

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

A. Yes. [Gauss]
$$x = ac - bd$$
, $y = (a + b)(c + d) - ac - bd$.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Complex Multiplication

Complex multiplication.
$$(a + bi) (c + di) = x + yi$$
.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

Integer Multiplication

Section 5.5

Integer Addition

Addition. Given two n-bit integers a and b, compute a+b. Grade-school. $\Theta(n)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Remark. Grade-school addition algorithm is optimal.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:

- Multiply four $\frac{1}{2}n$ -bit integers, recursively.
- Add and shift to obtain result.

$$\begin{array}{rcl} a & = & 2^{n/2} \cdot a_1 + a_0 \\ b & = & 2^{n/2} \cdot b_1 + b_0 \\ ab & = & \left(2^{n/2} \cdot a_1 + a_0\right) \left(2^{n/2} \cdot b_1 + b_0\right) = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot \left(a_1 b_0 + a_0 b_1\right) + a_0 b_0 \end{array}$$

Ex.
$$a = \underbrace{10001101}_{a_1} \qquad b = \underbrace{11100001}_{b_1} \qquad b_0$$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

Integer Multiplication

Multiplication. Given two n-bit integers a and b, compute $a \times b$. Grade-school. $\Theta(n^2)$ bit operations.

Q. Is grade-school multiplication algorithm optimal?

Recursion Tree

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

Karatsuba: Recursion Tree

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq \underbrace{T\left(\left\lfloor n/2\right\rfloor\right) + T\left(\left\lceil n/2\right\rceil\right) + T\left(1 + \left\lceil n/2\right\rceil\right)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}} \Rightarrow T(n) = O(n^{\lg 3}) = O(n^{1.585})$$

Integer Division

Section 30.3

Integer Division

Integer division. Given two integer s and t of at most n bits each, compute the quotient and remainder: $q = \lfloor s/t \rfloor$, $r = s \mod t$.

Ex.

- $s = 1,000, t = 110 \implies q = 9, r = 10.$
- $s = 4,905,648,605,986,590,685, t = 100 \implies r = 85.$

Long division. $\Theta(n^2)$.

Q. Is grade-school long division algorithm optimal?

Integer Division: Newton's Method

Goal. Given two integer s and t compute $q = \lfloor s/t \rfloor$.

Our approach: Newton's method.

• Approximately compute x = 1/t using exact arithmetic.

$$f(x) = t - \frac{1}{x}$$

$$x_{i+1} = 2x_i - tx_i^2$$

• After not too many iterations, quotient q is either $[s x_k]$ or $[s x_k]$.

Newton's Method

Goal. Given a function f(x), find a value x^* such that $f(x^*) = 0$.

Sufficiently smooth

Newton's method.

- Start with initial guess x_0 .
- Compute a sequence of approximations: $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$

Convergence. No guarantees in general.

Integer Division: Newton's Method Example

Ex. t = 7

- $\mathbf{x}_0 = \mathbf{0.1}$
- $x_1 = 0.13$
- $x_2 = 0.1417$
- $\mathbf{x}_3 = 0.142847770$
- 3
- $\mathbf{x}_4 = 0.14285714224218970$
- $\mathbf{x}_5 = 0.14285714285714285449568544449737$
- $\mathbf{x}_6 = 0.14285714285714285714285714285714285714285714285714$

number of digits of accuracy doubles after each iteration

Ex. s/t = 123456/7

- \mathbf{x} $\mathbf{x}_5 = 17636.57142857142824461934223586731072000$
- Correct answer is either 17636 or 17637.

Integer Division: Newton's Method

(q, r) = NewtonDivision(s, t)

Choose x to be unique fractional power of 2 in interval (1 / (2t), 1 / t]

repeat lg n times

$$x \leftarrow 2x - tx^2$$

set
$$q = \lfloor s x \rfloor$$
 or $q = \lceil s x \rceil$

set
$$r = s - q t$$

Analysis

L2. Iterates converge quadratically to 1/t: $1-tx_i < \frac{1}{2^{2^i}}$.

 x_i is approximates 1/t to 2^i significant bits of accuracy

Pf. [by induction on i]

- Base case: by construction, $\frac{1}{2t} < x_0 \implies 1 tx_0 < \frac{1}{2}$
- Inductive hypothesis: $1 tx_i < \frac{1}{2^{2^i}}$

$$1-t x_{i+1} = 1-t (2x_i - t x_i^2)$$

$$= (1-t x_i)^2$$

$$< \left(\frac{1}{2^{2^i}}\right)^2$$

$$= \frac{1}{2^{2^{i+1}}}$$
 inductive hypothesis

Analysis

L1. Iterates converge monotonically.

$$\frac{1}{2t} < x_0 \leq x_1 \leq x_2 \leq \cdots \leq \frac{1}{t}.$$

Pf. [by induction on i]

■ Base case: by construction, $\frac{1}{2t} < x_0 \le \frac{1}{t}$

$$x_{i+1} = 2x_i - t x_i^2$$
 $x_{i+1} = 2x_i - t x_i^2$
 $= x_i(2 - t x_i)$ $= (2x_i - t x_i^2 - 1/t) + 1/t$
 $\ge x_i(2 - t (1/t))$ $= -t(x_i - 1/t)^2 + 1/t$
 $= x_i$ $\le 1/t$
(monotonic) (bounded)

Analysis

L3. Algorithm returns correct answer.

