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Applications Rely on Geo-Replicated Storage
• Fault tolerant: data is safe despite failures
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Applications Rely on Geo-Replicated Storage
• Fault tolerant: data is safe despite failures

• Linearizable: intuitive for application developers
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Linearizable Replicated Storage Systems
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Cloud Spanner



Status Quo: Consensus or Shared Registers

Consensus Shared Registers

Strong 
Synchronization ✔ ✘
Low Read
Tail Latency ✘ ✔
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• Given the desire for fault tolerance and linearizability

Unify consensus and 
shared registers?



Consensus & State Machine Replication (SMR)
• Generic interface: Command(c(.))

• Stable ordering: all preceding log positions are assigned commands

6

c1 c2 c3 c4



Consensus & State Machine Replication (SMR)
• Generic interface: Command(c(.))

• Stable ordering: all preceding log positions are assigned commands

• Used in etcd, CockroachDB, Spanner, Azure Storage, Chubby
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SMR Requires Stable Order
• Allow for strong synchronization primitives like read-modify-writes

• High tail latency in practice (e.g., by serializing through a leader)
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Consensus

Strong 
Synchronization ✔
Low Read
Tail Latency ✘



Shared Registers
• Simple interface: Read()/Write(v)

• Unstable ordering: total order without pre-defined positions
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Shared Registers
• Simple interface: Read()/Write(v)

• Unstable ordering: total order without pre-defined positions

• Similar to Cassandra, Dynamo, Riak
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Shared Registers Use Unstable Order
• Cannot implement strong synchronization primitives [Herlihy91]

• Flexibility of unstable order provides favorable tail latency
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Consensus Shared 
Registers

Strong 
Synchronization ✔ ✘
Low Read
Tail Latency ✘ ✔



RMWs with low read 
tail latency?

Shared Objects: Interface for Unification
• Interface: Read()/Write(v)/RMW(f(.))

• RMW(f(.))→ read base v, compute new value f(v), write f(v)

• Examples: etcd, Redis, BigTable
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Consensus-after-Register Timestamps (Carstamps)
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Consensus-after-Register Timestamps (Carstamps)
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rmw1 rmw3 rmw4

rmw2

Unstable Order

Stable
Order w1 w2 w3 w4w5 << < < w6<



Carstamps
• Tuple with three fields: (ts, id, rmwc)

• ts and id basis for unstable ordering of writes

• rmwc is set to 1 greater than rmwc of base to ensure stable ordering
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w1 < w2

rmw1 rmw3

(3,1,0)

(3,1,1)

(4,1,0)

(4,1,1)

rmw2(3,1,2)



Consensus Shared 
Registers

Gryff

Strong 
Synchronization ✔ ✘ ✔
Low Read
Tail Latency ✘ ✔ ✔

Gryff Unifies Consensus and Shared Registers
• Only uses consensus when necessary, for strong synchronization
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Gryff Design
• Combine multi-writer [LS97] ABD [ABD95] & EPaxos [MAK13]

• Modifications needed for safety:
• Carstamps for proper ordering

• Synchronous Commit phase for rmws

• Modifications for better read tail latency:
• Early termination for reads (fast path)

• Proxy optimization for reads (fast path more often)
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See the paper for details!



Gryff in Action
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Gryff in Action
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Gryff in Action
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c1

(2,3,0) (1,0,0) (2,3,0)

w1
→ (3,1,0)

Writes always 
terminate in 2 phases



Executed (3,1,1)

(3,1,1)(3,1,1)

Gryff in Action
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c1

(2,3,0)

c2

rmw1
→ (3,1,1)

Writes always 
terminate in 2 phases

RMW carstamps 
directly after base



Read1Reply (3,1,1)

(3,1,1)(3,1,1)

Gryff in Action
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c1

(2,3,0)

c2

r → (3,1,1)

Writes always 
terminate in 2 phases

RMW carstamps 
directly after base

Reads often 
terminate in 1 phase



Evaluation

Relative to state-of-the-art-consensus protocols:

1. How do Gryff’s read/write protocols affect read tail 
latency?

2. What is the latency distribution of Gryff’s reads, 
writes, and rmws?

3. What maximum throughput does Gryff achieve?

4. How does Gryff perform in tail-at-scale workloads?
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Evaluation Setup
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• Geo-replication with 3 regions

• Baselines: MultiPaxos (industry standard), EPaxos (leaderless)

not-to-scale 
ocean

72ms 88ms



Read Tail Latency (94.5% R, 4.5% W, 1% RMW, 25% Conflicts)
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serializing through 
far-away leader
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delaying reads 
that conflict with 
concurrent writes
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1 round to nearest 
majority in tail



Summary
• Consensus: strong synchronization w/ high tail latency                                                          

Shared registers: low tail latency w/o strong synchronization

• Carstamps stably order read-modify-writes within a more 
efficient unstable order for reads and writes

• Gryff unifies an optimized shared register protocol with a 
state-of-the-art consensus protocol using carstamps

• Gryff provides strong synchronization w/ low read tail latency
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Image Attribution
• Griffin by Delapouite / CC BY 3.0 Unported (modified)

• etcd

• CockroachDB

• Spanner by Google / CC BY 4.0
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