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ABSTRACT
The extended Berkeley Packet Filter (eBPF) is an infrastructure that
allows to dynamically load and run micro-programs directly in the
Linux kernel without the need for recompiling it.

In this work, we study how to develop high-performance net-
work measurements in eBPF. We take sketches as case-study, given
their ability to support a wide-range of tasks while providing low-
memory footprint and accuracy guarantees. We implemented Ni-
troSketch, the state-of-the-art sketch for user-space networking and
show that best practices in user-space networking cannot be directly
applied to eBPF, because of its different performance characteristics.
By applying our lesson learned we improve its performance by 40%
compared to a naive implementation.

CCS CONCEPTS
• Networks → Network monitoring; Network measurement;
Network performance analysis;
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1 INTRODUCTION
Virtualization is widely used in today’s data center networks, where
communication endpoints are no longer physical hosts but smaller
individual units, such as Virtual Machines (VMs), containers, and
serverless functions [1, 2, 17, 22, 32, 34]. A single physical server
might host hundreds of VMs or thousands of containers, all con-
nected to the network via a virtual switch [21, 44]. The virtual
switch, therefore, plays a key role in ensuring the performance and
security of the data center network [5]. In particular, it has become
an important measurement vantage point, allowing network op-
erators to gain a unique insight into inter-VM or inter-container
network traffic that might not be visible at the physical switch level.

Past works [8, 27, 36] have explored enhancing user-space virtual
switches with advanced measurement capabilities while maintain-
ing high forwarding performance with kernel-bypass solutions
such as DPDK. However, production-ready virtual switches (e.g.,
OpenVSwitch [44], Microsoft VFP [21]) still utilize the data-plane
functionalities within the Linux kernel. This is because DPDK uses
its own network device drivers, hence well-known tools for config-
uring, managing, and monitoring NICs (such as tcpdump, ip link,
ifconfig etc.) do not work, making server management and debug
hard [26]. Furthermore, with DPDK, administrators must maintain
two separate networking configurations, one for the kernel and one
for DPDK, increasing their management burden [47, 55]. Finally, in

some deployment environments, it may not be feasible to dedicate
the CPU and memory resources DPDK requires [52], because of
the high per-core pricing of current deployments [54].

An emerging technology, the extended Berkeley Packet Filter
(eBPF), enables the deployment of high-performance packet pro-
cessing programs within the Linux network stack without the need
to recompile it. By attaching an eBPF program to the eXpress Data
Path (XDP) hook point, we can process a packet immediately when
the kernel receives it from the NIC driver, before any subsequent
connection-level and application-level processing. This allows to
implement flexible data-plane logic while achieving high perfor-
mance: an eBPF program can process as much as 20-25 million
packets per second on a single CPU core [25, 26]. In fact, there are
already several projects in industry [15] and academia [38] utilizing
eBPF to implement data-plane functions for container networking.

This paper sheds light on the best practices for implementing
high-performance measurement algorithms in eBPF. We focus our
attention on sketches, as they provide rigorous accuracy guaran-
tees and support a variety of measurement tasks [3, 40, 42], such
as heavy hitters detection [8, 14, 49], per-flow frequency estima-
tion [12, 16, 28], and counting distinct flows [4, 6, 37]. At a high-
level, sketches are approximate data structures consisting of several
counter arrays and a set of independent hash functions to update
these counters. They are designed to reduce the memory usage of
measurement tasks and to achieve guaranteed fidelity for the esti-
mated statistics. Implementing a fast sketch under eBPF requires a
number of design decisions that open up several research questions:
(i) what is the best memory layout to use for storing the sketch? ;
(ii) what hash function provide the best trade-off between processing
performance and collisions? ; (iii) what is the overhead associated to a
random number generator, needed by a sketch to perform probabilistic
actions? We show that due to the restrictions of the eBPF environ-
ment and its instructions set, the answers to those questions cannot
be directly taken from best practices in user-space networking (§2).

We implemented NitroSketch [36] in eBPF, the state-of-the-art
software-based solution that builds on top of Count Sketch [13] and
Univmon [37]. We then demonstrate that by applying the lessons
we learned, we improved the performance of NitroSketch by 40%
compared to a naive implementation (§3).
Contributions. In this paper we:
• Propose several optimization techniques that uniquely applies
to algorithms running under eBPF (§2);

• Provide the implementation of NitroSketch, Count Sketch and
Univmon, the last two needed by the first. We evaluate various
optimization steps needed for achieving best performance (§3);
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Figure 1: Reducing the number of map_lookup calls by chang-
ing memory layout can significantly improve the perfor-
mance of eBPF programs.

