
SNOW Revisited: Understanding When Ideal
READ Transactions Are Possible

Kishori M. Konwar

RLE, MIT
Cambridge, MA

Wyatt Lloyd

Computer Science
Princeton University
Princeton, NJ, USA

Haonan Lu

Computer Science
Princeton University
Princeton, NJ, USA

Nancy Lynch

CSAIL, MIT
Cambridge, MA, USA

Abstract—READ transactions that read data distributed across
servers dominate the workloads of real-world distributed storage
systems. The SNOW Theorem [13] stated that ideal READ trans-
actions that have optimal latency and the strongest guarantees—
i.e., “SNOW” READ transactions—are impossible in one specific
setting that requires three or more clients: at least two readers
and one writer. However, it left many open questions.

We close all of these open questions with new impossibility
results and new algorithms. First, we prove rigorously the result
from [13] saying that it is impossible to have a READ transactions
system that satisfies SNOW properties with three or more clients.
The insight we gained from this proof led to teasing out the
implicit assumptions that are required to state the results and
also, resolving the open question regarding the possibility of
SNOW with two clients. We show that it is possible to design
an algorithm, where SNOW is possible in a multi-writer, single-
reader (MWSR) setting when a client can send messages to
other clients; on the other hand, we prove it is impossible
to implement SNOW in a multi-writer, single-reader (MWSR)
setting–which is more general than the two-client setting–when
client-to-client communication is disallowed. We also correct the
previous claim in [13] that incorrectly identified one existing
system, Eiger [12], as supporting the strongest guarantees (SW)
and whose read-only transactions had bounded latency. Thus,
there were no previous algorithms that provided the strongest
guarantees and had bounded latency. Finally, we introduce the
first two algorithms to provide the strongest guarantees with
bounded latency.

Keywords-distributed transactions; strict-serializability;

I. INTRODUCTION

Today’s web services are built on distributed storage sys-
tems that provide fault tolerant and scalable access to data.

Distributed storage systems scale their capacity and throughput

by sharding (i.e., partitioning) data across many machines

within a datacenter, i.e., each machine stores a subset of

the data. They also geo-replicate the data across several

geographically dispersed datacenters to tolerate failures and

to increase their proximity to users.

Distributed storage systems abstract away the complexities

of sharding and replication from application code by providing

guarantees for accesses to data. These guarantees include con-

sistency and transactions. Consistency controls the values of

data that accesses may observe and transactions dictate what

accesses may be grouped together. Stronger guarantees provide

an abstraction closer to a single-threaded environment, greatly

simplifying application code. Ensuring the guarantees hold,

however, often comes with worse performance. Therefore, the

tradeoff between performance and guarantees lies at the heart

of designing such systems.

The performance-guarantee tradeoffs that result from repli-

cation have been well-studied with several well-known im-

possibility results [1], [6], [7], [11]. For instance, the CAP

Theorem [7] proves that system designers must choose either

availability during network partitions (performance) or strong

consistency across replicas (guarantee). However, little prior

work exists on what performance-guarantee tradeoffs result

from sharding.

Understanding the performance-guarantee tradeoff due to

sharding is important because user requests are typically han-

dled across many shards but within a single nearby datacenter

(replica). This is particularly true for the reads needed to han-

dle a user request, which are what dominate real-world work-

loads: Facebook reported 500 reads for every write in their

TAO system [3] and Google reported three orders of magnitude

more reads than general transactions for their F1 database that

runs on their Spanner system [5]. In this work, we focus on

clarifying the performance-guarantee tradeoff for reads that

results from sharding. Distributed storage systems group read

requests (that each individually accesses a separate shard) into

READ transactions that together return a consistent, cross-

shard view of the system. Whether a view is consistent is

determined by the consistency model a system provides. The

ideal READ transactions would have the strongest guarantees:

They would provide strict serializability [15], the strongest

consistency model, and they could be used in a system that also

includes WRITE transactions that group write requests (each to

a separate shard) together. The alternative to the latter property

are READ transactions that can only be used in systems that

have non-transactional, simple writes.

The ideal READ transactions would also provide the best

performance. In particular, they would provide the lowest

possible latency because the prevalence of reads makes them

dominate the user response times that are aggressively opti-

mized by web services [4], [10], [16]. The optimal latency
for a READ transaction is to match the latency of non-

transactional, simple reads: complete in a single round trip of

non-blocking parallel requests to the shards that return only

the requested data [13].

922

2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00101

A. Previous Results and Open Questions

The SNOW Theorem was the first result in the sharding

dimension that is relevant to READ transactions [13]. The

SNOW Theorem is an impossibility result that proves no

READ transaction can provide Strict serializability with Non-

blocking client-server communication that completes with One

response, with only one version of the data, per read in

a system with concurrent WRITE transactions (§II-A). It

shows there is a fundamental tradeoff between the latency and

guarantees of READ transactions that system designers must

grapple with, they must pick either the strongest guarantees

(S and W) or optimal latency (N and O).

SNOW is trivially possible in systems with a single client or

a single server because the single entity naturally serializes all

transactions. The SNOW Theorem shows SNOW is impossible

in systems with at least three clients and at least two servers. It

explicitly leaves open the question of the possibility of SNOW

in a system with two clients. In addition, the model used

in the prior work implicitly leaves open several questions. It

assumed the three clients were a single writer and multiple

readers (SWMR). This leaves open the possibility of SNOW

with multiple writers and a single reader (MWSR). The

SNOW Theorem also implicitly assumed that clients do not

directly exchange messages and that write operations in such

a system must eventually complete. This also leaves open the

question of whether allowing or disallowing client-to-client

(C2C) communication has any impact on the feasibility of

READ transactions with SNOW properties.

In this work, the new impossibility results are philosophi-

cally similar to other impossibility results—such as FLP [6]

and CAP [2], [7]—in that they help system designers avoid

wasting effort in trying to achieve the impossible. That is, the

SNOW Theorem identifies a boundary in the design space of

READ transactions, beyond which no algorithms can possibly

exist. By revisiting SNOW, our work makes this boundary

more precise.

B. Our Contributions

Our work builds on the SNOW Theorem to clarify this

fundamental tradeoff by providing a thorough proof for the

SNOW Theorem [13] and also, answer the open questions

mentioned above. First, we formally state the SNOW prop-

erties of executions using the I/O automata framework [14]

with the additional requirement, for the W property, that any

WRITE must eventually complete (§II). Next, we identify

and prove some basic results, required in the proofs, for

transforming one valid execution to another possible and

safe execution in a READ transaction system (§III). Then

we present a new, rigorous proof of the impossibility of

SNOW with three or more clients even when client-to-client

(C2C) communication is allowed (§IV). Next, we show that

the feasibility of implementing an algorithm with SNOW in

MWSR (which also includes the two-client system model)

depends on whether C2C communication is allowed: when

it is not allowed, SNOW is impossible (§V-A); and when it is

allowed, SNOW is possible (§V-B) for any MWSR setting.

Client-to-Client?
Setting Yes No

2 clients � ×
MWSR � ×

≥ 3 clients × (×)

(a) Is SNOW possible?

Rounds
Versions 1 2 ∞

1 (×) � (�)
|W | �

(b) Bounded SNW algorithms.

