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Paxos

State	of	the	Art	for	Distributed	Transactions
Layer	Concurrency	Control	on	top	of	Consensus
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Latency	Limitation:
Multiple	Wide-Area	Round	Trips	from	Layering
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Throughput	Limitation:
Conflicts	Cause	Aborts
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Goals:	Fewer	Wide-Area	Round	Trips	and	
Commits	Under	Conflicts

Behavior	under
conflicts
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Spanner [OSDI’12]
...

Tapir	[SOSP’15]
...

Janus

Calvin	[SIGMOD’12]
...

Best	case
wide-area	RTTs

≥	2

Aborts Commits



Establish	Order	Before	Execution	to	Avoid	Aborts
• Designed	for	transactions	with	static	read	&	write-sets
• Structure	a	transaction	as	a	set	of	stored	procedure	pieces
• Servers	establishes	consistent	ordering	for	pieces	before	execution

Challenge:	
Distributed	ordering	to	
avoid	bottleneck
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Transaction	 Replication

Establish	Order	for	Transactions	and	Replication	
Together	to	Commit	in	1	Wide-area	Roundtrip

• Consistent	ordering	for	transaction	and	replication	is	the	same!
• Layering	establishes	the	same	order	twice	while	Janus	orders	once

Challenge:	
Fault	tolerance	for	
ordering
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Overview	of	the	Janus	Protocol	



No	Conflicts:	Commit	in	1	Wide-Area	Round	Trip

1	Wide-area	RTT

1	Local	RTT



Conflicts:	Commit	in	2	Wide-Area	RTT

∪



Conflicts:	Commit	in	2	Wide-Area	Round	Trips

∪



Conflicts:	Commit	in	2	Wide-Area	Round	Trip



Janus	Achieves	Fewer	Wide-Area	Round	Trips	
and	Commits	Under	Conflicts
• No	conflicts:	commit	in	1	wide-area	round	trip
• Pre-accept	sufficient	to	ensure	same	order	under	failures

• Conflicts:	commit	in	2	wide-area	round	trips
• Accept	phase	replicates	dependencies	to	ensure	same	order	under	failures



Janus	Paper	Includes	Many	More	Details

• Full	details	of	execution

• Quorum	sizes	

• Behavior	under	server	failure

• Behavior	under	coordinator	(client)	failure

• Design	extensions	to	handle	dynamic	read	&	write	sets



Evaluation

• Throughput	under	conflicts
• Latency	under	conflicts
• Overhead	when	there	are	no	conflicts?
• Baselines
• 2PL	(2PC)	layered	on	top	of	MultiPaxos
• TAPIR	[SOSP’15]

• Testbed:	EC2	(Oregon,	Ireland,	Seoul)

https://github.com/NYU-NEWS/janus



Janus	Commits	under	Conflicts	for	High	Throughput
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Small	Throughput	Overhead	under	Few	Conflicts
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Isolation	Level 1	RTT Commit	under	Conflicts
Janus [OSDI’16] Strict-Serial ✔ ✔

Tapir	[SOSP’15] Strict-Serial ✔ ✖

Rep.Commit [VLDB’13] Strict-Serial ✔ ✖

Calvin [SIGMOD’12] Strict-Serial ✖ ✔

Spanner [OSDI’12] Strict-Serial ✖ ✖

MDCC [EuroSys’13] ReadCommit* ✔ ✖

COPS [SOSP’11] Causal+ ✔ ✔

Eiger [NSDI’13] Causal+ ✔ ✔

Related	Work

EPaxos [SOSP’13]	
Rococo	[OSDI’14]



Conclusion

• Two	limitations	for	layered	transaction	protocols
• Multiple	wide-area	round	trips	in	the	best	case
• Conflicts	cause	aborts

• Janus	consolidates	concurrency	control	and	consensus
• Ordering	requirements	are	similar	and	can	be	combined!
• Establishing	a	single	ordering	with	dependency	tracking	enables:

• Committing	in	1	wide-area	round	trip	in	the	best	case
• Committing	in	2	wide-area	round	trips	under	conflicts

• Evaluation
• Small	throughput	overhead	when	there	are	no	conflicts
• Low	latency	and	good	throughput	even	with	many	conflicts


