Σ1/2Σ̂−1Σ1/2‖2 ·
n∑
i=1

‖zi‖2 · I[bi 6= 0]

≤
(

1 +
Cd2

√
nδ

)
· δ−1/4n1/4m3/4poly(C, d)

= nε0.75 · poly(C, d, 1/δ).

In other words, with probability 1− δ,

‖θ̂ − θ∗‖Σ ≤ O
(
d2 ln(1/δ)√

n

)
+O

(
ε0.75poly(C, d, 1/δ)

)
.
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