
Challenges to Adopting Stronger Consistency at Scale

Phillipe Ajoux∗, Nathan Bronson∗, Sanjeev Kumar∗, Wyatt Lloyd†∗, Kaushik Veeraraghavan∗
∗Facebook, †University of Southern California

Abstract

There have been many recent advances in distributed sys-
tems that provide stronger semantics for geo-replicated
data stores like those underlying Facebook. These re-
search systems provide a range of consistency models
and transactional abilities while demonstrating good per-
formance and scalability on experimental workloads. At
Facebook we are excited by these lines of research, but
fundamental and operational challenges currently make
it infeasible to incorporate these advances into deployed
systems. This paper describes some of these challenges
with the hope that future advances will address them.

1 Introduction

Facebook is a social network that connects 1.35 billion
people [19]. Facebook’s social graph reflects its users,
their relationships, the content they create, and the ac-
tions they take. The social graph is large and constantly
growing and changing. Data from this graph is stored
in several geo-replicated data stores and tightly inte-
grated caching systems. Recent research results have
shown how to provide stronger properties for the data
layers that underly these systems, which has the poten-
tial to improve user experience and simplify application-
level programming at Facebook. Results include work
on scalable causal consistency [1, 4, 16, 17, 31, 32],
strong consistency [12, 18, 22, 29, 36, 44], and trans-
actions [5, 13, 27, 33, 41, 45, 47]. These ideas excite and
inspire us, but we have not adopted them yet. Why not?

In this paper we identify barriers to our deployment of
a strongly consistent or causally consistent data model.
A system for ensuring consistency must: (1) integrate
consistency across many stateful services, (2) tolerate
high query amplification, (3) scale to handle linchpin ob-
jects, and (4) provide a net benefit to users.

Facebook relies on sharding, data replication, and
caching to efficiently operate at scale. When a node or
edge is added to the social graph, it is first written to a
single MySQL instance. From there it is asynchronously
replicated to all of our data centers, updated or invali-
dated in multiple layers of cache, and delivered through
a scalable publisher-subscriber system to other services

such as Search and News Feed. No single data placement
strategy can efficiently serve all workloads in a heavily
sharded system, so many of these services choose a spe-
cialized sharding function and maintain their own data
store, caches, and indexes.

The biggest barrier to providing stronger consistency
guarantees in an environment like Facebook’s is that
the consistency mechanism must integrate consistency
across many stateful services. All of the scaling mecha-
nisms described above lead to extra copies of data. Even
if each of our caches and independent services were lin-
earizable [24], inconsistencies would still be present in
the aggregated result. Inter-service tracking is compli-
cated by services that store data derived from a query
to a lower layer, making object-level tracking insuffi-
cient. While these challenges are acute for Facebook at
its present scale, we first encountered them when Face-
book was much smaller. Solutions to these problems will
benefit the growing class of applications whose imple-
mentation relies on sharding and separation into stateful
services.

Another fundamental challenge is that a general con-
sistency mechanism at scale must tolerate high query
amplification. Fine-grained sharding and separation into
optimized services means that the application layer acts
like a heuristic query planner. Application logic im-
plements a complex high-level query by issuing many
subqueries. In practice, a single user request may re-
sult in thousands of subqueries, with a critical path that
is dozens of subqueries long. The fork/join structure
of subqueries causes latency outliers to have a dispro-
portionate effect on total latency, and the large number
of subqueries would cause slowdowns or unavailability
to quickly propagate through the social graph when at-
tempting to preserve stronger consistency guarantees.

In addition to the scaling challenges of Facebook’s
data size and query volume, a system for strengthening
consistency at Facebook must scale to handle linchpin
objects. Over time, Facebook’s graph has evolved to
contain many different types of objects including friends,
posts, comments, photos, etc. While the cardinality of
the incoming and outgoing edges from most objects is
low, objects such as the Facebook Page of a celebrity of
popular athlete have a problematic combination of high
cardinality, high read rate, and high write rate. Linch-

1

user
Bob
Feb 3

23

post
by 1258

friend 12�23

friend 23�12

friend 12�35

friend 35�12

likes 12�79

likes 35�58

likedby 79�12

likedby 58�35

a) Indexed direct access

user
Carl
Mar 5

35

MySQL

TAO

12 44

23

35

79

likedby 44 count:0

likedby 58 count:1

story
12 posted 44;
23 comment 79;
12 liked 79

12

23

b) Leaf-aggregator News Feed Leaf

story
12 posted 58;
35 liked 58

12

35

c) Materialized
 secondary index friend bdays

23 � Feb 3
35 � Mar 5

12

friend bdays
12 � Jan 223

user
Alice12

post
by 1244

friend bdays
12 � Jan 235

comment
on 44
by 23

79

News
Feed

Aggreg.