Fig. 1: A summary of our new results. Previous results are

marked in parentheses. × indicates we have proved that

such READ transactions are impossible. � indicates we have

described such a new READ transaction algorithm. |W | is the

number of concurrent WRITE transactions.

Prior to this work, the Eiger [12] algorithm was previously

believed to be the only algorithm that provided a bounded

number of non-blocking rounds [12] and guaranteed strict

serializability. Next, we show this claim is not true by showing

that not all execution of Eiger is strictly serializable (§VI).

Next, after realizing the limits posed by the SNOW The-

orem, we ask ourselves whether it is possible to construct

READ transaction algorithms with no C2C communication, as

in most practical systems, where one of the SNOW properties

is relaxed. One obvious candidate property is the “O” property,

where one of the two restrictions (i.e., “one-round” of commu-

nication and “one-version” of data) can be relaxed. We provide

two algorithms for the multiple-writers multi-reader (MWMR)

setting: the first algorithm B guarantees SNW and the “one-

version” property and completes READ transactions in two

rounds (§VII); the second algorithm, C, guarantees SNW and

the “one-round” property but returns up to as many versions of

the data as there are concurrent WRITE transactions (§VIII).

Thereby, making these READ transactions algorithms with a

bounded number of non-blocking rounds and guarantees strict

serializability. Due to space limitations, we omit most of the

proofs and present them in an extended version in arXiv [9].

II. TRANSACTIONS PROCESSING SYSTEM

Web services typically have two tiers of machines within a

datacenter: a stateless frontend tier and a stateful storage tier.

The frontends handle user requests by executing application

logic that generates sub-requests to read/write data in the

storage tier that shards (or splits) data across many machines.

We refer to the front-ends as the clients, the storage machines

as the servers and the stored data items as objects, to match

common terminology. While web services are typically geo-

replicated, we focus on sharding within a datacenter because

the reads that dominate their workloads are handled within a

single datacenter.

We consider a transaction processing system that comprises

a set of read/write objects O, where each object o ∈ O is

maintained by a separate server process, and also another set of

processes, we refer to as clients, that can initiate transactions,

after the previous ones, if any, have completed. The system

allows two types of transaction: READ transaction, a group

of read requests for the values stored in some subset of

923

objects in O; and WRITE transaction, a group of write

requests intending to update the values stored in some subset

of objects O. A read-client executes only READ transactions,

while write-client executes only WRITE transactions; no client

executes both types of transaction.

A typical READ transaction, we denote as

R(oi1 , oi2 , . . . , oiq) or in short by R, consists a set

of individual read requests read(oi1), read(oi2) and

read(oiq) to read values in objects oi1 , oi2 , . . . , oiq ,

respectively. read(o) denotes a read that intends to

read the value of object o. A typical WRITE, denoted

as W((oi1 , vi1), (oi2 , vi2), . . . , (oip , vip)) or in short as W ,

consists of a set of which requests to update the values of

objects oi1 , oi2 , . . . , oip with vi1 , vi2 , . . . , vip , that are values

from the domans Vi1 , Vi2 , . . . , Vip , respectively.

A read (or write) client initiates a READ (or WRITE)

transaction with an invocation step INV(R) (or INV(W)), then

it carries out the read or write operations in the transaction;

and eventually completes the transaction with a RESP(R) (or

RESP(W)). After the completion of the reads or writes in

a transaction the client responds, in the case of R, with the

values of objects; and, in the case of W , an ok status, to the

external client.

We assume that the network channels are reliable but asyn-

chronous, i.e., any message sent by a process will eventually

arrive at its destination uncorrupted. We assume local com-

putations are asynchronous, i.e., local computations at various

processes proceed at arbitrary and unpredictable speeds. When

a client receives a transaction request, usually from an external

client, such as an user’s device, it executes the transaction,

denote by R or W , and finally, responds to the external client

with the results.

We model a distributed algorithm using the I/O automata

modeling framework (see [14] for a detailed account). In

the rest of this paper, for any execution of an automaton A,

σ0, a1, . . . , ak, σk . . ., where σ’s and a’s are states and actions,

we use the notation a1, . . . , ak . . . which shows only the

actions to simplify notation. We use the notation prefix(α, a) to

refer to the finite prefix of any execution α ending with action

a such that a occurs within α. In our model, an individual

read, such as read(o), in some read transaction R initiated

by some read client r consists of the following sequence of

actions: after INV(R) at r, r sends a message m (requesting

the value stored in o) to a server s via action send(m)r,s. When

s receives m via action recv(m)r,s it sends the value v (stored

in o) to r via action send(v)s,r. Then read(o) completes as

soon as r receives vj via action recv(v)s,r; R completes with

RESP(R) after all the reads in it are complete.

A. SNOW Properties

In this subsection, we define the SNOW properties for

a transaction processing system. Namely, we require that

any fair execution of the system satisfies the following four

properties: (i) Strict serializability (S), which means there is

a total ordering of the transactions such that all transactions

in the resulting execution appear to be processed by a single

machine one at a time; (ii) Non-blocking operations (N),

which means that the servers respond immediately to the read

requests of a READ transaction without waiting for any input

from other processes; (iii) One response per read (O), which

requires that any read operation consists of one round trip of

communication with a server, and also, that the server responds

with a message that contains exactly one version of the object

value; and (iv) WRITE transactions that conflict (W) implies

the existence of concurrent WRITE transactions that update

the data objects while READ transactions are in progress

reading the same objects. Below we describe the individual

properties of the SNOW properties in more detail.

Strict serializability (S). By strict serializability (for a for-

mal definition please see [8]), we mean each WRITE or READ

transaction appears to the clients to be executed atomically,

at some point in an execution between the invocation and

response events.

Next, we describe the non-blocking and one-response prop-

erties. Both are defined as properties of read operations to an

individual object. For the purpose of elucidation, we consider

an execution α of a transaction processing system T that

has a set of objects O, where there is a READ transaction

R(oi1 , oi2 , . . . , oiq), in short R, invoked at some reader r, such

that R contains a read read(oj) for some oj ∈ O maintained

at server sj .

Non-blocking reads (N). The non-blocking property means

that if r, a reader-client, sends any message to any si (si
manages object oi) during the transaction then si can respond

to r without waiting for any external input event, such as

the arrival of messages, any mutex operations, time, etc. This

property ensures that READ transactions are delayed only due

to delay in message delivery between r and si. We define this

property formally as follows.

Definition II.1 (Non-blocking read (N)). Suppose in α,
following the action INV(R), the actions recv(mr

j)r,sj and
send(vj)sj ,r corresponding to read(oj), occurs at sj . Then
there exists an execution α′ of T such that

(i) The execution fragments prefix(α, recv(mr
j)r,sj) and

prefix(α′, recv(mr
j)r,sj) are identical, where prefix(α, a)

is the prefix of α ending with a.
(ii) In α′ the action send(vj)sj ,r at sj occurs after

recv(mr
j)r,sj without any input action in between.

One-response per read (O). The one-response property

requires that each read operation, read(oi), during any READ

transaction, completes successfully in one round of client-to-

server communication and the one-version states that exactly

one version of the value is sent by server si, that manages

oi, to r. One-round consists of a read request from the client

initiating the read operation to the server and the response

containing value sent by the server.