• Discuss how to close the performance gap between eBPF and
user-space programs (§4);

• Share the code and all the benchmarks in open-source(AppendixA).

2 ON EBPF PROGRAMS OPTIMIZATION
In this section, we discuss some optimization techniques we found
unique for running sketches under eBPF. We also briefly summarize
other generic optimization techniques that apply beyond eBPF.

2.1 The importance of map_lookup helper calls
Most sketches require a two-dimensional array of 𝑅 rows and 𝐶
columns which is then updated 𝑁 times for every packet.1 For
user-space applications, the choice of implementing this (either as
a matrix or a set of 𝑅 1-D arrays) does not have a huge impact on
performance, as what it matters is just the number 𝑁 of memory
updates [36]. However, the eBPF environment requires different
considerations. In eBPF, all stateful memories are implemented
using maps, with arrays indexed by an integer being the simplest
map type. Here, to implement a sketch, it is possible to lay out a
𝑅 ×𝐶 array in memory using four different methods:
• Case #1: An Array map with one entry containing the two-
dimensional array. This needs, for every packet, one map_lookup
call and 𝑁 memory updates via direct pointer dereferencing.

• Case #2: An Array map with 𝑅 entries, each of them containing
an array of 𝐶 elements. This imposes, for every packet, 𝑁 map_-
lookup calls and 𝑁 memory updates via pointer dereference.

• Case #3: An Array map with 𝑅 ×𝐶 elements. This requires, for
every packet, 𝑁 map_lookup calls and 𝑁 memory updates via
direct pointer dereference. Alternatively, 𝑁 map_update calls.

• Case #4: An Array of Array map with 𝑅 items where every item
in the first-level map is a pointer to another map containing 𝐶
elements. This needs, for every packet, 𝑁 map_lookup calls on
the outer map and 𝑁 map_update calls on the inner maps.

It is worth noting that the amount of memory accesses for the
first three cases is the same, while the number of map lookup calls
differs. To test the performance implications of every solution, we
implemented a common 5-rows sketch [36, 37] that writes up to
5 random locations for every received packet, one for each row,
using Global (shared between CPUs) array storing 32-bit integers.

We found that the performance of eBPF programs is heavily
affected by the number of map_lookup helper calls, which is a
prerequisite for accessing persistent memory in eBPF. The impact
of accessing a larger number of memory addresses in the same
1This number strictly depend on the specific sketching algorithm being used.
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Figure 2: eBPF performancewhen calculating different num-
ber of hash functions per packet.

map is negligible, instead. Figure 1 shows the heavy performance
penalty when the eBPF program needs to call the map_lookup
helper function multiple times. However, when the eBPF program
uses only one map_lookup call for multiple memory updates (case
#3), its performance is affected to a lesser degree by the increasing
number of memory updates performed per packet. The significant
performance impact of map_lookup calls is due to the extra cost
for stashing register values when making a function call, as well as
for the boundary checks performed due to memory safety.

Therefore, for any data structure stored in Array maps whose
size is known at compile time, we should rearrange memory layout
to use only a single map with one single entry, such that the eBPF
program only make a single map_lookup call regardless of how
many memory addresses are actually accessed.

2.2 The choice of the hash function
Calculating hash functions account for a considerable fraction of
many network measurement algorithms’ per-packet computational
overhead. As observed by Liu et al. in NitroSketch [36], in a user-
space software switch, the CPU spends as much as 37% of time
calculating per-packet hash values. Thus, it is important to under-
stand how different hash functions perform as a part of an eBPF
program, and how they affect the packet processing rate.

We ran a single-core benchmark eBPF program that calculates
hash values over each packet’s 5-tuple (src/dst IP, IP protocol, and
src/dst port numbers), and tests the packet processing rate when
using different hash functions. We tested several hash functions:
xxHash, the choice of NitroSketch authors; jhash, used by Linux
kernel’s hash tables; fasthash, and lookup3, two other fast hash
algorithms. We also tested SipHash, a cryptographic secure hash
function used by the Linux kernel, which might be required for
applications processing adversarial traffic, and murmurhash3, the
default hash function used by OVS [44].