Figure 1: A hypothetical data layout for two posts by Alice, with interactions by friends Bob and Carl. MySQL
and TAO (a) shard nodes by key and edges by their source. In News Feed (b) information is aggregated and
indexed by all actors. Materialized secondary indexes (c) answer queries that would touch many TAO shards.

pin objects accelerate the propagation of dependencies
throughout the system due to their highly connected na-
ture, and they are a throughput challenge for systems in
which readers can delay writers or vice versa.

To justify building and deploying a system with strong
consistency guarantees we must provide a net bene-
fit to users. It is easy to argue that user experience
will be qualitatively better if consistency improves and
all other system characteristics stay the same, but in
practice the extra communication and coupling required
for stronger distributed properties will increase latency
or reduce availability. It is not obvious that a system
that trades stronger consistency for increased latency
or reduced availability would be a net benefit to peo-
ple using Facebook, especially when compared against
a weakly consistent system that resolves many inconsis-
tencies with ad hoc mechanisms.

These fundamental challenges are joined by opera-
tional challenges: (1) fully characterizing worse-case
throughput, (2) a polyglot environment, (3) varying de-
ployment schedules, and (4) reduced incremental benefit
from existing consistency workarounds.

We focus our discussion on the challenges of provid-
ing stronger forms of read consistency. This problem is
a subset of the problem tackled by systems that provide
strong read semantics and transactional writes.1

1An option we do not explore in this paper is a transaction-like fa-
cility that provides failure atomicity in an eventually consistent system.

2 Fundamental Challenges

This section describes fundamental challenges to adopt-
ing stronger consistency and transactions at Facebook.

2.1 Integrating Across Stateful Services
Facebook’s back-end infrastructure is comprised of
many different services, each using a data placement
and communication structure optimized for its workload.
Figure 1 shows how data may be duplicated with differ-
ent sharding strategies in different services.

The TAO caching layer [10], for example, uses multi-
tenancy and hierarchical caching to tolerate very high
query rates for simple graph queries. Another sys-
tem materializes secondary indexes to support specific
queries that would have a high fanout or require multi-
ple rounds in TAO. Unicorn [14] uses document shard-
ing and a leaf-aggregator model to handle the dynamic
queries from Facebook’s Search. The News Feed back-
end denormalizes all of the information associated with a
candidate story so that ranking can be performed locally.
Facebook’s deployment of memcache [21, 35] uses the
flexible mcrouter proxy [30] to effect a wide variety of
replication and locality strategies. Facebook’s Messen-
ger service uses a data store optimized for efficient ac-
cess to recent messages [20], but often embeds links to
TAO nodes. In total, there are hundreds of services run-
ning in production at Facebook, many of which maintain
a copy of portions of the social graph.

2

Facebook’s architecture of cooperating heterogeneous
services is different from the monolithic service that
most research designs assume. This difference alone is
not fundamental—Facebook can be externally viewed as
a single service even though internally it is comprised
of many services. Instead, it is the disaggregated nature
of these internal services that creates the challenges that
have yet to be solved: (1) storing data consistently across
services; (2) handling decentralized access to services;
and, most importantly, (3) composing results from ser-
vices that internally store data from subqueries.

Storing Data Consistently Across Services The same
data lives in many different services. No single data lay-
out is efficient for all workloads, especially at scale. In a
centralized relational model this is reflected by the wide
variety of storage engines and index types available, and
by features such as materialized views. In a sharded and
scaled environment like Facebook’s, services may main-
tain their own optimized cache, index, or copy of a por-
tion of the social graph. Wormhole [40] is our scalable
pub-sub system that asynchronously delivers update no-
tifications to all of the services that manage state.

Services can appear stateful without directly manag-
ing their own state when their results are memoized in
memcache. Another class of hidden stateful service mir-
rors database triggers, where a service issues new writes
when it is notified of an existing data changes.

To provide strong consistency across our services,
we would need to propagate update notifications syn-
chronously impacting availability and latency. A causal
system could avoid atomic updates, but would still
need to be integrated into every service and threaded
through every communication channel greatly increas-
ing the complexity of the dependency graph. These ef-
fects are especially challenging for services that perform
aggregation, because the input dependencies of a result
may change much more frequently than the result itself.