Definition II.2 (One response per read (O)). Suppose in α,
the action INV(R) occur at r then in α there exists exactly a
pair of actions recv(mr

j)r,sj) and send(vj)sj ,r, corresponding
to R, occur at sj , such that vj is the object value of oj .

924

If the reads, of some READ transaction, of a transaction

processing system respect the non-blocking and one-response
properties then each read includes one-round trip from client

to server, where the server returns only the requested value

as soon as it receives the request. It is worth noting that the

READ transaction can complete only after all the read(·)s in

it complete.

Definition II.3 (Conflicting writes (W)). Suppose in α, the
action INV(W), the actions occur at a write client w then
there is an action RESP(W) in α that appears after INV(W).

WRITE transactions that conflict (W). The conflicting
writes property states that READ transactions complete even

in the presence of concurrent WRITE transactions, where the

write operations might update some objects that are also being

read by read operations in READ transaction. This shows

that READ transactions can be invoked at any point, even

in the presence of ongoing WRITE transactions. Note that the

liveness of any WRITE transaction is not implied by any of

the SNOW properties; however, for useful practical systems

the WRITE transactions must eventually complete. Therefore,

we assume that every WRITE transaction eventually completes

via the RESP event, and think of this constraint as a part of

the W property.

The SNOW Theorem. Consider a transaction processing

system with an asynchronous network where a set O of objects

are maintained by individual server processes, with at least

one write client and at least two read clients. Then the SNOW

Theorem [13] can be stated as follows.

“For any transaction processing system in an asynchronous
setting, with at least one writer and two reader clients, and at
least two sharded objects, it is impossible to have an algorithm
such that all of its executions guarantee the SNOW properties.”

III. TECHNICAL PRELIMINARIES

In this section, we present some useful preliminary results

and ideas that we will later use to prove the impossibility

results. We assume a simple system with two servers, sx and

sy , denote the stored values as x and y, respectively, and either

two or three clients. One of the clients is a writer w, which

initiates only WRITE transactions. One or two of the clients

are readers, r1 and r2, which initiate only READ transactions.

Client-to-client (C2C) communication. We consider two

types of settings pertinent to communication among the

clients: (i) allow C2C communication, where a client can

send a message to any other client, and (ii) disallow C2C

communications, where a client cannot send any message

directly to another client in the system.

Servers sx and sy store values for objects ox and oy ,

respectively. the initial values of ox and oy are x0 and y0,

respectively. Because there is one object on each server the

server and object identifiers are often used interchangeably

to remove redundancy. For instance, we simply say that sx
returns x0 to the client that initiated the transaction, which

means that sx returns the value x0 of object ox at the end of

the READ transaction.

Our proofs often use a special type of execution fragment,

named non-blocking fragments, that represent the READ

transaction algorithm is non-blocking and returns one version

of each object. The one-round property is captured by allowing

only one non-blocking fragment on each server for a READ

transaction. Our proof strategy plays non-blocking fragments

against the requirements of strict serializability and write iso-

lation under the freedom of network asynchrony. We explain

non-blocking fragments and helper notations in the context of

execution α, of the system described as above, as follows:

1) Non-blocking fragments. For a READ transaction Ri by

reader ri, i ∈ {1, 2}, suppose there is a execution fragment

that starts with recv(mr
j)ri,sj and ends with send(vj)sj ,ri ,

both of which occur at sj . Moreover, suppose there is no

other input action at sj in this fragment. Then we call

this execution fragment a non-blocking fragment for Ri at

sj and denote by Fi,j(α)
(vj), j ∈ {x, y}(Fig. 2). When

the context is clear, we omit the first subscript of F . For

instance, for a READ transaction R, Fx(α)
(x0) denotes the

non-blocking fragment of R on sx.

2) Suppose READ transaction Ri completes in α. Consider

the execution fragment in α between the event INV(Ri) and

whichever of the events send(mri
y)ri,sy and send(mri

x)ri,sx
that occurs later. If all the actions in this fragment occur

at ri, then we denote this fragment as Ii(α) (Fig. 2).

3) Suppose READ transaction Ri completes in α. Consider

the execution fragments in α that occurs between the later

of the events recv(x)sx,ri or recv(y)sy,ri , i.e., at the point

in α when ri receives responses from both servers, and the

event RESP(Ri). If all the actions in this fragment occur

at ri, then we denote this fragment by Ei(α)
(x,y), where

Ri returns the values (x, y) (Fig. 2) to the external client.

4) We use R(α) and W (α) to denote the READ and WRITE

transactions in the context of α. When the context is clear,

we simply use R and W .

5) We use the subscript of a returned value to denote the

version identifier, which uniquely identifies a version from

a totally ordered set. For instance, x0 is the 0th version of

x (the initial value of object ox) on server sx.

In our proofs, we frequently use arguments that rely on the

existence of non-blocking fragments and the constraints of

strict serializability and write isolation. Below we state a few

useful lemmas regarding the executions, of some algorithm A,

where all READ transactions are assumed to have all SNOW

properties; we will use these lemmas in later sections. Due to

space constraints, we explain these lemmas at a high level.
The following lemma states that a READ transaction has to

return the same version from both servers in order to satisfy

strict serializability and write isolation.

Lemma 1. Suppose α is any execution of A such that READ
transaction R is in α. Suppose the execution fragment I(α) ◦
Fx(α)

(xt) ◦ Fy(α)
(ys) ◦E(α)(xt′ ,ys′) in α, corresponds to R,

where xt, xt′ ∈ V1 and ys, ys′ ∈ V2, then s = s′ = t = t′.

The following lemma states that we can create a new

execution α′ that is indistinguishable to α by swapping two

925

adjoining fragments, which happen on two distinct automata

in α if either (a) both fragments have no input actions or (b)
one of the fragments have no external (input or output) actions.

Our proofs leverage this lemma to create new executions by

swapping such fragments and finally derive an execution that

violates strict serializability.

Lemma 2 (Commuting fragments). Let α be an execution of
A. Suppose G1(α) and G2(α) are any execution fragments
in α such that all actions in each fragment occur only at
one automaton and either (a) none of the fragments contain
input actions, or (b) at least one of the fragments have no
external actions. Suppose G1(α) and G2(α) occur at two
distinct automata and the execution fragment G1(α) ◦G2(α)
occurs in α. Then there exists an execution α′ of A, where the
execution fragment G2(α) ◦ G1(α) appears in α′, such that
(i) G1(α) ∼ G1(α

′) and G2(α) ∼ G2(α
′) (ii) the prefix in

α before G1(α) ◦G2(α) is identical to the prefix in α′ before
G1(α

′) ◦G2(α
′); and (ii) the suffix in α after G1(α) ◦G2(α)

is identical to the suffix in α′ after the execution fragment
G2(α

′) ◦G1(α
′).

The following lemma states that if there are two fair

executions of A with READ transaction R in each of them,

and suppose at any server the non-blocking fragments of R
are identical (in terms of the sequence of states and actions),

then R returns the similar values in both executions.

