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Huge Web Services Shard Data
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Massive amount of data

- must be distributed across servers

Reads dominate the workloads
— need to be as fast as possible!
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Read-Only Transactions

* Transactions that do not modify data

» Consistently read data across servers



The Power of Read-Only Txn

» Consistency restricts what can be read
— Eliminates unacceptable combinations

« Compatibility enables write transactions
— Write transactions atomically update data

* Higher power - more useful
— Stronger consistency - higher power
— Compatibility = higher power



Intuitive Tension

High Power Low Latency
] ]
 Reduces anomalies « Better user experience

(the ACL - Photo example)

« Easier to reason about < Higher revenue

Our study proves:

highest power + lowest latency is
Impossible
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Fundamental Tradeoff

High Power Low Latency
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Our study proves:
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The SNOW Properties

[S]trict serializability
[N]Jon-blocking operations
[O]ne response per read

[W]rite transactions that conflict



The SNOW Properties

[S]trict serializability
Highest
} Power
[W]rite transactions that conflict
[O]ne response per read
Lowest
} Latency
[N]Jon-blocking operations



[S]trict Serializability

« Strongest model: real-time + total order
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[S]trict Serializability

« Strongest model: real-time + total order

G Swi Sew Ow

R starts -

“Public + Photo A”
“Photo B is private!”

“Public +Photo B”
“Photo A'is private!”

R finishes =

- W starts

ACL := Private
Upload Photo B

Private

= W finishes
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[N]Jon-blocking Operations

* Do not wait on external events
— Locks, timeouts, messages, etc.

* Lower latency
— Save the time spent blocking



[O]ne Response

* One round-trip

— No message redirection
» Centralized components: coordinator, etc.

— No retries
— Save the time for extra round-trips

* One value per response
— Less time for transmitting, marshaling, etc.



[W]rite Transactions That Conflict

 Compatible with write transactions
— Richer system model
— Easier to program



The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties



Why SNOW Is Impossible
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Why SNOW Is Impossible
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Why SNOW Is Impossible
- S S Cw

Assume | W starts
SNOW A = hew
B := new
Violates |nV|S|bIe
property S
V|S|ble
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A Deeper Look at SNOW

Complete proof in the paper

SNOW is tight

— Any combination of 3 properties is possible

Optimality
— SNOW-optimal: have any 3 properties
— Latency-optimal: have property N and O

Spectrums of property S and O
— Show what is possible to achieve



Study Existing Systems with SNOW
SNOW-optimal and latency-optimal

System S

Spanner-Snap
[OSDI '12]

Yesquel
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MySQL Cluster
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Study Existing Systems with SNOW
SNOW:-optimal
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Study Existing Systems with SNOW

Candidates for Improvement

System S N O "'}
COPS | %8 | v
Rococo v v

Many more
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Improve Existing Systems
with the SNOW Theorem

COPS [SOSP ’11]

— Geo-replicated
— Causally consistent

— Read-only txn: X N X W

Rococo [OSDI ’14]

— Supports general transactions
— Strictly serializable
—Read-onlytxn: S X & W



New Algorithm Designs

« COPS-SNOW
— Latency-optimal (N + O)

e Rococo-SNOW
— SNOW-optimal (S + O + W)
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Rococo’s Read-Only Txn (S + W)

C  Sa  Ss Cw




Rococo’s Read-Only Txn (S + W)

C  Sa  Ss Cw

R: 1st round —4 — W starts
= | fA=rnew
ﬁ 4 B := “new”
A=“old” Gather
EQUAL ? conflict info
ﬁ Blocks = W commits
B=“new” ‘

47
R: 2" round l

°
°
R: Nt round v - W finishes
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Rococo-SNOW (S+0+W)
Ca

S\ S Cw

B := “new”

- W starts

= W commits

- W finishes
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Rococo-SNOW (S+0+W)
Cw

Sg

G S

- 4 = W starts

A = “new”
B := “new”

= W commits
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Rococo-SNOW (S+0+W)
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Rococo-SNOW (S+0+W)
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Forward TS

= W commits
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Rococo-SNOW (S+0+W)
Ca
R
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- W starts
A = “new”
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Forward TS
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Rococo-SNOW (S+0+W)
C S S Gy

- W starts
A = “new”
B := “new”

Forward TS

Blocks = W commits

- W finishes
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Rococo-SNOW (S+0+W)
C S S Gy

- W starts
A := “neW”
B := “new”
Strictly Forward TS
Serializable Blocks = W commits
A=old
B=old - W finishes
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Evaluation of Rococo-SNOW

* To understand
— Latency of read-only transactions
— Throughput of other types of transactions

* Experiment configuration

— ldentical to Rococo’s
— TPC-C workloads

* S https:/github.com/USC-NSL/Rococo-SNOW
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Throughput (new-order/s)
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Higher Throughput

under High Contention
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Conclusion

 The SNOW Theorem for read-only txns
— Impossible to have all of the SNOW properties

 SNOW helps understand existing systems
— Many are not yet optimal

* Rococo-SNOW
— SNOW Theorem guided SNOW-optimal design

— Significantly higher throughput and lower
latency under high contention