Decentralized Access to Services The Facebook web
site and its mobile applications use parallelism and
pipelining to reduce latency. The notification bar and
the central content are fetched by separate requests, for
example, and then merged at the client. Mobile applica-
tions also aggressively cache results using local storage,
and then merge query results with previously seen val-
ues. The application layer also makes extensive use of
asynchrony, overlapping as many service subqueries as
possible. This complex execution structure is necessary
to overlap communication delays, but it leaves the user’s
device as the only safe location to define session-based
guarantees [43] or demarcate isolation boundaries.

Requests for a single user are usually routed to the
same cluster in the same region. This routing stability

assists in reducing the number of user-visible inconsis-
tencies, because most of the variance in asynchronous
update propagation is inter-region. Cluster stickiness is
not a guarantee, however; users are moved whenever the
total capacity of a cluster or data center drops suddenly.

Composing Results An important complication of
inter-service composition is that services often store the
results of range scans or other complex queries, such as
the list of people that ‘Like’ something. An inter-service
coordination mechanism must capture the dependencies
of the queries, rather than of the data that results. In a
monolithic data system these dependencies are tracked
via predicate or range locks. The difference is particu-
larly clear in negative caches, where a service keeps track
locally of things that did not exist during an earlier query.
Each service can be thought of as implementing its own
limited query language, so it is not clear that the depen-
dencies can be captured in a way that is both sufficiently
generic and sufficiently precise.

2.2 Query Amplification
A single user request to Facebook amplifies to thousands
of, possibly dependent, internal queries to many services.
A user request to Facebook is handled by a stateless web
server that aggregates the results of queries to the vari-
ous Facebook services. These results in turn might lead
to more queries to the same, or other, services. For ex-
ample, a user’s home page queries News Feed to get a
list of stories, which depends on a separate service to
ensure story order of previously seen content. These sto-
ries are then fetched from TAO to get the content, list of
comments, likes, etc. In practice, this behavior produces
fork/join query patterns that have fan-out degrees in the
hundreds and critical paths dozens deep. Query amplifi-
cation presents two hurdles to strengthening consistency.

Slowdown Cascades Different services use different
sharding and indexing schemes for the same data. For in-
stance, TAO shards data based on a 64-bit integer id [10],
News Feed shards based on a user id, and the secondary
index system shards based on values. The use of differ-
ent sharding schemes creates all-to-all ordering depen-
dencies between shards in different services. This con-
nectedness accelerates slowdown propagation in strongly
consistent systems. A failure in one shard of one service
would propagate to all shards of a downstream service.

Consider a single slow node in a service. In a weakly
consistent system, this node could return possibly incon-
sistent, stale data. With millions of user requests hitting
the system it is likely the slow node will be queried. In
a weakly consistent system, this slow node poses a con-
sistency problem, but does not affect the latency of the

3

system. However, in a system with stronger consistency,
this slow node would cause increase in latency for oper-
ations. Given the query amplification, this slowdown can
quickly cascade to all nodes of other systems.

Latency Outliers Parallel subqueries amplify the im-
pact of latency outliers. A user request does not return
until it has joined the results of all of its queries, and thus
must wait for the slowest of its internal requests. For ex-
ample, a web server generating a response might query
TAO for a list of all the people who like a post, and then
follow-up with a set of queries for those people’s names.
TAO’s sharding strategy makes it likely that each of the
followup queries goes to a different server. If even one of
those subqueries has a high latency, then the web server’s
response will be delayed. Thus, 99th percentile latency
in a low-level service has a non-outlier effect on over-
all user request latency. Internally we monitor outlier
latencies up to the 99.99th percentile for some services.
Strongly consistent systems with larger outlier latencies
further worsen user request latency.

2.3 Linchpin Objects
The read rate, write rate, and dependence structure of
the social graph varies widely. The most frequently read
objects are often also frequently written to and highly
connected. Examples of these linchpin objects include
popular users like celebrities, popular pages like major
brands, and popular locations like tourist attractions. By
providing stronger consistency at the level of a shard, ob-
ject, or other granularity, systems can often achieve bet-
ter performance and throughput. Linchpin objects pose
a direct challenge for these systems because the through-
put of individual objects or shards must be very high. A
system that provides stronger consistency must provide
good performance for these linchpin objects.