Lemma 3 (Indistinguishability). Let α and β be executions of
A and let R be any READ transaction. Then (i) if Fx(α)

sx∼
Fx(β) then both R(α) and R(β) respond with the same value
x at sx; and (ii) if Fy(α)

sy∼ Fy(β) then both R(α) and R(β)
respond with the same value y at sy .

The following lemma shows that for any finite execution of

A that ends with the invocation of READ transaction R1, it

is always possible to have an extended execution of A where

the fragments I , Fx, Fy and E appear consecutively due to

the asynchronous network.

Lemma 4. If any finite execution of A ends with INV(R),
for a READ transaction R1 then there exists an extension α
which is a fair execution of A and is of the form P (α)◦I(α)◦
F1,x(α)

(x) ◦F1,y(α)
(y) ◦E(α)(x,y) ◦S(α), where P (α) is the

prefix and S(α) denotes the rest of the execution.

IV. NO SNOW WITH THREE CLIENTS AND C2C

This section provides the sketch of a formal proof of the

SNOW Theorem with 3 clients, i.e., SNOW is impossible in

a system with 3 or more clients even when client-to-client

communication is allowed. The main result of this section is

captured by the following theorem.

Theorem 1. The SNOW properties cannot be implemented in
a system with two readers and one writer, for two servers even
in the presence of client-to-client communication.

Our proof strategy is to assume the existence of an algorithm

A that satisfies all SNOW properties and create an execution

INV (Ri) send(mri
x)ri,sx send(mri

y)ri,sy… …
Ii(α)…recv(mri

x)ri,sx send(x)sx,ri

Fi,x(α)
x

…recv(mri
y)ri,sy send(y)sy,ri

Fi,y(α)
y

…recv(x)sx,ri recv(y)sy,ri … RESP (Ri)

Ei(α)
(x,y)

Fig. 2: The relevant actions in the execution fragments Ii(α),
Fi,x(α)

x, Fi,y(α)
y and Ei(α)

(x,y) for any READ transaction Ri,
i ∈ {1, 2} of a fair execution α of A.

Fig. 3: Executions of A with three clients and operations W , R1

and R2 leading to the contradiction of S in α10. Arrows show the
transposition of execution fragments from the previous execution.

α of A that contradicts the S property. We begin with an

execution of A that contains READ transactions R1 and R2,

which both read sx and sy , and WRITE transaction W that

writes (x1, y1) to sx and sy respectively (both servers have

initial values x0, y0). R1 begins after W completes, and R2

begins after R1 completes. By the S property both R1 and

R2 should return (x1, y1). Then we create a sequence of

executions of A (Fig. 3), where we interchange the fragments

until we finally reach an execution in which R2 completes

before R1 begins, but R2 returns (x1, y1) and R1 returns

(x0, y0) which contradicts the S property.

The following lemma shows that in an execution of A with

a WRITE transaction W and a READ transaction R1, there

exists a point in the execution such that if R1 is invoked before

that point then R1 returns (x0, y0) and if R1 invoked after that

point then R1 returns (x1, y1).

Lemma 5 (Existence of α0 and α1). There exist executions α0

and α1 of A that contain transactions W and R1 that satisfy
the following properties where k is some positive integer and
a1, . . . , ak is a prefix of a1, . . . , ak+1: (i) α0 can be written

926

as a1, . . . , ak ◦R1(α0)
(x0,y0) ◦S(α0) ; (ii) α1 can be written

as a1, . . . , ak+1 ◦R1(α1)
(x1,y1) ◦S(α1); and (iii) ak+1 in α1

occurs at r1.

Proof: Now we describe the construction of a sequence

of finite executions of A, {γk}∞k=0 such that each γk contains

W and R1. Consider an execution α of A that contains W .

Suppose R1 is invoked at r1 after the execution fragment

a1, . . . , ak+1, a prefix of α. Allowed by network asynchrony,

let INV(R) be followed by only internal and external ac-

tions at r1 until both send(mr1
x)r1,sx and send(mr1

y)r1,sy
occur, thereby creating an execution fragment of the form

a1, . . . , ak+1 ◦ I1(α). We denote a1, . . . , ak+1 by Pk+1.

Next, consider the network delivers the message mr1
x at

sx, and delays all actions at other automata and also any

input action at sx until sx sends x to r1. Therefore, we

achieve the execution fragment Pk+1 ◦I1,x(α)◦F1,x(α) of A.

Next, the network delivers mr1
y at sy and delays all actions

at other automata and input actions at sy until sy sends

y to r1. Then the network delivers x and y at r1 but it

delays actions at other automata and any other input action

at r1 until RESP(R1) occurs. Now we have an execution

fragment of A, which can be written as Pk+1 ◦ I1(α) ◦
F1,x(α)

(x) ◦F1,y(α)
(y) ◦E1(α)

(x,y), where R1 responds with

(x, y) such that (x, y) ∈ {(x0, y0), (x1, y1)}. We denote this

finite execution prefix as γk. Therefore, there exists a sequence

of such finite executions {γk}∞k=0.

Because R1 precedes W , by the S property R1 must respond

with (x0, y0) in γ0. If k is large enough such that ak occurs in

α after the completion of W then by the S property, R1 must

return (x1, y1) in γk+1. Therefore, there exists a minimum

k where in γk READ transaction R1 returns (x0, y0) and in

γk+1, R1 returns (x1, y1). We denote this minimum by k∗.

Note that γk∗ corresponds to α0 and γk∗+1 corresponds to α1

in (i) and (ii) respectively.

Now, we prove case (iii) by eliminating the possibility of

ak∗+1 occurring at sx, sy , w or r2. The S property requires

that R1 must retrieve the same version from both sx and sy ,

which implies that sx and sy must send values of the same

version. Observe that R1 returns the 0th version in α0 and the

1st version in α1, while the prefixes Pk∗ and Pk∗+1 differ by a

single action ak∗+1. Importantly, just one action at any of sx,

sy , r2 or w is not enough for sx and sy to coordinate the same

version to send. Therefore, ak∗+1 must occur at r1, which can

possibly help coordinate by sending some information via mx

and my sent to sx and sy respectively.

Case ak∗+1 occurs at sx: Consider the prefix of execution

α0 up to ak∗ . Suppose the network invokes R1 immediately

after action ak∗ via INV(R1). By Lemma 4 there exists an

execution α′ that contains an execution fragment of the form

Pk∗ ◦ I1(α
′) ◦ F1,x(α

′)(x) ◦ F1,y(α
′)(y) ◦ E(α′)(x,y). Then,

I1(α1)
r1∼ I1(α

′) and F1,y(α1)
sy∼ F1,y(α

′) because in both

executions the actions of I1 occur entirely at r1 and those of

F1,y occur entirely at sy , and thus they are unaffected by the

addition of the single action ak∗+1 at sx. As a result, F1,y(α
′)

must send the same value y1 to r1 as in F1,y(α1). Then in

α′, R1(α
′) returns y1 by Lemma 3, and thus R1(α

′) returns

(x1, y1) by the S property. However, this contradicts the fact

that in γk∗ R1 responds with (x0, y0).

Case ak∗+1 occurs at sy: A contradiction can be shown

by following a line of reasoning similar to the preceding case.

