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Huge Web Services Shard Data!
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Massive amount of data!

! must be distributed across servers!

Reads dominate the workloads !
– need to be as fast as possible!!



Simple Reads Are Insufficient!
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Simple Reads Are Insufficient!
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Read-Only Transactions !
•  Transactions that do not modify data!
!
•  Consistently read data across servers!
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The Power of Read-Only Txn!
•  Consistency restricts what can be read!
– Eliminates unacceptable combinations!
!

•  Compatibility enables write transactions!
– Write transactions atomically update data!

•  Higher power ! more useful!
– Stronger consistency ! higher power!
– Compatibility ! higher power!

!
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Intuitive Tension!
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High Power! Low Latency!

•  Reduces anomalies 
(the ACL – Photo example)!

•  Better user experience!

Our study proves:!
highest power + lowest latency is 

impossible!

•  Easier to reason about! •  Higher revenue!
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Intuitive Tension!
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High Power! Low Latency!

•  Reduces anomalies 
(the ACL – Photo example)!

•  Better user experience!

Our study proves:!
highest power + lowest latency is 

impossible!

•  Easier to reason about! •  Higher revenue!

Fundamental Tradeoff!



The SNOW Properties !

  [S]trict serializability!
!
  [N]on-blocking operations!

  [O]ne response per read!
!
  [W]rite transactions that conflict!
!
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[S]trict Serializability!
•  Strongest model: real-time + total order!
!
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[N]on-blocking Operations!
•  Do not wait on external events!
– Locks, timeouts, messages, etc.!

•  Lower latency!
– Save the time spent blocking!
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[O]ne Response!
•  One round-trip!
– No message redirection!

•  Centralized components: coordinator, etc.!
– No retries!
– Save the time for extra round-trips!

•  One value per response!
– Less time for transmitting, marshaling, etc.!
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[W]rite Transactions That Conflict!
•  Compatible with write transactions !
– Richer system model!
– Easier to program!
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The SNOW Theorem: !
!

Impossible for read-only transaction !
algorithms to have all SNOW properties !



Why SNOW Is Impossible!
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A Deeper Look at SNOW!
•  Complete proof in the paper!
!
•  SNOW is tight!
– Any combination of 3 properties is possible!

!
•  Optimality!
– SNOW-optimal: have any 3 properties!
– Latency-optimal: have property N and O!
!

•  Spectrums of property S and O!
– Show what is possible to achieve!
!

!
!
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Study Existing Systems with SNOW!
SNOW-optimal and latency-optimal!
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Study Existing Systems with SNOW!
SNOW-optimal!
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System! S! N! O! W!
Eiger [NSDI ’13]! ✔! ✔! ≤ 3! ✔!
DrTM [SOSP ’15]! ✔! ✔! ≥ 1! ✔!
RIFL [SOSP ’15]! ✔! ✔! ≥ 2! ✔!

Sinfonia [SOSP ’07]! ✔! ✔! ≥ 2! ✔!
Spanner-RO 

[OSDI ’12]!
✔! ✖! ✔! ✔!✔! ✔! ✔!✖!



Study Existing Systems with SNOW!
Candidates for Improvement!
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System! S! N! O! W!
COPS! ✖! ✔! ≤ 2! ✖!

Rococo! ✔! ✖! > 1! ✔!
!

Many more!



Improve Existing Systems!
with the SNOW Theorem!

•  COPS [SOSP ’11]!
– Geo-replicated!
– Causally consistent!
– Read-only txn!
!

•  Rococo [OSDI ’14]!
– Supports general transactions!
– Strictly serializable!
– Read-only txn!

!
!
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New Algorithm Designs!
•  COPS-SNOW!
– Latency-optimal (N + O)!
!

•  Rococo-SNOW!
– SNOW-optimal (S + O + W)       !

!
!
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Design insight for optimizing reads: !
shift the overhead to writes!



Rococo’s Read-Only Txn (S + W)!
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Rococo’s Read-Only Txn (S + W)!
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Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!

41!

CR!
!

SA!
!

SB!
!

CW!
! W starts!

A := “new”!
B := “new”!

W commits!

W finishes!

Forward TS!A=“old”!

TS!

TS!

R!

TS!



Rococo-SNOW (S+O+W)!
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Rococo-SNOW (S+O+W)!
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Evaluation of Rococo-SNOW!
•  To understand!
– Latency of read-only transactions!
– Throughput of other types of transactions!
!

•  Experiment configuration!
–  Identical to Rococo’s!
– TPC-C workloads!
!

•         https://github.com/USC-NSL/Rococo-SNOW!
!
!
!
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Significantly Lower Latency!
for Read-Only Txn!
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Significantly Lower Latency!
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Higher Throughput!
under High Contention!
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Higher Throughput!
under High Contention!
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Conclusion!

49!

•  The SNOW Theorem for read-only txns!
–  Impossible to have all of the SNOW properties!

•  SNOW helps understand existing systems!
– Many are not yet optimal!
!

•  Rococo-SNOW!
– SNOW Theorem guided SNOW-optimal design!
– Significantly higher throughput and lower 

latency under high contention !
!

!


