
The SNOW Theorem !
and Latency-Optimal !

Read-Only Transactions!
Haonan Lu❄, !

Christopher Hodsdon❄, Khiem Ngo❄, !
Shuai Mu†, Wyatt Lloyd❄ !

 !
❄University of Southern California, †New York University!

1!

Huge Web Services Shard Data!

2!

Massive amount of data!

! must be distributed across servers!

Reads dominate the workloads !
– need to be as fast as possible!!

Simple Reads Are Insufficient!

3!

Storage Tier!Web!
Load!
Page!

ACL=public!

Photo=A!

Read !

Public!

Clients! Servers!

Datacenter!

Simple Reads Are Insufficient!

4!

Storage Tier!Web!
Load!
Page!

Photo=A!

Read !

Public!

Private!
Photo B!

Set !
“Private”!

Done!

Clients! Servers!

ACL=private!

Datacenter!

Simple Reads Are Insufficient!

5!

Storage Tier!Web!
Load!
Page! Read !

Public!

Private!
Photo B!

Set !
“Private”!

Photo B!

Done!

Done!
Done!

Clients! Servers!

ACL=private!

Photo=B!

Datacenter!

Simple Reads Are Insufficient!

6!

Storage Tier!Web!
Load!
Page! Read !

Read!

Public!

Photo B!

Photo B!

Private!
Photo B!

Done!

Clients! Servers!

ACL=private!

Photo=B!

Datacenter!

Simple Reads Are Insufficient!

7!

Storage Tier!Web!
Load!
Page! Read !

Read!

Public!

Photo B!

Photo B!

Private!
Photo B!

Done!

Not
Acceptable!!

Clients! Servers!

ACL=private!

Photo=B!

Datacenter!

Read-Only Transactions !
•  Transactions that do not modify data!
!
•  Consistently read data across servers!

8!

The Power of Read-Only Txn!
•  Consistency restricts what can be read!
– Eliminates unacceptable combinations!
!

•  Compatibility enables write transactions!
– Write transactions atomically update data!

•  Higher power ! more useful!
– Stronger consistency ! higher power!
– Compatibility ! higher power!

!
9!

Intuitive Tension!

10!

High Power! Low Latency!

•  Reduces anomalies
(the ACL – Photo example)!

•  Better user experience!

Our study proves:!
highest power + lowest latency is

impossible!

•  Easier to reason about! •  Higher revenue!

Intuitive Tension!

11!

High Power! Low Latency!

•  Reduces anomalies
(the ACL – Photo example)!

•  Better user experience!

Our study proves:!
highest power + lowest latency is

impossible!

•  Easier to reason about! •  Higher revenue!

Intuitive Tension!

12!

High Power! Low Latency!

•  Reduces anomalies
(the ACL – Photo example)!

•  Better user experience!

Our study proves:!
highest power + lowest latency is

impossible!

•  Easier to reason about! •  Higher revenue!

Fundamental Tradeoff!

The SNOW Properties !

 [S]trict serializability!
!
 [N]on-blocking operations!

 [O]ne response per read!
!
 [W]rite transactions that conflict!
!

13!

The SNOW Properties !

 [S]trict serializability!
!
 [W]rite transactions that conflict!

 [O]ne response per read!
!
 [N]on-blocking operations!
!

14!

Highest !
Power!

Lowest!
Latency!

[S]trict Serializability!
•  Strongest model: real-time + total order!
!

15!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

[S]trict Serializability!
•  Strongest model: real-time + total order!
!

16!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

ACL := Private!
Upload Photo B!

W starts!

W finishes!

Private	

Photo B	

[S]trict Serializability!
•  Strongest model: real-time + total order!
!

17!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

ACL := Private!
Upload Photo B!

W starts!

W finishes!

Private	

Photo B	

R starts!

R finishes!

[S]trict Serializability!
•  Strongest model: real-time + total order!
!

18!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

ACL := Private!
Upload Photo B!

W starts!

W finishes!

Private	

Photo B	

R starts!

R finishes!

“Photo B is
private!”!

[S]trict Serializability!
•  Strongest model: real-time + total order!
!
!

19!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

ACL := Private!
Upload Photo B!

W starts!

W finishes!

Private	

Photo B	
R starts!

R finishes!

[S]trict Serializability!
•  Strongest model: real-time + total order!
!
!

20!

CR!
!

SACL!
!

SPhoto!
!

CW!
!

ACL := Private!
Upload Photo B!

W starts!

W finishes!

Private	

Photo B	
R starts!

R finishes!

“Public + Photo A” !
“Photo B is private!”!

!
“Public + Photo B” !

“Photo A is private!”!
!

[N]on-blocking Operations!
•  Do not wait on external events!
– Locks, timeouts, messages, etc.!

•  Lower latency!
– Save the time spent blocking!

21!

[O]ne Response!
•  One round-trip!
– No message redirection!

•  Centralized components: coordinator, etc.!
– No retries!
– Save the time for extra round-trips!

•  One value per response!
– Less time for transmitting, marshaling, etc.!

22!

[W]rite Transactions That Conflict!
•  Compatible with write transactions !
– Richer system model!
– Easier to program!

23!

24!

The SNOW Theorem: !
!

Impossible for read-only transaction !
algorithms to have all SNOW properties !

Why SNOW Is Impossible!

25!

CW!SA! SB!CR!

Why SNOW Is Impossible!

26!

CW!SA! SB!CR!

W!
visible!

RA = new!
RB = old! W finishes!

W!
invisible!

W starts !
 A := new!
 B := new!
!

R!

T!

Assume !
SNOW! !	

Why SNOW Is Impossible!

27!

CW!SA! SB!CR!

W!
visible!

RA = new!
RB = old! W finishes!