Case ak∗+1 occurs at w: This can be argued in a simi-

lar manner as the previous case with the trivial fact that

F1,x(α1)
sx∼ F1,x(α

′) and F1,y(α1)
sy∼ F1,y(α

′).
Case ak∗+1 occurs at r2: A contradiction can be derived

using a line of reasoning as in the previous case.

So we conclude that ak∗+1 must occur at r1 in α1.

In the remainder of the section, we suppress the explicit

reference to the execution. For instance, we use Ii, F
(x)
i,x , F

(y)
i,y ,

E
(x,y)
i and S, where we drop α, instead of Ii(α), Fi,x(α)

(x),

Fi,y(α)
(y), Ei(α)

(x,y) and S(α). If a READ transaction Ri

has an execution fragment of the form Ii ◦F (x)
i,x ◦F (y)

i,y ◦E(x,y)
i

we denote it as R
(x,y)
i . In the rest of the section, α0, α1, and

the value of k are the same as in the discussion above. We

denote the execution fragments a1, . . . , ak and a1, . . . , ak+1

as Pk and Pk+1 respectively. Our proof proceeds by stating

a sequence set of lemmas (Fig. 3). The first lemma states

there exists an execution in which two consecutive READ

transactions follow a WRITE transaction, and both READ

transactions return the new values by the WRITE transaction.

Lemma 6 (Existence of α2). There exists an execution α2 of
A that contains W , R1, and R2, and can be written in the
form Pk+1 ◦ R

(x1,y1)
1 ◦ R

(x1,y1)
2 ◦ S, where both R1 and R2

return (x1, y1).

Based on the previous execution, the following lemma

proves that there is an execution of A where I2 occurs earlier

than the action ak+1 and the invocation of R1.

Lemma 7 (Existence of α3). There exists execution α3 of A
that contains transactions W , R1 and R2, and can be written
in the form Pk ◦ I2 ◦ ak+1 ◦ R

(x1,y1)
1 ◦ F2,x ◦ F2,y ◦ E2 ◦ S,

where both R1 and R2 return (x1, y1).

Proof: Consider the execution α2 as in Lemma 6. In the

execution fragment I1 ◦F (x1)
1,x ◦F (y1)

1,y ◦E(x1,y1)
1 in α2, none of

the actions occur at r2 and by Lemma 5, ak+1 occurs at r1,

also the actions in I2 occur only at r2. Starting with α2, and

by repeatedly using Lemma 2, we create a sequence of four

executions of A by repeatedly swapping I2 with the execution

fragments E
(x1,y1)
1 , F

(y1)
1,y , F

(x1)
1,x and I1, which appears in

I1 ◦F (x1)
1,x ◦F (y1)

1,y ◦E(x1,y1)
1 ◦I2, where the following sequence

of execution fragments I1 ◦ F (x1)
1,x ◦ F (y1)

1,y ◦ I2 ◦ E(x1,y1)
1 (by

commuting I2 and E
(x1,y1)
1); I1 ◦F (x1)

1,x ◦I2 ◦F (y1)
1,y ◦E(x1,y1)

1

(by commuting I2 and F
(y1)
1,y); I1◦I2◦F (x1)

1,x ◦F (y1)
1,y ◦E(x1,y1)

1

(by commuting I2 and F
(x1)
1,x) appear. Finally, we have an

execution α′ of the form Pk+1 ◦ I2 ◦R(x1,y1)
1 ◦F (x1)

2,x ◦F (y1)
2,y ◦

E
(x1,y1)
2 ◦ S (by commuting I2 and I1) Next, from α′, by

using Lemma 2 and swapping ak+1 with I2 we have shown

the existence of an execution α3.

927

Now by constructing a sequence of executions, α3 through

α10 (Fig. 3, lemmas and proofs omitted due to lack of space)

realize the existence of an execution α10 of A where the

execution fragments corresponding to R2 appears before R1,

where R1 returns (x0, y0) and R2 completes by returning

(x1, y1) but R1 is in real time after R2, therefore, violates

the S property.

Lemma 8 (Existence of α10). There exists an execution α10

of A that contains transactions W , R1 and R2 and can be
written in the form Pk ◦ R

(x1,y1)
2 ◦ R

(x0,y0)
1 ◦ S. where R1

returns (x0, y0) and R2 returns (x1, y1).

Proof: Now, by applying Lemma 2 to α9, we can swap

F2,x and I1 to create an execution α10 (Fig. 3) of A, which

is of the form Pk ◦ I2 ◦F (y1)
2,y ◦F (x1)

2,x ◦R(x0,y0)
1 ◦E(x1,y1)

2 ◦S,

where the returned values are determined by Lemma 1.

Note that none of the actions in I1 ◦F (x0)
1,x ◦F (y0)

1,y ◦E(x0,y0)
1

occur at r2 and all actions in E
(x1,y1)
2 occur at r2. Therefore,

by applying Lemma 2, we can consecutively swap E2 with

E1, F1,y , I1, and F1,x. Therefore, we create a sequence of

four executions of A to arrive at execution α10 (Fig. 3) of the

form Pk ◦R(x1,y1)
2 ◦R(x0,y0)

1 ◦ S.

V. TWO CLIENT OPEN QUESTION

This section closes the open question of whether SNOW

properties can be implemented in the MWSR setting. The

MWSR setting also generalizes the two-clients setting left

open in [13]. We first prove that SNOW remains impossible

in a MWSR and 2-server system if C2C communication is

disallowed. Next, we present an algorithm that implements

SNOW properties in an MWSR setting with at least two

servers. Hence we resolve a more general version of the open

question raised in [13]: the feasibility of SNOW in this setting

depends on whether C2C communication is allowed.

A. No SNOW Without C2C Messages
We use the same system model as in Section IV: two servers

sx and sy with two clients, a reader r1 that issues only

READ transactions and a writer w that issues only WRITE

transactions. A WRITE transaction W writes (x1, y1) to sx
and sy , and a READ transaction R reads both servers. We

assume that there is a bi-directional communication channel

between any pair of client and server and any pair of servers

but there is no direct communication channels between clients.

We assume that each transaction can be identified by a unique

number, e.g., transaction identifier.
Our strategy is still proof by contradiction: We assume there

exists some algorithm A that satisfies all SNOW properties,

and then we show the existence of a sequence of executions of

A, finally leading to an execution contradicting the S property.

The following theorem (proof in arXiv [9]) states when client-

to-client communication is not allowed it is impossible to have

the SNOW properties even with two clients.

Theorem 2. The SNOW properties cannot be implemented in
a system with two clients and two servers, where the clients
are not allowed to communicate with each other.

B. SNOW with C2C Communication

In this section, we show that SNOW is possible in the

multiple-writers single-reader (MWSR) setting when client-

to-client communication is allowed. In particular, we present

an algorithm A, which has all SNOW properties in such

setting. We consider a system that has � ≥ 1 writers with ids

w1, w2 · · ·w� ∈ W , one reader r, and k ≥ 1 servers with ids

s1, s2 · · · sk ∈ S . Client-to-client communication is allowed.

The pseudocode for algorithm A is presented in Pseudocode 4.

We use keys to uniquely identify a WRITE transaction. A key

κ ∈ K is defined as a pair (z, w), where z ∈ N, and w ∈ W
is the id of a writer. K denotes the set of all possible keys.