Linchpin objects and query amplification combine to
make outliers even more of a challenge. A linchpin ob-
ject is likely to be included in a large fraction of user
requests. If that object is the slowest request, or is on
the slowest request path, then increasing its latency will
increase user latency. Thus even moderate increases in
read latency for linchpin objects is likely to have an out-
sized effect on user latency.

2.4 Net Benefit to Users
The intuitive arguments for stronger forms of consis-
tency are attractive. Systems with strong consistency are
easier for programmers to reason about and build on top
of [6, 12] and they provide a better experience for users
because they avoid some anomalous application behav-
ior. However, these benefits are hard to quantify pre-

cisely, and they do not appear in isolation. When all as-
pects of user experience are considered it might even be
the case that the benefit does not outweigh the detriment.

Improvements to programmer productivity arise from
strengthening the properties or guarantees provided by
the system, because there is a whole class of rare behav-
ior that can be assumed to never occur. On the other
hand, user benefits may be assumed to be proportional to
the actual rate at which inconsistencies can be observed.
Even in a weakly consistent system this rate may be very
low. If only one in a million queries to a weakly consis-
tent system returns an anomalous result, the benefit from
excluding this type of behavior is less than it would be if
inconsistent results were frequent.

Stronger properties are provided through added com-
munication and heavier-weight state management mech-
anisms, increasing latency. Although optimizations may
minimize these overheads during failure-free execution,
failures are frequent at scale [15]. Higher latency may
lead to a worse user experience, potentially resulting in a
net detriment.2

Note that we are concerned here with the intrinsic la-
tency implications of a more elaborate protocol, rather
than with the downsides of increased complexity or re-
duced per-machine throughput. We consider those oper-
ational rather than fundamental challenges.

3 Operational Challenges
Our experience building and scaling Facebook points to
additional operational challenges that we would face in
trying to deploy a generic consistency solution.

Fully Characterizing Worst-Case Throughput
Facebook operates continuously; we do not get a break
after a failure during which we can reduce load to catch
up on a work backlog or perform intensive recovery
operations. Our data and services infrastructure has
been designed, tuned, and battle-hardened to allow us
to recover from error conditions with minimal impact to
our users. Some of our systems discard work to catch
up. Some perform opportunistic batching to increase
their throughput when there is a work backlog. Some
systems are sized for worst-case conditions.

While there is no theoretical impediment to preserving
worst-case throughput despite strengthening Facebook’s
consistency guarantees, our experience is that failure and
recovery behavior of a complex system is very difficult
to characterize fully. Emergent behavior in cross-service
interactions is difficult to find ahead of time, and may
even be difficult to identify when it is occurring [9].

2We expect the latency difference needs to be sufficiently large and
far away from the minimum perceivable threshold to matter.

4

Polyglot Environment While C++ is the predominant
language for standalone services at Facebook, Python,
Java, Haskell, D, Ruby and Go are also supported by
Thrift, our inter-service serialization format. The appli-
cation code coordinating service invocations is generally
written in Hack and PHP, and final composition of query
results may be performed by JavaScript in the browser,
Objective C/C++ on IOS, or Java on Android.

Ports or foreign function interfaces must be provided
to give all of these codebases access to an end-to-end
consistency platform. Perhaps the trickiest part of this
multi-language support is the wide variety of threading
models that are idiomatic for different languages and
runtimes, because it is likely the underlying consistency
system will need to initiate or delay communication.

Varying Deployment Schedules The iteration speed
of software is limited by its deployment schedule. Face-
book has an extremely aggressive deployment process
for the stateless application logic [38], but we are nec-
essarily more conservative with stateful and mature low-
level services. An inter-service coordination mechanism
that is used by or interposes on these low-level services
will have a deployment velocity that is constrained by the
release engineering requirements of the most conserva-
tive component. Reduced deployment velocity increases
practical difficulty and software engineering risk.

Reduced Incremental Benefit in a Mature System
Are the upsides of fewer anomalies worth the downside
of increased latency? Perhaps, but we currently lack
the data to evaluate this. Further complicating the de-
cision are the consistency workarounds already in place
in a mature system. Known, compelling examples of
Facebook workloads that need strong consistency al-
ready have been architected with a narrowly scoped con-
sistency solution. Some operations bypass caches and
read directly from a single authoritative database. Some
use cases have an application-level schema that lets them
repair temporary inconsistencies in the graph. Some
systems expose routing information to their callers so
that inter-region inconsistencies are avoided by prox-
ying. While these workarounds would not exist in a
newly built system, their presence in Facebook reduces
the incremental benefits of deploying a generic system
for stronger consistency guarantees.