We found that fasthash outperforms the other alternatives when
running under eBPF (Figure 2), with an overhead that varies be-
tween ~16% when a single hash is calculated per packet, to ~40%
with 5 hashes (required by 5-row sketch). This is surprising, since
other hash functions such as xxHash and murmurhash3 are often
considered to be faster than fasthash, and indeed are the default
choice in user-space projects.
The impact of SIMD instructions. The first observation is that
many modern hash functions like xxHash, or murmurhash3 uses
Single Instruction, Multiple Data (SIMD) in their high-performance
implementation. Unfortunately, the eBPF instruction set does not
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Figure 3: Performance comparison of different hash func-
tions with SIMD instructions enabled and disabled (using
Clang as compiler). eBPF cannot use vectorial instructions,
as they are not allowed in the Linux kernel.

provide SIMD capabilities.2 In Figure 3, we benchmarked the per-
formance of the vectorial version of xxHash and murmurhash33

hash functions when running as a normal user-space program with
SIMD enabled, and we compared it with the eBPF. As we can see, in
this case they performed the best in user-space, which is why they
are chosen by prior works [36, 44]. However, their performance
suffer when running under eBPF, and is outperformed by fasthash.
The importance of compiler optimizations.We tested the hash
rate of the same set of hash functions shown in Figure 2 when
independently benchmarked on the same CPU running in user-
space without SIMD, using both GCC v11.1.0 and Clang v15.0. The
results, shown in Figure 4, demonstrate the same trend when the
program is compiled using Clang, which is currently the default
compiler for eBPF targets. Surprisingly, fasthash performs a lot
slower when compiled with GCC, the default compiler used by
Nitrosketch. By looking at the generated assembly code, we noticed
that Clang applies a more aggressive inlining compared to GCC,
which in this case can provide considerable performance benefits.
The effect of the eBPF JIT compiler. We also noticed that the
hash rate of the different hash functions under eBPF is always
slower than the same version running in user-space. Although
eBPF is Just-In-Time compiled to native instructions by the in kernel
JIT, this performance deficiency can be explained by the limited
instruction set available under eBPF. Here, all the hash functions,
except fasthash, use rotate instructions (e.g., ROR, ROL) that are
included in the x86 instruction set. When the program is compiled
to an eBPF target, those instructions are emulated with a set of
shifts and xor, degrading the performance when running in the
kernel.

2.3 Random bits generation
Random numbers are useful in many stochastic algorithms, includ-
ing sketches. However, the canonical way of obtaining them (the
bpf_get_prandom_u32) is costly [30]. We benchmarked the same
function, bpf_get_prandom_u32, in user-space and eBPF by calling
it an increasing amount of times for each packet (Figure 5). In eBPF,
a single CPU core only produces approximately ~28 million 32-bit
random numbers with 4 random calls per packet and ~67 Mrand/s
with 64. In DPDK, we could generate ~81 million 32-bit numbers

2Currently, the use of SSE/AVX registers and instructions is highly discouraged in the
kernel [51] for (i) portability problems, since not every architecture can support it,
and (ii) for the additional cost of saving and restoring the FPU state.
3For the vectorial version of the hash functions we used the code available in [31]. For
all the others we used the code available under the SMHasher [45] repository.
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Figure 4: Performance benchmark of different hash func-
tions with 16-byte input, when running in user-space vs.
running under eBPF. For the user-space, we tested the same
program compiled with GCC and Clang, while for eBPF
Clang is the only choice.
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Figure 5: eBPF and DPDK performance when generating dif-
ferent number of random 32-bit numbers per packet using
the same prandom_u32 function. The eBPF/DPDK read mem
plot indicate the performance when reading pre-generated
random bits from memory.

per second with 4 calls per packets, and ~320 Mrand/s with 64, ~5
times more than eBPF. The overhead for calling the random number
generator in eBPF is given by the cost of external function calls
for each individual 32-bit number; note that the penalty of register
stashing for any external function call also applies here.

It is much faster for eBPF programs to read pre-generated random
bits from map arrays that are populated by a user-space program.
Here, the performance benefit is demonstrated in Figure 5, with the
eBPF read mem line. Although it may sound obvious that loading
pre-calculated numbers frommemory can guarantee a performance
boost against generating random numbers on-the-fly, we notice
that a user-space program did not exhibit a performance gap when
only generating 8 or fewer random numbers per packet. Meanwhile,
the performance gap is considerably larger for eBPF programs. This
is because every random number generated on-the-fly using bpf_-
get_prandom_u32 incurs the extra cost of calling external helper
functions, while we only need to make a single bpf_map_lookup
helper call per packet when loading random numbers frommemory,
regardless of how many pre-calculated numbers we need to load.