Also, with each transaction we associate a tag t ∈ N.

State variables: (i) Each writer w stores a counter z
corresponding to the number of WRITE transactions it has

invoked so far, initially 0. (ii) The reader r has an ordered

list of elements, List, as (κ, (b1, · · · , bk)), where κ ∈ K
and (b1, · · · bk) ∈ {0, 1}k. Initially, List = [(κ0, (1, · · · 1)],
where κ0 ≡ (0, w0), and w0 is any place holder identifier for

writer id. (iii) Each server si ∈ S stores a set variable V als
with elements of key-value pairs (κ, vi) ∈ K × Vi. Initially,

V als = {(κ0, v0i)}.

Writer steps: Any writer client, w ∈ W , may invoke

a WRITE transaction W((oi1 , vi1), (oi2 , vi2), · · · , (oip , vip)),
comprising a set of write operations, where I =
{i1, i2, · · · , ip} is some subset of p indices of [k]. We define

the set SI � {si1 , si2 , · · · , sip}. This procedure consists of

two consecutive phases: write-value and info-reader. In the

write-value phase, w creates a key κ as κ ≡ (z + 1, w);
and also increments the local counter z by one. Then it sends

(WRITE-VAL, (κ, vi)) to each server si in SI , and awaits ACKs

from each server in SI . After receiving all ACKs, w initiates

the info-reader phase during which it sends (INFO-READER,

(κ, (b1, · · · bk)) to r, where for any i ∈ [k], bi is a boolean

variable, such that bi = 1 if si ∈ SI , otherwise bi = 0.

Essentially, such a (k + 1)-tuple identifies the set of objects

that are updated during that WRITE transaction, i.e., if bi = 1
then object oi was updated during the execution of the WRITE

transaction, otherwise bi = 0. After w receives ACK from r it

completes the WRITE transaction.

Reader steps: We use the same notations for I and

SI as above for the set of indices and corresponding

servers, possibly different across transactions. The procedure

R(oi1 , oi2 , · · · , oip), for any READ transaction, is initiated at

reader r, where oi1 , oi2 , · · · , oip denotes the subset of objects

r intends to read. This procedure consists of only one phase,

read-value, of communication between the reader and the

servers in SI . Here r sends the message (READ-VAL, κi) to

each server si ∈ SI , where the κi is the key in the tuple

(κi, (b1, · · · , bk)) in List located at index j∗ such that bi = 1
such that i ∈ I . After receiving the values vi1 , vi2 , · · · vip
from all servers in SI , where SI � {si1 , si2 , · · · , sip}, the

transaction completes by returning (vi1 , · · · vip).
On receiving a message (INFO-READER, (κ, (b1, · · · , bk))

from any writer w, r appends (κ, (b1, · · · , bk) to its List,

928

and responds to w with ACK and tw = |List|, i.e., number

of elements in List. The order of the elements in List
corresponds to the order the WRITE transactions, the order of

the incoming INFO-READER updates, as seen by the reader.

Server steps: The server responds to messages containing

the tags WRITE-VAL and READ-VAL. The first procedure is

used if a server si receives a message (WRITE-VAL, (κ, vi))
from a writer w, it adds (κ, vi) to its set variable V als
and sends ACK back to w. The second procedure is used if

si receives a message, i.e., (READ-VAL, κi), from r, then it

responds with vi such that (κi, vi) is in its V als.

Pseudocode. 4 Steps at writer w, reader r and server si in A.

At writer w
State Variables at w:
z ∈ N, initially 0

W((oi1 , vi1), · · · , (oop , vip))
2: write-value:

κ← (z + 1, w)
4: z ← z + 1

I � {i1, i2, · · · , ip}
6: for i ∈ I do

Send (WRITE-VAL, (κ, vsi))
to si

8: Await ACK from si ∀ i ∈ I .

info-reader:
10: for i ∈ [k] do

if i ∈ I then
12: bi ← 1

else
14: bi ← 0

Send (INFO-READER,
16: (κ, (b1, · · · , bk))) to r

Receive (ACK, tw) from r

18:
At reader r
State Variables at r:
List, a list of elements in K ×
{0, 1}k ,

20: initially [(κ0, 1, · · · 1)]

R(oi1 , oi2 , · · · , oip)
read-value:

22: I � {i1, i2, · · · , ip}
for i ∈ I do

24: j∗ ← max1≤j≤|List|{j :
List[j].bi = 1}

26: κi ← List[j∗].κ
Send (READ-VAL, κi) to si

28: Await responses vi from si ∀
i ∈ I

Return (vi1 , vi2 , · · · , vip)
30:

Response routines
On recv (INFO-READER,

32: (κ, (b1, · · · bk))) from w:

List← List
⊕

(κ, (b1, · · · bk))
34: /*

⊕
for append */

tag ← |List| /* | · | list size */
36: Send (ACK, tag) to w

At server si for any i ∈ [k]
38: State Variables:

V als ⊂ K × Vi, initially
{(t0key , v0i)}

On recv (WRITE-VAL, (κ, v)) from w:
40: V als← V als ∪ {(κ, v)}

Send ACK to w.

42: On recv (READ-VAL, κ) from r :
Send v s.t. (κ, v) ∈ V als to r

A respects the SNOW properties as stated below.

Theorem 3. Any well-formed and fair execution of A guar-
antees all of the SNOW properties.

VI. NO PRIOR BOUNDED LATENCY FOR SW

The SNOW work [13] claimed, after examining existing,

work there existed only one system, Eiger [12], whose READ

transactions had bounded latency—i.e., non-blocking and fin-

ish in three rounds—while providing the strongest guarantees–

i.e., having properties W and S—because Eiger claimed that

its READ transactions provide strict serializability within a

datacenter. In this section, we correct this claim and show

there were no existing algorithms that had bounded latency

SA SB CW CWCR
1 1

1

2
3
43

5
6

2

3 3

W1

W2

W3

rB

rA

rA = W3

W1

3
4W2W2W2

6

W3

3

r

2

33

rB = W1

5

W1

3

2

rB

rArr

W3

Fig. 4: An example execution that shows Eiger’s READ transaction
is not strictly serializable. w1, w2, and w3 are three writes, where
w3 is issued after w2 finishes. rA and rB are read operations from
the same READ transaction R, which is concurrent with all three
writes. Each number is a value of the logical clock on the machine
(process) as a result of message exchange.

while providing the strongest guarantees by proving Eiger’s

READ transactions are not strictly serializable.

The insight on why Eiger’s READ transactions are not

strictly serializable is that Eiger uses logical timestamps, i.e.,

Lamport clocks, to track the ordering of operations, and logical

clocks are not able to identify the real-time ordering between

operations that do not have causal relationship, i.e., opera-

tions from different processes. Strict serializability, however,

requires the real-time ordering to be respected.

Figure 4 is an example execution, which is allowed by Eiger

but violates strict serializability. Real time goes downwards in

the diagram. Each number is a value of the Lamport clock

on the machine (process) as a result of message exchange.

