

# The An Analysis of Facebook Photo Caching of Huang Ken Birman Robbert van Renesse













#### **Instrumented Stack**

#### **Deep and Distributed**

- 1. 4 layers of cache and storage.
- 2. ~12M user IPs, ~20 Point-of-Presence, 4 Datacenters.

**Browser** 

Cache

Edge

Cache

Origin

Cache

Haystack

**Data Center** 

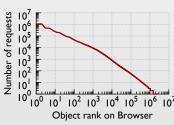
#### Browser (millions)

- •77.2M user regs
- •65.5% hit ratio
- •65.5% regs share

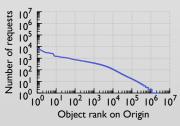
#### Edge (dozens)

- •26.6M regs
- •58% hit ratio
- •20% regs share
- Routing factors:
  - Latency
- Edge capacity
- Peering cost

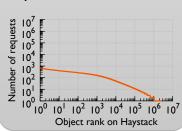
# Origin (one)


- •11.2M regs
- •31.8% hit ratio
- 4.6% regs share
- Routed by consistent hashina

#### +Haystack


- •7.6M regs
- •9.9% reas share
- Prefers local Haystack

#### Workload

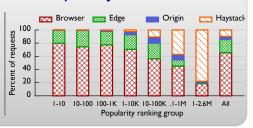

At top layers, reg popularity follows a power-law dist., but curve flattens as reas tunnels deeper.





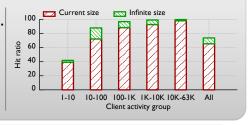


## Haystack sees a Stretched Exponential dist.



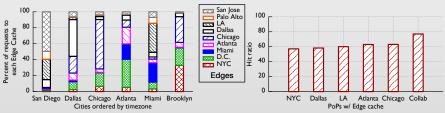

#### Cache Performance

# Traffic Share by Photo Popularity

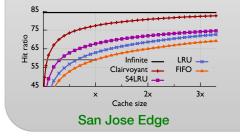

Cache traffic share drop for less popular items.

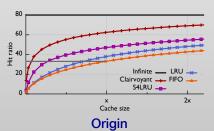
- 1. Top 1K photos attract 25% traffic.
- 2. Cache serves 99.93% regs for them.
- 3. Haystack handles the tail.




### **Browser Caching**

- 1. Clients with <10 regs send 37% traffic.
- 2. Active clients have higher hit ratio.
- 3. Increasing cache size helps.





## **Edge Caching & Origin Caching**

- 1. Request from clients are often routed to remote Edges.
- 2. Collaborative Edges (collab bar) increases hit ratio by 18%.



S4LRU increases hit ratio significantly both at Edge and Origin.