2.4 Other generic optimization techniques
Finally, we note that the following optimization applies on any
program that runs on modern CPUs, including those running as an
eBPF program. Here, we discuss how to apply them in the context
of implementing sketch algorithms for network measurement.
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Reduce (unpredictable) branching.Branching hurts performance
in today’s pipelined CPU [29, 39]. In the context of network mea-
surement programs, packet header parsing lead to branching; thus
avoiding unnecessary parsing lead to reduced branching and im-
proved performance.

Memory locality and cache residency. A predictable memory
access pattern (locality) helps CPU pre-fetch data from the slower
RAM into the faster L1/2/3 cache [11]. Unfortunately, sketch-based
measurement algorithm has a random memory access pattern (due
to using random hash functions for indexing). In this case, we
should size the sketch accordingly such that the entire sketch to fit
within the faster L1/2/3 cache.

3 CASE STUDY: OPTIMIZING NITROSKETCH
In this section, we share our experience implementing and optimiz-
ing a sketch-based measurement framework in eBPF.

NitroSketch is a measurement framework designed for running
high-speed network measurement on CPUs, making it a good
starting point for implementing high-speed sketching in eBPF.
NitroSketch achieves high performance by reducing the number
of memory accesses and hash calculations per packet. It is origi-
nally implemented as a part of popular software switches including
OpenVSwitch-DPDK [46], VPP [7], and BESS [24].

We implementedNitroSketch in eBPFwith two underlying sketch-
ing algorithms, Count Sketch and UnivMon using approximately
200 and 300 lines of C code, respectively. Count Sketch [13] is used
to produce unbiased estimation of flow sizes, while UnivMon [37]
supports universal sketching, allowing many functions to be calcu-
lated over the frequency vector of flows. NitroSketch skips most
sketch memory updates probabilistically while scaling up the re-
maining updates proportionally. For example, in a vanilla 5-row
Count Sketch we need to add +1/-1 to five different locations in
the sketch, one per row, while processing each packet. Building on
top of it, in UnivMon there are many “layers” each hosting a Count
Sketch and a heavy-hitters heap, and each new input packet updates
all the rows in some of the layers. In NitroSketch-CountSketch, the
update to each row is skipped with probability 1 − 𝑝; otherwise
(w.p. 𝑝), it adds +1/𝑝 or −1/𝑝 to the same location. The NitroSketch-
UnivMon variant uses NitroSketch-CountSketch instead of vanilla
ones in addition to updating at most one layer and using probabilis-
tic heap updates. By choosing a small 𝑝 , NitroSketch can achieve
much higher packet-processing performance while not introducing
a large impact to the sketch’s accuracy. Also, for the same number
of memory accesses, NitroSketch achieves better accuracy than
uniformly sampling packets randomly and updating all rows.

We note that the original NitroSketch implementation supports
dynamically changing the sampling probability 𝑝 , adjusting it based
on traffic throughput to maintain a constant CPU usage or achieve
a certain accuracy guarantee. We can implement the same logic for
eBPF by using a control plane script to change 𝑝 dynamically for the
data-plane eBPF program. In this paper, we benchmark using fixed
𝑝 ranging from 1% to 100% to highlight performance improvements.

3.1 An eBPF implementation
In Figure 6, we illustrate how we implemented NitroSketch as an
eBPF program. Our eBPF program has four components: Parsing,

Parsing Sampling

DROP

Sketch 
Update

Top-K 
Update

Array

Skip 
Counter

Array

Index 
Pointer

Array

Random 
Variables Sketch

Array Array

Add to 
Heap

Array

Performance 
Counter

p=1%

1-p=99% 1-p=99%

p=1%

Figure 6: An unoptimized implementation of NitroSketch-
UnivMon in eBPF, before consolidating all memory vari-
ables into a single array entry.