Initially all processes have Lamport clock value 0, and no

messages happened before the execution in Figure 4. A READ

transaction R = {rA, rB} reads values on SA and SB

respectively. Due to the asynchronous nature of the network,

rB arrives on SB before w2 and rA arrives after w3. Following

the READ transaction algorithm of Eiger, rA returns the value

of w3 and its valid logical duration, i.e., [2, 3]. Similarly, rB
returns the value of w1 and its valid logical duration, i.e., [2, 3].
Because the two logical durations overlap, Eiger claims the

combined values of rA and rB are consistent and accept them.

However, because w3 starts after w2 finishes, w3 is in real

time after w2. By strict serializability, if a READ transaction

sees the value of w3, then it must observe the effect of w2.

Hence, R, which returns the values of w1 and w3, violates

strict serializability.

VII. SNW + ONE VERSION, MWMR SETTING

Here present algorithm B, which satisfies SNW and ”one-

version” properties, in MWMR setting where a READ transac-

tion must consist of one version of the data but, possibly, mul-

929

tiple communication trips between the reader and the servers.

In B, the steps for the writers are shown in Pseudocode 5 and

for readers and the servers are presented in Pseudocode 6. We

assume a set of writers W , a set of readers R and a set of

k ≥ 1 servers, S, with ids s1, s2 · · · sk that stores the objects

o1, o2, · · · , ok, respectively. A key κ is defined as a pair (z, w),
where z ∈ N and w ∈ W the id of a writer. We use K to denote

the set of all possible keys. In B, a key uniquely identifies

some transaction. Also, with each transaction we associate a

tag t ∈ N.

In B, we designate one of the servers as coordinator, denote

as s∗, for the transactions. The s∗ maintains the order of the

WRITE transactions and the objects that are updated during

the WRITE transaction in the variable List.
State variables: Each of the writers and servers maintain

a set of state variables as follows: (i) At any writer w,

there is a counter z to keep track of the number of WRITE

transaction the writer has invoked, initially 0. (ii) At any

server, si, for i ∈ [k], there is a set variable V als with

elements that are key-value pairs (κ, vi) ∈ K × Vi. Initially,

V als = {(κ0, v0i)}. A server also contains an ordered list

variable List of elements as (κ, (b1, · · · , bk)), where κ ∈ K
and (b1, · · · bk) ∈ {0, 1}k. Initially, List = [(κ0, (1, · · · 1)],
where κ0 ≡ (0, w0), where w0 is any place holder identifier

string for writer id. The elements in List can be identified

with an index, e.g., List[0] = (κ0, (1, · · · , 1)). Essentially, a

(k+1)-tuple (κ, (b1, · · · , bk)) in List corresponds to a WRITE

transaction and identifies the set of objects that are updated

during the WRITE transaction, i.e., if bi = 1 then object oi
was updated during the WRITE transaction, otherwise bi = 0.

Writer steps: A WRITE transaction updates a list of p ob-

jects oi1 , oi2 , · · · oip with values vi1 , vi2 , · · · vip , respectively,

is invoked at w via the procedure W((oi1 , vi1), · · · , (oip , vip)).
We use the notations: I � {i1, i2, · · · , ip} and SI �
{si1 , si2 , · · · , sip}. This procedure consists of two phases:

write-value and update-coor. During the write-value phase,

w creates a new key κ as κ ≡ (z + 1, w), where w identifies

the writer; and also increments the local counter z by one.

Then w sends (WRITE-VAL, (κ, vi)) to each server in SI , and

awaits ACK from all servers in SI . After receiving ACK from

all servers in SI , w initiates the update-coor phase where it

sends (UPDATE-COOR, (κ, (b1, · · · bk)) to s∗, where for any

i ∈ [k], bi = 1 if si ∈ SI , otherwise bi = 0, and completes

then WRITE transaction after it receive a (ACK, tw) from s∗.

Reader steps: We use the same notations for I and SI

as above but the indices can vary across transactions. The

procedure R(oi1 , oi2 , · · · , oip) can be initiated by some reader

r, as a READ transaction, intending to read the values of

subset oi1 , oi2 , · · · , oip of the objects. The procedure con-

sists of two consecutively executed phases of communication

rounds between the r and the servers, viz., get-tag-array and

read-value. During the phase get-tag-array, r sends s∗ the

message GET-TAG-ARR requesting the list of the latest added

keys for each object. Once r receives a list of tags, such

as, (tr, (κ1, κ2, · · · , κk)) from s∗ the phase completes. In the

subsequence phase, read-value, r requests each server si in

SI by sending the message (READ-VAL, κi). After receiving

the values vi1 , vi2 , · · · vip from the servers in SI , r completes

the transaction by returning the tuple of values (vi1 , · · · vip).
Server steps: When a server si receives a message of type

(WRITE-VAL, (κ, vi)) from a writer w then it adds (κ, vi) to

its set variable V als and sends ACK back to w.

If the coordinator s∗ receives (UPDATE-COOR,

(κ, (b1, · · · , bk)) from writer w, then it appends

(κ, (b1, · · · , bk)) to its List, and responds with ACK

and tw (set to be the number of elements in the local list

List) to w. The order of the elements in List corresponds to

the order the WRITE transactions, the order of the incoming

UPDATE-COOR updates, as seen by s∗.

When s∗ receives the message GET-TAG-ARR from r it

responds with (κ1, · · · , κk) such that for each i ∈ [k], κi

is the key part of the (k+1)-tuple that was modified last, i.e.,

κi = List[j∗].κ such that j∗ � max{j : List[j].bi = 1}, and

tr, tr � max1≤j≤|List|{j : List[j].bi = 1 ∧ i ∈ I}. If any

server si receives a message (READ-VAL, κ) from a reader r
then it responds to r with the value vi corresponding to key

with value κ in V als.

Theorem 4. Any well-formed and fair execution of algorithm
B satisfies the SNW and ”one-version” properties.

Pseudocode. 5 Protocol for writer w in algorithms B and C.

At writer w
State Variables:
z ∈ N, initially 0

W((i1, vi1), · · · , (ip, vip))
I � {i1, i2, · · · , ip}

3: write-value:
κ← (z + 1, w)
z ← z + 1

6: for i ∈ I do
Send (WRITE-VAL, (κ, vsi))

to si
9: Await ACK from servers in SI .

update-coor:
for i ∈ [k] do

12: if i ∈ I then
bi ← 1

else
15: bi ← 0

Send (UPDATE-COOR, (κ,
(b1, · · · , bk))) to s∗

18: Receive (ACK,
tw) from s∗

VIII. SNW + ONE ROUND, MWMR SETTING

Here, we present algorithm C which satisfies SNW and

”one-round” properties in the MWMR setting, where a READ
consists one round of communications between the reader and

the servers but servers may respond with multiple versions

of the data. The notation for the writers, servers and tag are

similar to algorithm B. Pseudocodes 5 and 7 show the steps

for the writers, and the readers and the servers, respectively.

We designate a server as the coordinator, denote as s∗.

State variables: The state variables are similar to B.

Writer steps: WRITE transaction is similar to algorithm B..

Reader steps: The step R(oi1 , oi2 , · · · , oip) can be initiated

by some reader r intending to read the values of subset

oi1 , oi2 , · · · , oip of the objects. Denote I � {i1, i2, · · · , ip}
and SI � {si1 , si2 , · · · , sip}. The procedure consists of only

one phase of communication round between the r and the

servers, called read-values-and-tags. During read-values-and-
tags, r sends s∗ the message GET-TAG-ARR requesting the list

of the latest added keys for each object, and also sends requests

930

Pseudocode. 6 Protocols reader r and server si in alg. B.

