The SNOW Theorem
and Latency-Optimal
Read-Only Transactions

Haonan Lu®,
Christopher Hodsdon*, Khiem Ngo#,
Shuai Mut, Wyatt Lloyd*

*University of Southern California, TNew York University

Huge Web Services Shard Data

5 B

Massive amount of data

- must be distributed across servers

Reads dominate the workloads
— need to be as fast as possible!

Simple Reads Are Insufficient

Web | Datacenter giorage Tier

Load Clients Servers
Page Read

Simple Reads Are Insufficient

Load
Page

Private
Photo E

Web

Clients

7

Datacenter Storage Tier
Servers

Read

"
SetPUb ic

“Private’.

Done

Simple Reads Are Insufficient

Web

Load Clients
Page

Private
Photo E

l

- Datacenter Storage Tier

Servers

Read
R L

"
SetPUb ic

“Private’.

Photo B

_
R

Done

7

Simple Reads Are Insufficient

Web | Datacenter giorage Tier

Load Clients Servers
Page Read

Photo B

Private
Photo E

g |
|
4 : T
1 7! ;
o 1 e
- ®)
A |3 /
A J"'\, 1 =
[T
~ M 1 d
o A

Simple Reads Are Insufficient

Web | Datacenter giorage Tier

Load Clients Servers
Page Read

R\

A

L\ pa——
hak F

|

p
‘\ Public

Read

Not
5 Acceptable!

N e —

Photo B

) . J

Read-Only Transactions

* Transactions that do not modify data

» Consistently read data across servers

The Power of Read-Only Txn

» Consistency restricts what can be read
— Eliminates unacceptable combinations

« Compatibility enables write transactions
— Write transactions atomically update data

* Higher power - more useful
— Stronger consistency - higher power
— Compatibility = higher power

Intuitive Tension

High Power Low Latency
]]
 Reduces anomalies « Better user experience

(the ACL - Photo example)

« Easier to reason about < Higher revenue

Our study proves:

highest power + lowest latency is
Impossible

10

ot itive Tane:

High Power Low Latency
]]
 Reduces anomalies « Better user experience

(the ACL - Photo example)

« Easier to reason about < Higher revenue

Our study proves:

highest power + lowest latency is
Impossible

11

Fundamental Tradeoff

High Power Low Latency
]]
 Reduces anomalies « Better user experience

(the ACL - Photo example)

« Easier to reason about < Higher revenue

Our study proves:

highest power + lowest latency is
Impossible

12

The SNOW Properties

[S]trict serializability
[N]Jon-blocking operations
[O]ne response per read

[W]rite transactions that conflict

The SNOW Properties

[S]trict serializability
Highest
} Power
[W]rite transactions that conflict
[O]ne response per read
Lowest
} Latency
[N]Jon-blocking operations

[S]trict Serializability

« Strongest model: real-time + total order

Ca Swc Senwo Cw

15

[S]trict Serializability

« Strongest model: real-time + total order

G S Sew Ow

Private

=L — W starts

—

Photo B

ACL := Private
Upload Photo B

= W finishes

16

[S]trict Serializability

« Strongest model: real-time + total order

Ca Sac. Sk Cw
=L — W starts
Private h\ .
{ACL = Private

Upload Photo B

Photo B

= W finishes
R starts = &=

R finishes — 4=

17

[S]trict Serializability

« Strongest model: real-time + total order

Cn Sact Seroto Cw
= — \W starts
. Private '4\ .
“Photo B is {ACL .= Private

private!” Upload Photo B

Photo B

= W finishes
R starts = &=

R finishes — 4=

18

[S]trict Serializability

« Strongest model: real-time + total order

G Swi Sew Ow

R starts -

R finishes =

- W starts

ACL := Private
Upload Photo B

Private

= W finishes

19

[S]trict Serializability

« Strongest model: real-time + total order

G Swi Sew Ow

R starts -

“Public + Photo A”
“Photo B is private!”

“Public +Photo B”
“Photo A'is private!”

R finishes =

- W starts

ACL := Private
Upload Photo B

Private

= W finishes

20

[N]Jon-blocking Operations

* Do not wait on external events
— Locks, timeouts, messages, etc.

* Lower latency
— Save the time spent blocking

[O]ne Response

* One round-trip

— No message redirection
» Centralized components: coordinator, etc.

— No retries
— Save the time for extra round-trips

* One value per response
— Less time for transmitting, marshaling, etc.