Sampling, Sketch, and Top-𝐾 . When the kernel first receives a
packet and starts the eBPF program, we perform basic parsing to
extract the flow ID 5-tuple (IP address pair, protocol, and port num-
ber pair) from the packet header. Subsequently, we execute the
random sampling process and skip most of the packets. The eBPF
program saves the number of packets to skip in a single-element
map array. For most packets, we subtract this counter and move on;
when the counter reaches zero, we update the sketch, and replenish
the counter by fetching another pre-computed Geometric Random
Variable4 from the memory. This approach has lower performance
overhead than calling the random number generator when process-
ing every packet, as discussed in the original NitroSketch paper [36]
and benchmarked in Section 2. For packets not skipped, we calcu-
late hash functions over the packet’s flow ID, to identify the row
and column index and update the sketch value. For NitroSketch-
UnivMon, we have two additional steps, which are subjected to a
couple of limitation of the eBPF environment.
Lack of bit counting instruction on eBPF ISA. Before updating
the sketch, in NitroSketch-UnivMon we need to select the layer
to update. This is done by calculating an additional hash on the
packet’s flow ID and counting the number of trailing bit set. On a
user-space program, this can be easily done by using a bit counting
instruction provided as hardware operator by modern CPUs (e.g.,
ctz, ntz). However, the eBPF ISA doesn’t support those instruc-
tions; we then opted for a software emulation of the ntz instruction,
carefully chosen to exploit the parallelism of modern CPUs.
Lack of heapmap in eBPF.Whenwe run random sampling again
to skip most packets, only a 𝑝 fraction of them reaches the top-𝐾
update step, where we query its flow size and update a heap to
maintain the top-𝐾 flows candidates. Since eBPF does not have an
heap map, we emulated its behavior using a sorted array of size 𝐾
that contains the flow ID and the flow size obtained after querying
the sketch. When a packet reaches the Top-𝐾 update phase, we first
check if the flow ID is present in the array and update the flow size
with the new one; otherwise, we insert the new flow ID in the last
position of the array, where the element with the smallest flow size
is present. After the insertion, we run the insertion sort algorithm to
build the final sorted array, which represents our heap. Finally, all
packets are dropped after updating a performance counter, which
counts the number of packets processed per second.

4A Geometric Random Variable is a variable that follows a geometric distribution [20,
33], which gives the probability that the first occurrence of success of a given event
requires 𝑘 independent trials, each with success probability 𝑝 .
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Figure 7: After extensive optimizations, our eBPF program
achieves ~22.27 Mpps on one CPU core with 64B packets, for
NitroSketch-CS and NitroSketch-UM at 𝑝 = 1%.
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Figure 8: Single core packet rate (left y-axis) and throughput
(right y-axis) of our different sketch implementations with
a real-world Datacenter trace UNI1 from [9].

3.2 Optimizing NitroSketch in eBPF
Here, we share our experience in optimizing NitroSketch to achieve
higher performance. Our initial NitroSketch implementation could
process 5∼10 million packets per second on a single CPU core. In
contrast, a no-op eBPF program that just drops packets can process
approximately 25 million packets per second on our testbed.
Workloads. We tested our implementations using two different
workloads: (a) a simulated traffic trace with min-sized packets (64
bytes) for stress testing, with random destination IP addresses and
randomized port numbers for a total of∼1million distinct flows (Fig-
ure 7); (b) a data center trace [9], which has an average packet size
of 542 bytes (Figure 8). We used pktgen [18] with DPDK v20.11.0 to
generate random 64B packets, the DPDK burst-replay [19] tool to
replay the trace and Receiver Side Scaling (RSS) queues to control
the number of CPU cores used to run the eBPF program.

When we choose a small sampling probability (i.e., 𝑝 = 1%), the
cost of sketch updates is negligible, and most overhead comes from
skipping packets in the random sampling step. Here, we used the
batched skipping technique discussed in the original NitroSketch
paper [36], that pre-calculates Geometric Random Variables to skip
consecutive packets, instead of generating random numbers per
packet. Subsequently, we fixed 𝑝 = 1% and analyzed our eBPF
program’s overhead, thus identifying four optimizations:
Optimization #1: Faster hash function. The original NitroSketch
implementation uses xxHash, which can utilize SIMD instructions
when running in user-space. However, the eBPF instruction set
does not support SIMD, and we found fasthash runs faster.
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Figure 9: Breakdown of each optimization step we per-
formed: (a) Unoptimized, (b) Use faster hash function, (c) Re-
duce hash calculations, (d) Postpone parsing after sampling,
and (e) Consolidate array lookups.