At reader r
R(oi1 , oi2 , · · · , oip)
I � {i1, i2, · · · , ip}
get-tag-array:

3: Send (GET-TAG-ARR) to s∗
Receive (tr, (κ1, κ2, · · · , κk))

from s∗

read-value:
6: for i ∈ I do

Send (READ-VAL, κi) to si
Await responses as vi ∀ si ∈ S

9: Return (vi1 , vi2 , · · · , vip)

At server si for any i ∈ [k]
State Variables:
V als ⊂ K × Vi, initially
{(κ0, v0i)}
List, list of K×{0, 1}k , initially
[(κ0, (1, · · · 1))]

12: On recv (WRITE-VAL,
(κ, v)) from w:
V als← V als ∪ {(κ, v)}

15: Send ACK to w.

On recv (UPDATE-COOR,
(κ, (b1, · · · bk))) from w :

18: List←
List

⊕
(κ, (b1, · · · bk))

//
⊕

for append

21: tag ← |List| // | · | list size
Send (ACK, tag) to w

On recv (READ-VAL, κ) from r :
24: Send vi s.t. (κ, v) ∈ V als to r

/* used only by s∗ */
On recv GET-TAG-ARR from r :

for i ∈ [k] do
27: j∗ ← max{j :

List[j].bi = 1}
κi ← List[j∗].κ

30: tr � max1≤j≤|List|{j :
List[j].bi = 1 ∧ i ∈ I}

Send (tr, (κ1, κ2, · · · , κk)) to
r

Pseudocode. 7 Protocols for reader r & server si in alg. C.

At reader r
R(oi1 , oi2 , · · · , oip)
I � {i1, i2, · · · , ip}
read-values-and-tags:

3: Send (GET-TAG-ARR) to s∗
for i ∈ I do

Send (READ-VALS) to si
6: Recv (tr, (κ1, κ2, · · · , κk))

from s∗
Recv. V alsi from ∀ si ∈ SI

Return (vi1 , vi2 , · · · , vip)
9: s.t. (κj , vj) ∈ V alsj , j ∈ I

At server si for any i ∈ [k]
State Variables:
V als ⊂ K × Vi, initially
{(κ0, v0i)}
List, a list of K × {0, 1}k , ini-
tially [(κ0, (1, · · · 1))]

12: On recv (WRITE-VAL,
(κ, v)) from w:
V als← V als ∪ {(κ, v)}

15: Send ACK to writer w.

On recv (UPDATE-COOR,
(κ, (b1, · · · bk))) from w:

18: List←
List

⊕
(κ, (b1, · · · bk))

//
⊕

for append

21: tag ← |List| /* | · | list size */
Send (ACK, tag) to w

On recv (READ-VALS) from r :
24: Send V als to r

/* used only by s∗ */
On recv GET-TAG-ARR from r :

for i ∈ [k] do
27: j∗ ← max{j :

List[j].bi = 1}
κi ← List[j∗].κ

30: tr � max1≤j≤|List|{j :
List[j].bi = 1 ∧ i ∈ I}

Send (tr, (κ1, κ2, · · · , κk)) to
r

(READ-VALS) each server si in SI . Note that if s∗ is also

one of the servers in SI then the GET-TAG-ARR and READ-

VALS messages to s∗ can be combined to create one message;

however, we keep them separate for clarity of presentation.

Once r receives a list of tags, such as, (tr, (κ1, κ2, · · · , κk))
from s∗ and the set of V alsi from each si ∈ SI then r
returns the values vi1 , vi2 , · · · vip such that (κj , vj) ∈ V alsj ,

j ∈ {1, · · · p}, and completes the READ.

Server steps: When a server si receives a message (WRITE-

VAL, (κ, vi)) from a writer w or s∗, receives (UPDATE-COOR,

(κ, (b1, · · · , bk)) from writer w or receives a message as GET-

TAG-ARR r the steps are similar to those in B. On the other

hand, if any server si receives a message (READ-VALS) from a

reader r then it responds to r with V als. The following result

states that C respects SNW and “one-round” properties.

Theorem 5. Any well-formed and fair execution of C, in the
MWMR setting satisfies the SNW and ”one-round” properties.

IX. CONCLUSION

We revisited the SNOW Theorem and when it is possible

for READ transactions to have the same latency as simple

reads. We provided a new and more rigorous proof of the

original result. We also closed several open questions that were

either explicitly posed by the original work or that emerged

from our careful analysis. We found that READ transactions

can match the latency of simple reads when client-to-client

communication is allowed in MWSR setting. We found that

they cannot and must have higher worst-case latency when

client-to-client communication is disallowed or there are at

least two readers. We also presented the first algorithms that

provide bounded worst-case latency for read-only transactions

in strictly serializable systems with WRITE transactions.

ACKNOWLEDGMENT

This work was supported by NSF awards CNS-1824130,

CCF-2003830, CCF-0939370 and NSF CCF-1461559.

REFERENCES

[1] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus
linearizability. ACM Trans. Comput. Syst., 12(2):91–122, 1994.

[2] Eric A. Brewer. Towards robust distributed systems. In Proc. Principles
of Distributed Computing, Jul 2000.

[3] Nathan Bronson and et. al. TAO: Facebook’s distributed data store for
the social graph. In USENIX Annual Technical Conference (USENIX
ATC 13)., pages 49–60, 2013.

[4] Phil Dixon. Shopzilla site redesign: We get what we measure. Velocity
Conf. Talk, 2009.

[5] James C. Corbett et. al. Spanner: Google’s globally-distributed database.
In Proc. OSDI, Oct 2012.

[6] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-
sibility of distributed consensus with one faulty process. In Proc. Prin.
of Database Sys, 1983.

[7] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. In ACM SIGACT
News, Jun 2002.

[8] M. P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[9] Kishori M Konwar, Wyatt Lloyd, Haonan Lu, and Nancy Lynch. The
snow theorem revisited, 2018.

[10] Greg Linden. Make data useful. Stanford CS345 Talk, 2006.
[11] Richard J. Lipton and Jonathan S. Sandberg. PRAM: A scalable shared

memory. Technical Report TR-180-88, Princeton Univ., Dept. Comp.
Sci., 1988.

[12] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Anderson. Stronger Semantics for Low-Latency Geo-Replicated Storage.
In Proc. NSDI, Apr 2013.

[13] H. Lu, C. Hodsdon, K. Ngo, S Mu, and W. Lloyd. The SNOW theorem
and latency-optimal read-only transactions. In 12th USENIX Symp. on
Operating Sys. Design and Implementation (OSDI 16), pages 135–150,
Savannah, GA, 2016.

[14] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub., 1996.
[15] Christos H. Papadimitriou. The serializability of concurrent database

updates. Journal of ACM, 26(4):631–653, 1979.
[16] E. Schurman and J. Brutlag. The user and business impact of server

delays, additional bytes, and HTTP chunking in web search. Velocity
Conf. Talk, 2009.

931