W!
invisible!

W starts !
 A := new!
 B := new!
!

R!

T!

Assume !
SNOW! !	

Violates!
property S	

A Deeper Look at SNOW!
•  Complete proof in the paper!
!
•  SNOW is tight!
– Any combination of 3 properties is possible!

!
•  Optimality!
– SNOW-optimal: have any 3 properties!
– Latency-optimal: have property N and O!
!

•  Spectrums of property S and O!
– Show what is possible to achieve!
!

!
!

28!

Study Existing Systems with SNOW!
SNOW-optimal and latency-optimal!

29!

System! S! N! O! W!
Spanner-Snap!

[OSDI’12]!
✖! ✔! ✔! ✔!

Yesquel!
[SOSP’15]!

✖! ✔! ✔! ✔!

MySQL Cluster! ✖! ✔! ✔! ✔!

Spanner-Snap!
[OSDI ’12]!

Yesquel!
[SOSP ’15]!

MySQL Cluster!

✔!✖!

✖!

✖!

✔!

✔!

✔!

✔!

✔!

✔!

✔!

✔!

Study Existing Systems with SNOW!
SNOW-optimal!

30!

System! S! N! O! W!
Eiger [NSDI ’13]! ✔! ✔! ≤ 3! ✔!
DrTM [SOSP ’15]! ✔! ✔! ≥ 1! ✔!
RIFL [SOSP ’15]! ✔! ✔! ≥ 2! ✔!

Sinfonia [SOSP ’07]! ✔! ✔! ≥ 2! ✔!
Spanner-RO

[OSDI ’12]!
✔! ✖! ✔! ✔!✔! ✔! ✔!✖!

Study Existing Systems with SNOW!
Candidates for Improvement!

31!

System! S! N! O! W!
COPS! ✖! ✔! ≤ 2! ✖!

Rococo! ✔! ✖! > 1! ✔!
!

Many more!

Improve Existing Systems!
with the SNOW Theorem!

•  COPS [SOSP ’11]!
– Geo-replicated!
– Causally consistent!
– Read-only txn!
!

•  Rococo [OSDI ’14]!
– Supports general transactions!
– Strictly serializable!
– Read-only txn!

!
!

32!

: S N O W!

: S N O W!

New Algorithm Designs!
•  COPS-SNOW!
– Latency-optimal (N + O)!
!

•  Rococo-SNOW!
– SNOW-optimal (S + O + W) !

!
!

33!

Design insight for optimizing reads: !
shift the overhead to writes!

Rococo’s Read-Only Txn (S + W)!

34!

CR!
!

SA!
!

SB!
!

CW!
!

Rococo’s Read-Only Txn (S + W)!

35!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Gather !
conflict info!

Blocks!

R: 1st round!

R: 2nd round!

EQUAL ?!
A=“old”!

B=“new”!

R: Nth round!

Rococo-SNOW (S+O+W)!

36!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

R!

Rococo-SNOW (S+O+W)!

37!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

A=“old”!

R!

Rococo-SNOW (S+O+W)!

38!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

A=“old”!

TS!R!

Rococo-SNOW (S+O+W)!

39!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

A=“old”!

TS!

TS!

R!

Rococo-SNOW (S+O+W)!

40!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Forward TS!A=“old”!

TS!R!

TS!

Rococo-SNOW (S+O+W)!

41!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Forward TS!A=“old”!

TS!

TS!

R!

TS!

Rococo-SNOW (S+O+W)!

42!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Forward TS!A=“old”!

TS!

TS!

R!

TS!

Blocks!

B=“old”!

Rococo-SNOW (S+O+W)!

43!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Forward TS!

Blocks!

A=“old”!

B=“old”!

TS!

TS!

TS!

R!

A=old!
B=old!

Strictly
Serializable!

Evaluation of Rococo-SNOW!
•  To understand!
– Latency of read-only transactions!
– Throughput of other types of transactions!
!

•  Experiment configuration!
–  Identical to Rococo’s!
– TPC-C workloads!
!

•  https://github.com/USC-NSL/Rococo-SNOW!
!
!
!

44!

Significantly Lower Latency!
for Read-Only Txn!

45!

0	

200	

400	

600	

800	

1000	

1200	

0	 20	 40	 60	 80	 100	

La
te

nc
y

(m
s)
!

Concurrent requests/server!

OCC!

Rococo!

2PL!
Rococo!
-SNOW!

Significantly Lower Latency!
for Read-Only Txn!

46!

0	

200	

400	

600	

800	

1000	

1200	

0	 20	 40	 60	 80	 100	

La
te

nc
y

(m
s)
!

Concurrent requests/server!

Retries!

Lock
Wait!

Always
1 round!

OCC!

Rococo!

2PL!
Rococo!
-SNOW!

Higher Throughput!
under High Contention!

47!

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	 20	 40	 60	 80	 100	

Th
ro

ug
hp

ut
 (n

ew
-o

rd
er

/s
)!

Concurrent requests/server!

OCC!

Rococo!

2PL!

Rococo!
-SNOW!

Higher Throughput!
under High Contention!

48!

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	 20	 40	 60	 80	 100	

Th
ro

ug
hp

ut
 (n

ew
-o

rd
er

/s
)!

Concurrent requests/server!

-14% throughput!
(Low Contention)!

2X throughput!
(High Contention)!

OCC!

Rococo!

2PL!

Rococo!
-SNOW!

Conclusion!

49!

•  The SNOW Theorem for read-only txns!
–  Impossible to have all of the SNOW properties!

•  SNOW helps understand existing systems!
– Many are not yet optimal!
!

•  Rococo-SNOW!
– SNOW Theorem guided SNOW-optimal design!
– Significantly higher throughput and lower

latency under high contention !
!

!