4 Related Work
Prior Facebook Publications Earlier publications
from Facebook include descriptions of the memcache
cache and its workload [2, 35], the TAO graph store [10],
the Wormhole pub-sub system [40], a characterization
of load imbalance in the caches [26], an analysis of the

messages use case [23], and work on understanding and
improving photo/BLOB storage and delivery [7, 25, 34,
42]. The memcache and TAO papers discuss details
of our inter-region consistency mechanisms and guaran-
tees. This paper addresses the big picture with challenges
across Facebook’s internal services.

Systems with Stronger Semantics There is a long his-
tory of work on systems that provides stronger seman-
tics, from replicated state machines [28, 39], to causal
and atomic broadcasts [8], to systems designed for high
availability and stronger consistency [37]. Recent work
builds on the classic to provide similar properties for
datacenter-scale and/or geo-replicated services. This in-
cludes work on scalable causal consistency [1, 4, 16, 17,
31, 32], strong consistency [12, 18, 22, 29, 36, 44], and
transactions [5, 6, 12, 13, 27, 32, 33, 41, 45, 46, 47]. This
research inspired this paper and we hope to help inform
the future efforts of researchers.

Interestingly, work in these directions sometimes im-
proves one dimension at the cost of another. For in-
stance, Orbe [16] and GentleRain [17] improve upon the
throughput of COPS [31] by tracking less fine-grained
information about the causal dependencies between up-
date operations. But, these techniques would result in
even more severe slowdown cascades (§2.2). We hope
this paper leads to a more thorough understanding of
such trade offs.

Discussions of Challenges to Stronger Consistency
Our work is inspired by previous discussions of some
similar challenges. Cheriton and Skeen [11] present a
criticism of enforcing an order in a communication sub-
strate instead of end to end. Bailis et al. [3] discuss slow-
down cascades to motivate enforcing only an explicit
subset of causal consistency. Dean and Barroso [15]
detail the importance and challenges for tail latency in
high-scale services at Google, similar to our discussion
of the effect of latency outliers due to query amplifica-
tion. Our work is primarily distinguished by the breadth
of challenges it covers and its focus on describing both
fundamental and operational challenges for the complete
Facebook system as it is currently constructed.

5 Conclusion
There is an exciting boom in research on scalable sys-
tems that provide stronger semantics for geo-replicated
stores. We have described the challenges we see to
adopting these techniques at Facebook, or in any envi-
ronment that scales using sharding and separation into
stateful services. Future advances that tackle any of these
challenges seem likely to each have an independent ben-
efit. Our hope is that these barriers can be overcome.

5

References

[1] S. Almeida, J. Leitao, and L. Rodrigues. Chainreaction:
a causal+ consistent datastore based on chain replication.
In EuroSys, 2013.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In SIGMETRICS, 2012.

[3] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. The potential dangers of causal consistency and
an explicit solution. In SOCC, 2012.

[4] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-
on causal consistency. In SIGMOD, 2013.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Scalable atomic visibility with ramp transac-
tions. In SIGMOD, 2014.

[6] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In CIDR, Jan. 2011.

[7] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in haystack: Facebook’s photo storage.
In OSDI, 2010.

[8] K. P. Birman and R. V. Renesse. Reliable Distributed
Computing with the ISIS Toolkit. IEEE Comp. Soc. Press,
1994.

[9] N. Bronson. Solving the mystery of link im-
balance: A metastable failure state at scale.
https://code.facebook.com/posts/
1499322996995183/solving-the-mystery-
of-link-imbalance-a-metastable-
failure-state-at-scale/, 2014.

[10] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In USENIX ATC, 2013.

[11] D. R. Cheriton and D. Skeen. Understanding the limita-
tions of causally and totally ordered communication. In
SOSP, Dec. 1993.

[12] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In OSDI, Oct. 2012.

[13] J. Cowling and B. Liskov. Granola: low-overhead dis-
tributed transaction coordination. In USENIX ATC, June
2012.

[14] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Gri-
jincu, T. Jackson, S. Kunnatur, S. Lassen, P. Pronin,
S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang.
Unicorn: A system for searching the social graph. VLDB,
2013.

[15] J. Dean and L. A. Barroso. The tail at scale. Comm. ACM,

56(2), 2013.
[16] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:

Scalable causal consistency using dependency matrices
and physical clocks. In SOCC, 2013.

[17] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gen-
tlerain: Cheap and scalable causal consistency with phys-
ical clocks. In SOCC, 2014.