Optimization #2: Fewer hash function calls. Instead of calculating
a dedicated hash function for each of the four sketch rows, we split
a single 64-bit hash value into four 16-bit parts, which are sufficient
for indexing up to 216 columns in the sketch.
Optimization #3: Swap parsing and sampling. Extracting flow ID
5-tuple requires branching, which in turn causes overhead due to
CPU branch prediction (and misprediction). We reduced branch-
ing by skipping packets early and postponing unnecessary packet
parsing, reducing from 8 branches per packet to 2.
Optimization #4: Consolidate array lookups. Instead of using sev-
eral different map arrays and calling map_lookup multiple times,
we combined all frequently-accessed memory variables (counters
and geometric random variables) into one large struct in a single
map array. This way, we only need to call map_lookup once per
packet to access all these variables in the memory.
With these optimizations, we improved our implementation’s per-
formance by 15%∼59%, and allow NitroSketch-CountSketch and
NitroSketch-UnivMon to process on a single core ~22.27 Mpps with
𝑝 = 1%, compared to ~10 Mpps of the unoptimized version (Fig-
ure 7). This is near 90% of the maximum possible per-core packet
processing rate on our hardware (25.5Mpps) when running a no-op
eBPF program. In Figure 9, we present a breakdown of performance
improvement after applying each of the aforementioned optimiza-
tions. With a low sampling probability 𝑝 = 1%, the most significant
improvement comes from batched skipping packets and postponed
packet parsing, while for a high sampling probability 𝑝 = 50%, and
𝑝 = 100%, the benefit comes from choosing the right hash function
and calculating at most one hash per packet.

3.3 Scaling to multiple cores
Finally, we check whether the single-core performance shown ear-
lier can scale in the presence of multiple CPU cores. We used the
synthetic trace discussed above with minimum-sized packets and
configured the number of CPU cores processing XDP by setting
Receive-Side Scaling (RSS) queues on the NIC. We changed the
number of RSS queues and show the total performance of our Ni-
troSketch eBPF programs, with 𝑝 = 50% (Figure 10). Here, the
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Figure 10: Packet rate (Mpps) with synthetic trace com-
posed of 64B packets. Both NitroSketch-CountSketch and
NitroSketch-UnivMon run with 𝑝 = 50%. The performance
scales almost linearly when we use multiple CPU cores.

performance scales almost linearly with the number of cores until
we reach a system-wide bottleneck (physical link rate limit).

4 DISCUSSION
4.1 Applicability of optimization techniques
Our benchmarks aim at improving network measurement algo-
rithms in eBPF. Nevertheless, we believe our findings can be applied
to a broad range of eBPF-based programs. For instance, we noticed
that the Facebook’s open-source L4 eBPF/XDP load balancer Ka-
tran [48] uses jhash as default hashing algorithm. This hash is com-
puted on every incoming packet and it is used for connection track-
ing. As shown in Figure 2, this may result in an additional overhead
compared to fasthash, the fastest hash algorithm in our bench-
marks. We also noticed that Katran uses several bpf_map_lookup
helper calls to retrieve configuration data and to save statistics about
the running eBPF program (e.g., packets processed, dropped, new
connections, VIP misses). If consolidated into a single large map
element, the performance could increase, as shown in Section 2.1.

Similarly, we noticed that Rakelimit [43], the Cloudflare’s multi-
dimensional eBPF-based rate limiter, when deciding whether to
accept or drop a packet, uses several bpf_get_prandom_u32 calls
and a combination of fasthash and lookup3 hash functions to
calculate the counter to update into a count-min sketch. Here, ac-
cording to the lessons learned in Section 2.2 and the optimization
#2 applied in Section 3.2, only using fasthash and splitting the
64-bit hash value into four 16-bit parts can improve performance.

4.2 Closing the performance gap
We believe the observed performance gap between eBPF and user-
space programs can be reduced by applying various changes to the
eBPF ecosystem. Here, we discuss possible next steps.
SIMD. The eBPF instruction set aims at achieving a delicate balance
between expressiveness and cross-platform compatibility, as the
Just-In-Time compiler efficiently compile eBPF instructions into
native instructions on many platforms. SIMD is supported by many
CPUs on the two most common architectures (amd64 and arm64).
However, if SIMD instructions are added into eBPF instructions, the
JIT compiler on other CPUs not supporting SIMD must “emulate”
these instructions, possibly with minor performance penalty.
Penalty for helper calls. As per Section 2, calling eBPF helper
functions leads to a significant performance penalty, likely due to
register variables being stashed prior to making any such calls,
similar to when a user-space program performs a syscall. However,

