How to Multiply

integers, matrices, and polynomials

COSs 423
Spring 2007

slides by Kevin Wayne

Complex Multiplication

Complex multiplication. (a + bi) (¢ + di) =x + yi.

Grade-school. x=ac - bd, y =bc + ad.

4 multiplications, 2 additions

Q. TIs it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Complex Multiplication

Complex multiplication. (a + bi) (¢ + di) = x + yi.

Grade-school. x=ac - bd, y =bc + ad.

4 multiplications, 2 additions

Q. TIs it possible to do with fewer multiplications?

Integer Multiplication

lgorithm Design

JON KLEINBERG - EVA TARDOS

Section 5.5

Integer Addition Integer Multiplication

Addition. Given two n-bit integers a and b, compute a + b. Multiplication. Given two n-bit integers a and b, compute a x b.
Grade-school. ©(n) bit operations. Grade-school. ©(n?) bit operations.
11010101
11 1 1 1 1 o0 1 x01111101
1 1 0o 1 0 1 0 1 11010101
+ 0 1 1 1 1 1 0 1 000000000
1 0 1 0 1 0 0 1 0 110101010
110101010
110101010
110101010
Remark. Grade-school addition algorithm is optimal. 1ro10t0d0
000000000
0110100000000001

Q. Is grade-school multiplication algorithm optimal?

Divide-and-Conquer Multiplication: Warmup Recursion Tree
To multiply two n-bit integers a and b: o { 0 if n=0 T]gE 2t n(Z“‘g”—l) EEay
n) = . = = —| = -
« Multiply four $n-bit integers, recursively. @2 & @ ol k=0 2=l
« Add and shift to obtain result. e
assume n is a power of 2
T (n) n
= 2"%.q + a
b = 2"%b + b
ab = (2"%-a;+) (2" b +by) = 2" aby + 2" (aby+agh) + agb, BV) —) 4(n/2)
Ex. a = 10001101 b = 11100001
— — T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 16(n/4)

a, a b, by

o

T(n) = 4T(n/2) + O(n) = T(n)=0O@")

— -
recursive calls add, shift

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 49m (1)

Karatsuba Multiplication

To multiply two n-bit integers a and b:
. Add two 3n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

a = 2"%-a + q
b = 2"%b + b,
ab = 2"-ab + 2" (aby+agh;) + agh,
= 2"-ab + 2" ((a,+a,) (b +by) — aby —azhy) + agh,
(1] o o 06 ©

Karatsuba: Recursion Tree

0 if n=0 lgn . (l)l«{-lgn -1 »
@)= - T(n) = n (3 = n|2L " | = 3,83_9,
(n) { 3T(n/2) + n otherwise gb (2)]

/

assume n is a power of 2

T (n)
/’\
T(n/2) T(n/2) T(n/2) 3(n/2)
SN NN
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n / 2%) 3% (n / 2%

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 3 l9n (1)

Karatsuba Multiplication

To multiply two n-bit integers a and b:
. Add two 37 bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

a = 2"%-a + q
b = 2"%b + b,
ab = 2"-ab + 2" (aby+agh;) + agh,
= 2"-ab + 2" ((a,+a,) (b +by) — aby —anhy) + agh,
(1] o o 06 ©

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'>%) bit operations.

_ g3y _ 1.585
T(n) =< T(|n/2]) + T([2/2]) + T(1+[n/2]) + O@m) = T(n) = 0') = O@n"*)

add, subtract, shift

recursive calls

Integer Division

THE DESIGN AND
ANALYSIS OF
ALGORITHMS
Dexter C. Kozen

Yo

Section 30.3

Integer Division Newton's Method

Integer division. Given two integer s and ¢ of at most n bits each, Goal. Given a function f(x), find a value x* such that f(x*) = 0.

compute the quotient and remainder: g =|s/t],r=smod 1. sufficiently smooth

Ex. Newton's method.
« 5=1,000, t=110 = ¢=9,r=10. « Start with initial guess x,.
. 5= 4.905,648,605,986,590,685, 1= 100 = r=85. . Compute a sequence of approximations: x., -x - %
Xi
Long division. ©(n?).
[@

Q. Is grade-school long division algorithm optimal? \/

Convergence. No guarantees in general.

