
Janus
Consolidating	Concurrency	Control	and	
Consensus	for	Commits	under	Conflicts

Shuai	Mu, Lamont	Nelson,	Wyatt	Lloyd,	Jinyang	Li

New	York	University,	University	of	Southern	California

Paxos

State	of	the	Art	for	Distributed	Transactions
Layer	Concurrency	Control	on	top	of	Consensus

California Texas New	York

Paxos

Geo-replicate	for	fault	tolerance Shard	for	
scalability	

Transaction
Protocol
(e.g.,	2PC)

a++

b++

Latency	Limitation:
Multiple	Wide-Area	Round	Trips	from	Layering

California Texas New	York

a++
b++

Throughput	Limitation:
Conflicts	Cause	Aborts

a*=2
b*=2

California Texas New	York

Goals:	Fewer	Wide-Area	Round	Trips	and	
Commits	Under	Conflicts

Behavior	under
conflicts

1

Spanner [OSDI’12]
...

Tapir	[SOSP’15]
...

Janus

Calvin	[SIGMOD’12]
...

Best	case
wide-area	RTTs

≥	2

Aborts Commits

Establish	Order	Before	Execution	to	Avoid	Aborts
• Designed	for	transactions	with	static	read	&	write-sets
• Structure	a	transaction	as	a	set	of	stored	procedure	pieces
• Servers	establishes	consistent	ordering	for	pieces	before	execution

Challenge:	
Distributed	ordering	to	
avoid	bottleneck

a

ba*=2

a++

b++

b*=2

a++

b++

a*=2

b*=2

a++

b++

b*=2

a*=2a*=2

b++

Transaction	 Replication

Establish	Order	for	Transactions	and	Replication	
Together	to	Commit	in	1	Wide-area	Roundtrip

• Consistent	ordering	for	transaction	and	replication	is	the	same!
• Layering	establishes	the	same	order	twice	while	Janus	orders	once

Challenge:	
Fault	tolerance	for	
ordering

a

a++

b++ a*=2 a'a++

Replica	of	a

a++a++

b++

a++

a*=2

a++

a*=2

a*=2

a*=2

bb*=2 b++

b*=2a*=2

b*=2

a*=2

b*=2

b++

a*=2

a++

Overview	of	the	Janus	Protocol	

No	Conflicts:	Commit	in	1	Wide-Area	Round	Trip

1	Wide-area	RTT

1	Local	RTT

Conflicts:	Commit	in	2	Wide-Area	RTT

∪

Conflicts:	Commit	in	2	Wide-Area	Round	Trips

∪

Conflicts:	Commit	in	2	Wide-Area	Round	Trip

Janus	Achieves	Fewer	Wide-Area	Round	Trips	
and	Commits	Under	Conflicts
• No	conflicts:	commit	in	1	wide-area	round	trip
• Pre-accept	sufficient	to	ensure	same	order	under	failures

• Conflicts:	commit	in	2	wide-area	round	trips
• Accept	phase	replicates	dependencies	to	ensure	same	order	under	failures

Janus	Paper	Includes	Many	More	Details

• Full	details	of	execution

• Quorum	sizes	

• Behavior	under	server	failure

• Behavior	under	coordinator	(client)	failure

• Design	extensions	to	handle	dynamic	read	&	write	sets

Evaluation

• Throughput	under	conflicts
• Latency	under	conflicts
• Overhead	when	there	are	no	conflicts?
• Baselines
• 2PL	(2PC)	layered	on	top	of	MultiPaxos
• TAPIR	[SOSP’15]

• Testbed:	EC2	(Oregon,	Ireland,	Seoul)

https://github.com/NYU-NEWS/janus

Janus	Commits	under	Conflicts	for	High	Throughput

1

10

100

1000

10000

1 10 100 1000

Th
ro
ug
hp

ut
-(n

ew
-o
rd
er
/s
)

#	Clients

Aborts	due	to	conflicts	
at	shards	&	replicas

Aborts	due	to	
conflicts	at	shards

No	aborts
Janus

Tapir

2PL

TPC-C	with	6	shards,	3-way	geo-replicated	(9	total	servers),	1	warehouse per	shard.	

0

200

400

600

800

1000

1 10 100 1000

90
-p
er
ce
nt
ile
	la
te
nc
y	
(m

s)

#	Clients

Janus	Commits	under	Conflicts	for	Low	Latency

Janus

Tapir

2PL
2	wide-area	
roundtrips

1	wide-area	
roundtrip

2	wide-area	
roundtrips	plus	
execution	time

High	latency	due	to	
retries	after	aborts

TPC-C	with	6	shards,	3-way	geo-replicated	(9	total	servers),	1	warehouse per	shard.	

Small	Throughput	Overhead	under	Few	Conflicts

0

20000

40000

60000

80000

100000

120000

0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro
ug
hp

ut
-(t
xn
/s
)

Zipf coefficient

13%	overhead	
from	tracking	dependencies

Overhead	from	
retries	after	aborts

Overhead	from	accept	
phase	+	increased	

dependency	tracking

Janus

Tapir

Microbenchmark with	3	shards,	3-way	replicated	in	a	single	data	center	(9	total	servers).

Isolation	Level 1	RTT Commit	under	Conflicts
Janus [OSDI’16] Strict-Serial ✔ ✔

Tapir	[SOSP’15] Strict-Serial ✔ ✖

Rep.Commit [VLDB’13] Strict-Serial ✔ ✖

Calvin [SIGMOD’12] Strict-Serial ✖ ✔

Spanner [OSDI’12] Strict-Serial ✖ ✖

MDCC [EuroSys’13] ReadCommit* ✔ ✖

COPS [SOSP’11] Causal+ ✔ ✔

Eiger [NSDI’13] Causal+ ✔ ✔

Related	Work

EPaxos [SOSP’13]	
Rococo	[OSDI’14]

Conclusion

• Two	limitations	for	layered	transaction	protocols
• Multiple	wide-area	round	trips	in	the	best	case
• Conflicts	cause	aborts

• Janus	consolidates	concurrency	control	and	consensus
• Ordering	requirements	are	similar	and	can	be	combined!
• Establishing	a	single	ordering	with	dependency	tracking	enables:

• Committing	in	1	wide-area	round	trip	in	the	best	case
• Committing	in	2	wide-area	round	trips	under	conflicts

• Evaluation
• Small	throughput	overhead	when	there	are	no	conflicts
• Low	latency	and	good	throughput	even	with	many	conflicts