Pf

• By L2, after $k = \lceil \lg \lg (s/t) \rceil$ steps, we have: $1-tx_k < \frac{1}{2^{2^k}} \le \frac{t}{s}$.

■ Thus, $0 \le \frac{s}{t} - sx_k < 1$ $x_k \le 1/t \text{ by L1} \qquad \text{rearranging expression above}$

- This implies, $q = \lfloor s / t \rfloor$ is either $\lfloor s x_k \rfloor$ or $\lceil s x_k \rceil$.
- Note: $k \leq \lg n$.

Analysis

Theorem. Algorithm computes quotient and remainder in O(M(n)) time, where M(n) is the time to multiply two n-bit integers.

Pf.

- The number of iterations is $k = \lg n$.
- By L2, the algorithm returns the correct answer.
- ullet Each iterate involves O(1) multiplications and additions.

$$f(x) = t - \frac{1}{x}$$
$$x_{i+1} = 2x_i - tx_i^2$$

- Note: algorithm still works if we only keep track of 2^i significant digits in iteration i.
- Overall running time: $M(1) + M(2) + M(4) + ... + M(2^k) = O(M(n))$.

Integer Arithmetic

Theorem. The following have the same asymptotic bit complexity.

- Multiplication.
- Squaring.
- Quotient.
- Remainder.

Analysis

Theorem. Algorithm computes quotient and remainder in O(M(n)) time, where M(n) is the time to multiply two n-bit integers.

Corollary. Can do integer division in $O(n^{1.585})$ bit operations.

22

Matrix Multiplication

Chapter 28.2

Dot Product

Dot product. Given two length n vectors a and b, compute $c = a \cdot b$. *Grade-school.* $\Theta(n)$ arithmetic operations. $a \cdot b = \sum_{i=1}^{n} a_{i} b_{i}$

$$a = \begin{bmatrix} .70 & .20 & .10 \end{bmatrix}$$

 $b = \begin{bmatrix} .30 & .40 & .30 \end{bmatrix}$
 $a \cdot b = (.70 \times .30) + (.20 \times .40) + (.10 \times .30) = .32$

Remark. Grade-school dot product algorithm is optimal.

Block Matrix Multiplication

25

27

$$\begin{bmatrix} 152 & 158 & 164 & 170 \\ 504 & 526 & 548 & 570 \\ 856 & 894 & 932 & 970 \\ 1208 & 1262 & 1316 & 1370 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix} \times \begin{bmatrix} 16 & 17 & 18 & 19 \\ 20 & 21 & 22 & 23 \\ 24 & 25 & 26 & 27 \\ 28 & 29 & 30 & 31 \end{bmatrix}$$

$$C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21} = \begin{bmatrix} 0 & 1 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 16 & 17 \\ 20 & 21 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \times \begin{bmatrix} 24 & 25 \\ 28 & 29 \end{bmatrix} = \begin{bmatrix} 152 & 158 \\ 504 & 526 \end{bmatrix}$$

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB. *Grade-school.* $\Theta(n^3)$ arithmetic operations. $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$\begin{bmatrix} .59 & .32 & .41 \\ .31 & .36 & .25 \\ .45 & .31 & .42 \end{bmatrix} = \begin{bmatrix} .70 & .20 & .10 \\ .30 & .60 & .10 \\ .50 & .10 & .40 \end{bmatrix} \times \begin{bmatrix} .80 & .30 & .50 \\ .10 & .40 & .10 \\ .10 & .30 & .40 \end{bmatrix}$$

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Conquer: multiply 8 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

29

- 7 multiplications.
- 18 = 8 + 10 additions and subtractions.

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception. "Strassen is only a theoretical curiosity."

- Apple reports 8x speedup on G4 Velocity Engine when $n \approx 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Compute: $14 \frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices via 10 matrix additions.
- Conquer: multiply 7 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2.
- T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?

A. Yes! [Strassen 1969] $\Theta(n^{\log_2 7}) = O(n^{2.807})$

- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971] $\Theta(n^{\log_2 6}) = O(n^{2.59})$
- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible. $\Theta(n^{\log_3 21}) = O(n^{2.77})$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. $O(n^{2.805})$ ■ Two 48-by-48 matrices with 47,217 scalar multiplications. $O(n^{2.7801})$
- A year later. $O(n^{2.7799})$ December, 1979. $O(n^{2.521813})$
- January, 1980. $O(n^{2.521801})$

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.376})$ [Coppersmith-Winograd 1987]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.