[18] R. Escriva, B. Wong, and E. G. Sirer. HyperKV: A dis-
tributed, searchable key-value store for cloud computing.
In SIGCOMM, 2012.

[19] Facebook’s Company Info. http://newsroom.fb.
com/company-info/, 2014.

[20] J. Fein and J. Jenks. Building mobile-first infrastruc-
ture for messenger. https://code.facebook.
com/posts/820258981365363/building-
mobile-first-infrastructure-for-
messenger/, 2014.

[21] B. Fitzpatrick. Memcached: a distributed memory object
caching system. http://memcached.org/, 2014.

[22] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable consistency in Scatter. In SOSP,
Oct. 2011.

[23] T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis of
hdfs under hbase: A facebook messages case study. In
FAST, 2014.

[24] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM TOPLAS, 12
(3), 1990.

[25] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An Analysis of Facebook Photo
Caching. In SOSP. ACM, 2013.

[26] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A.
Freedman, K. Birman, and R. van Renesse. Character-
izing load imbalance in real-world networked caches. In
HotNets, 2014.

[27] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. Mdcc: Multi-data center consistency. In Eu-
roSys, 2013.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. ACM, 21(7), 1978.

[29] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In OSDI, Oct. 2012.

[30] A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal, A. Gry-
nenko, and V. Venkataramani. Introducing mcrouter:
A memcached protocol router for scaling memcached
deployments. https://code.facebook.com/
posts/296442737213493/introducing-
mcrouter-a-memcached-protocol-router-
for-scaling-memcached-deployments/,
2014.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: Scalable causal consis-
tency for wide-area storage with COPS. In SOSP, Oct.
2011.

6

https://code.facebook.com/posts/1499322996995183/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://code.facebook.com/posts/1499322996995183/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://code.facebook.com/posts/1499322996995183/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://code.facebook.com/posts/1499322996995183/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
http://newsroom.fb.com/company-info/
http://newsroom.fb.com/company-info/
https://code.facebook.com/posts/820258981365363/building-mobile-first-infrastructure-for-messenger/
https://code.facebook.com/posts/820258981365363/building-mobile-first-infrastructure-for-messenger/
https://code.facebook.com/posts/820258981365363/building-mobile-first-infrastructure-for-messenger/
https://code.facebook.com/posts/820258981365363/building-mobile-first-infrastructure-for-messenger/
http://memcached.org/
https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/

[32] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In NSDI, Apr. 2013.

[33] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In OSDI,
2014.

[34] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-
mar. f4: Facebook’s warm blob storage system. In OSDI,
2014.

[35] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scal-
ing memcache at facebook. In NSDI, 2013.

[36] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
M. Rosenblum, S. M. Rumble, E. Stratmann, and
R. Stutsman. The case for ramcloud. ACM SIGOPS Op-
erating Systems Review, 43(4), 2010.

[37] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible update propagation for weakly con-
sistent replication. In SOSP, Oct. 1997.

[38] C. Rossi. Ship early and ship twice as often. https:
//www.facebook.com/notes/facebook-
engineering/ship-early-and-ship-
twice-as-often/10150985860363920, 2012.

[39] F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: a tutorial. ACM Com-
puter Surveys, 22(4), Dec. 1990.

[40] Y. Sharma, P. Ajoux, P. Ang, D. Callies, A. Choudhary,
L. Demailly, T. Fersch, L. A. Guz, A. Kotulski, S. Kulka-
rni, S. Kumar, H. Li, J. Li, E. Makeev, K. Prakasam,
R. van Renesse, S. Roy, P. Seth, Y. J. Song, K. Veer-
araghavan, B. Wester, and P. Xie. Wormhole: Reliable
pub-sub to support geo-replicated internet services. In
NSDI, May 2015.

[41] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In SOSP, Oct.
2011.

[42] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ:
Advanced Photo Caching on Flash For Facebook. In
FAST, Feb. 2015.

[43] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for
weakly consistent replicated data. In PDIS, Sept. 1994.

[44] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In SOSP,
2013.

[45] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions for
partitioned database systems. In SIGMOD, May 2012.

[46] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: combining acid and base
in a distributed database. In OSDI, 2014.

[47] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera,

and J. Li. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems. In
SOSP, pages 276–291. ACM, 2013.

7

https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920

	Introduction
	Fundamental Challenges
	Integrating Across Stateful Services
	Query Amplification
	Linchpin Objects
	Net Benefit to Users

	Operational Challenges
	Related Work
	Conclusion