Integer Division: Newton's Method Integer Division: Newton's Method Example
Goal. Given two integer s and r compute g = |s / ¢]. Ex. t=7
. x, =0.1 1
° f) =1 - —
= x, =0.13 number of digits of accuracy . 2% x tx2
' doubles after each iterati woo= 2N - I
Our approach: Newton's method. . x, =l0.1417 oubles aten each feration :
« Approximately compute x =1/t using exact arithmetic. « x, = 0.142847770
« x, = 0.14285714224218970
fx) = 1 - l « x, = 0.14285714285714285449568544/449737
e S « x, = 0.14285714285714285714285714285714280809023113867839307631644158170
Xiyp = 2% — Iy
« After not too many iterations, quotient g is either [sx,] or [sx,]. Ex. s/t = 123456/7

. s x;= 17636.57142857142824461934223586731072000
. Correct answer is either 17636 or 17637.

Integer Division: Newton's Method

(g, r) = NewtonDivision(s, 7)

Choose x to be unique fractional power of 2 in interval (1/(27), 1/t]

repeat lg n times

X< 2x— tx?

set g=[sx] or g=[sx]

set r=s—qt

Analysis

L2. Tterates converge quadratically to 1/7: 1-tx; < Lz
2

\

x; is approximates 1/
to 2/ significant bits of accuracy

Pf. [by induction on i]

« Base case: by construction, %< x, = 1-1x, < %

« Inductive hypothesis: 1-1x < !
22
I-tx,, = 1-tQx,—-tx})
= (-tx)’
2
< |7
2? \
1 inductive hypothesis

Zr'+l

Analysis

L1. Iterates converge monotonically.
i < X =X = X, = = l
2 0T TR Ty
Pf. [by induction on i]
= Base case: by construction, — < x,
: . 1
« Inductive hypothesis: 5 < %o
X = 2)‘1'_”‘1'2 Xis1
= x2-tx)
= x;,2-t(/1)
= X \

i
inductive hypothesis

(monotonic)

Analysis

L3. Algorithm returns correct answer.

Pf.

A
A
=
A

X ==

~ =

= 2)(,.—tx,.2

= Qx,—tx}-1/t)+1/t
= —t(x; =1/ +1/t
< 1/t

(bounded)

By L2, after k=[1glg (s/ 1)] steps, we have: 1-n, < %

Thus,o =< i—sxk < 1
t

\ \

N

L2 choice of k

x,=1/rbylLl rearranging expression above

This implies, g = |s/t] is either [sx,] or [sx].

Note: k = Ign.

Analysis Analysis

Theorem. Algorithm computes quotient and remainder in O(M(n)) time, Theorem. Algorithm computes quotient and remainder in O(M(n)) time,
where M(n) is the time to multiply two n-bit integers. where M(n) is the time to multiply two n-bit integers.
Pf. Corollary. Can do integer division in O(n'-3%) bit operations.

. The number of iterations is k=1g n.
« By L2, the algorithm returns the correct answer.
= Each iterate involves O(1) multiplications and additions.

fx)

X,

[
-
|
I

[
5o}
&
|
=
o

i+l

= Note: algorithm still works if we only keep track of 2/ significant
digits in iteration i.

« Overall running time: M(1) + M(2) + M(4) + ... + M(2F) = O(M(n)).

Integer Arithmetic

Theorem. The following have the same asymptotic bit complexity. : Y :

. altplication Matrix Multiplication

« Squaring.

« Quotient.