it is possible to avoid the penalty for function calls. Calls into sim-
ple functions can be inlined during compilation, which eliminates
the need for stashing. Furthermore, user-space high-performance
network programs (e.g., DPDK-based programs) can be linked stat-
ically and benefit from link-time optimization (LTO). It might also
be possible for the eBPF JIT compiler to perform an optimization
similar to inlining/LTO, such that the "call" instruction to simple
helper procedures can be translated directly into the body of the
helper function.
Randomness pool. It may be possible for the kernel to generate
pseudo-random numbers in batches and directly read from a pool of
numbers upon every bpf_get_prandom_u32 call, to achieve higher
eBPF packet-processing performance similar to those achieved by
manually pre-generating random numbers.

5 RELATEDWORK
eBPF is a nascent field for host-based network research, with many
ongoing works using eBPF to implement a high-performance and
feature-rich data planes. Nevertheless, only a few research projects
target network measurements using eBPF. Otten and Bauer at
Cloudflare presented RakeLimit [43], a prototype using eBPF to
track hierarchical heavy-hitter flows and rate-limit them. Mean-
while, Bertin also discussed an eBPF-based DDoS defense sys-
tem [10] deployed at CloudFlare. NetFlix built an eBPF-based net-
work monitoring system [50] to produce flow logs. ViperProbe [35]
is an eBPF-based microservice monitoring system that logs various
performance metrics, including TCP send/receive bytes, retransmis-
sions, and drops. Although eBPF is increasingly popular as a tool
to benchmark other applications’ performance [23], there are not
many prior work investigating the performance of eBPF programs
themselves. Jones [30] presented a detailed analysis on the perfor-
mance penalty of various eBPF functionalities. In particular, they ob-
served accessing arrays and clock timestamps are expensive, while
generating pseudorandom numbers are cheaper. We complement
their work by analyzing the performance of sketch-related func-
tionalities in detail, and optimizing a complete sketch algorithm.

This paper focuses on eBPF programs running on x86 CPUs; how-
ever, it is possible to offload eBPF programs to run directly within
NICs [25]. For example, Netronome SmartNICs [41] allows offload-
ing eBPF programs, and Vega et al. [53] has demonstrated offloading
packet-filtering eBPF programs onto an FPGA chip.We note that op-
timizing eBPF programs for running on FPGA/SmartNICs might re-
quire slightly different heuristics, and leave these as future work.

6 CONCLUSION
In this paper, we discussed the best practices for implement high-
performance network measurement in eBPF, using sketch-based
algorithms as case study. Optimization techniques commonly used
in user-space programs, such as reducing branching andminimizing
memory access per packet, also applies for eBPF programs. Surpris-
ingly, we find restructuring the memory layout by using one large
struct in a single map array (instead of multiple map arrays) sig-
nificantly improve performance. To further improve performance,
we can carefully choose the best performing hash function under
eBPF and fetch pre-generated random bits from memory.
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A ARTIFACT APPENDIX
We aim at making the source code and all the script to run the differ-
ent sketches and replicate the results available so that anyone can
use and experiment them. In this respect, it is worth remembering
that the performance characterization requires a careful prepared
setup, including traffic generators and proper hardware devices
(server machines, NICs).
Source code. The software of this paper is available at this URL:
$ https://github.com/QMUL-EECS-Networks-Systems/ebpf-sketches

Once cloned the repository, please follow the instructions avail-
able under the README.md (https://github.com/QMUL-EECS-Networks-
Systems/ebpf-sketches/blob/main/README.md), which describes the
installation process, and the experimental workflow to perform the
different experiments.
Replicate paper’s results. Most of the experiments in our pa-
per have been performed using a synthetic traffic trace with mini-
mum sized packets, and the UNI1 data center trace from [9]. Un-
der the tests (https://github.com/QMUL-EECS-Networks-Systems/ebpf-
sketches/tree/main/tests) folder of our artifacts, we provide all the
scripts to run the tests and generate the results presented in the
paper, including the instructions to configure the two traffic gener-
ators (i.e., Pktgen-DPDK[18] and dpdk-burst-replay [19]) (https://
github.com/QMUL-EECS-Networks-Systems/ebpf-sketches/tree/main/pkt-
generator).
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