[W]rite Transactions That Conflict

 Compatible with write transactions
— Richer system model
— Easier to program

The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties

Why SNOW Is Impossible
G S» S Cw

Why SNOW Is Impossible
- S S Cw

Assume W starts
SNOW A := new
B := new
|nV|S|bIe
V|S|ble
R,= new

W finishes

26

Why SNOW Is Impossible
- S S Cw

Assume | W starts
SNOW A = hew
B := new
Violates |nV|S|bIe
property S
V|S|ble

25

W finishes

27

A Deeper Look at SNOW

Complete proof in the paper

SNOW is tight

— Any combination of 3 properties is possible

Optimality
— SNOW-optimal: have any 3 properties
— Latency-optimal: have property N and O

Spectrums of property S and O
— Show what is possible to achieve

Study Existing Systems with SNOW
SNOW-optimal and latency-optimal

System S

Spanner-Snap
[OSDI '12]

Yesquel
[SOSP '15]

MySQL Cluster

N N N

NS X Nz
S X N0

29

Study Existing Systems with SNOW
SNOW:-optimal

System
Eiger nspi 13
DrTM (sosp '15]
RIFL (sosp '15]

Sinfonia sosp *o71
Spanner-RO

[OSDI "12]

IV IV IV IA

3
1
2
2

N SN\ »n
N XX XS=

30

Study Existing Systems with SNOW

Candidates for Improvement

System S N O "'}
COPS | %8 | v
Rococo v v

Many more

31

Improve Existing Systems
with the SNOW Theorem

COPS [SOSP ’11]

— Geo-replicated
— Causally consistent

— Read-only txn: X N X W

Rococo [OSDI ’14]

— Supports general transactions
— Strictly serializable
—Read-onlytxn: S X & W

New Algorithm Designs

« COPS-SNOW
— Latency-optimal (N + O)

e Rococo-SNOW
— SNOW-optimal (S + O + W)

33

Rococo’s Read-Only Txn (S + W)

C Sa Ss Cw

Rococo’s Read-Only Txn (S + W)

C Sa Ss Cw

R: 1st round —4 — W starts
= | fA=rnew
ﬁ 4 B := “new”
A=“old” Gather
EQUAL ? conflict info
ﬁ Blocks = W commits
B=“new” ‘

47
R: 2" round l

°
°
R: Nt round v - W finishes

35

Rococo-SNOW (S+0+W)
Ca

S\ S Cw

B := “new”

- W starts

= W commits

- W finishes

36

Rococo-SNOW (S+0+W)
Cw

Sg

G S

- 4 = W starts

A = “new”
B := “new”

= W commits

- W finishes

37

Rococo-SNOW (S+0+W)
C S S Gy

- 4 = W starts

A = “new”
B := “new”

= W commits

- W finishes

38

Rococo-SNOW (S+0+W)
- —SA— S Cw

- 4 = W starts

A = “new”
B := “new”

= W commits

- W finishes

39

Rococo-SNOW (S+0+W)
C S S Gy

- 4 = W starts
A = “new”
B := “new”

Forward TS

= W commits

- W finishes

40

Rococo-SNOW (S+0+W)
Ca
R

Sy S Gy
TS

- W starts
A = “new”
B := “new”

Forward TS

= W commits

TS

- W finishes

1

Rococo-SNOW (S+0+W)
C S S Gy

- W starts
A = “new”
B := “new”

Forward TS

Blocks = W commits

- W finishes

42

Rococo-SNOW (S+0+W)
C S S Gy

- W starts
A := “neW”
B := “new”
Strictly Forward TS
Serializable Blocks = W commits
A=old
B=old - W finishes

43

Evaluation of Rococo-SNOW

* To understand
— Latency of read-only transactions
— Throughput of other types of transactions

* Experiment configuration

— ldentical to Rococo’s
— TPC-C workloads

* S https:/github.com/USC-NSL/Rococo-SNOW

1200

1000

Latency (ms)

0]
o
o

o))
o
o

I
o
o

200

Significantly Lower Latency
for Read-Only Txn

» OCC

Rococo

2PL

Rococo
-SNOW

0) 20 40 60 30 100
Concurrent requests/server

45

1200

1000

Latency (ms)

D o0
o O
o O

I
o
o

200

Significantly Lower Latency

for Read-Only Txn

» OCC

Lock

Wait p
Always

Retries
Rococo

41 round &
NS> =g
S . Rococo

—
a

L -
AR T S A 2 -
Y RARARRAARARR XL XS I

20 40 60 80 100
Concurrent requests/server

46

Throughput (new-order/s)

Higher Throughput

under High Contention

Rococo
-SNOW

2 Rococo

2PL
OCC

0 20 40 60 30 100
Concurrent requests/server

47

Higher Throughput

under High Contention

o 6000 -

=

g 5000 - Rococo
5 _

é 1000 - SNOW
2

< 3000 A

= [' = Rococo
k= -14% throughput) e

% (Low Contention) (High Contentlon) opL

= OCC
= 0%

0) 20 40 60 80 100
Concurrent requests/server

48

Conclusion

 The SNOW Theorem for read-only txns
— Impossible to have all of the SNOW properties

 SNOW helps understand existing systems
— Many are not yet optimal

* Rococo-SNOW
— SNOW Theorem guided SNOW-optimal design

— Significantly higher throughput and lower
latency under high contention