= Remainder.
ALGORITHMS

Chapter 28.2

Dot Product Matrix Multiplication

Dot product. Given two length n vectors a and b, compute c =a b Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
Grade-school. ©(n) arithmetic operations. N Grade-school. ©(r?) arithmetic operations. —
ab=Yyab, CU=$%}%,
i=l k=1
Cy G € a, a, - a, by b, - b,
[70 20] CZI CZZ cZn aZI aZZ aZn x bZl bZZ bZn
=[30 40 30] P : Do : Do :
- b = (.70 x .30) + (.20 x .40) + (.10 x .30) = Ci G Gy a, 4, - a, by b, = b,
59 32 41 70 20 .10 80 130 50
31 36 25| = [30 60 .10 x | .10 40 .10
45 31 42 50 .10 40 10 30 40
Remark. Grade-school dot product algorithm is optimal. Q. Is grade-school matrix multiplication algorithm optimal?
25
Block Matrix Multiplication Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
. 1 . . Divide: partition A and B into $n-by-3n blocks.
" / / / » Conquer: multiply 8 pairs of $n-by-3n matrices, recursively.
/ = Combine: add appropriate products using 4 matrix additions.
152 158 164 170 0 1 3] [16 17 18 19
504 526 548 570 4 5 6 17 20 21 22 23

856 894 932 970 = 8 9 10 11 * 24 25 26 27 c c 4 4 B B c A.xB 4 B
= x + x
1208 1262 1316 1370| |12 13 14 15| [28 29 30 31 R | R | ! (4 xByy) + (Ao Ba)
G, G, A, Ay B, B, G, = (All XBIZ) + (A12XB22)
\ G, = (A21X311) + (A22X321)
B, Gy, = (AZI XBIZ) + (AszBzz)
0 1 16 17 2 3 24 25 152 158 = 2 = E
C = A xB, + A,xB, = N N N _ T(n)= 8T(n/2) + en’*) = T(n)=0(n")
" 4 5 20 21 6 7 28 29 504 526 ey add, form submatrices

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

[Cll C12:| - [All AIZ] x |:Bll
CZI C22 AZI A22 BZI

G, =
G, =
G =
G =

B+P-B+h
R+P
P+P,
P+R-P-P,

« 7 multiplications.

« 18 =8+ 10 additions and subtractions.

Ay x (Biy = By)
(4 + 41)) x By,
(4 +4x) % By,
Ay X (By = Byy)
(4 + 4yy) x (B + By,)
(A = 4yy) X (Byy + Byy)
(Ayy = 4y) % (B + Byp)

Fast Matrix Multiplication: Practice

Implementation issues.

Sparsity.
Caching effects.

Numerical stability.
Odd matrix dimensions.

Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”
= Apple reports 8x speedup on G4 Velocity Engine when n = 2,500.
« Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,

Fast Matrix Multiplication

To multiply fwo n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-3n blocks.
» Compute: 14 $n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of $n-by-3n matrices, recursively.
= Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

= Assume n is a power of 2.
« T(n) = # arithmetic operations.

T(n)= TT(n/2)+ O®’) = T(n)=6n">")=0n"")

-7
recursive calls add, subtract

Fast Matrix Multiplication: Theory

. Multiply two 2-by-2 matrices with 7 scalar multiplications?
Yes! [STI"GSSZH 1969] @(nlng27) -0 2.307)

>0

. Multiply two 2-by-2 matrices with 6 scalar multiplications?
Impossible. [Hopcroft and Kerr 1971]

>0

O(n =% = o 259

. Two 3-by-3 matrices with 21 scalar multiplications?
Also impossible. @(nlng32])= O 2.77)

>0

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

« Two 20-by-20 matrices with 4,460 scalar multiplications. 0)
« Two 48-by-48 matrices with 47,217 scalar multiplications. 0(n>™")
« Ayear later. 0m>™)
. December‘, 1979. o 2521813)

=« January, 1980. O 221501

Fast Matrix Multiplication: Theory

w
w(T)
30 23]
2.8 w(r)
254 . -
20—+t~ >
1968 1969 1975 1976 1977 1978 1979 1980 1981 1982

FIG. 1. w(t) is the best exponent announced by time r.

Best known. O(n237%) [Coppersmith-Winograd 1987]
Conjecture. O(n**t) for any & >0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

