Max Flow, Min Cut
COS h21

Kevin Wayne
Fall 2005

Minimum Cut Problem

Flow network.

« Digraph G = (V, E), nonnegative edge capacities c(e).

« Two distinguished nodes: s = source, 1 = sink.

« Assumptions: no parallel edges, no edges entering s or leaving t.

: 9 \
15 15 10
source 5 4%7 8 10 sink
\
4 6 15 10
30>%/

. 15
capacity —7

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = 3 c(e)

eoutof 4

10
4 15 15 10

10 ®

4 6 15 10

30 Capacity = 10+ 8 + 10 = 28

(¢
/ |
©

A 4
)

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

9

15

/%
10 4
e
15 i

8
6
30

Capacity =10+ 8 + 10 = 28

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

10
10

@ 5

capacity — 15
flow — 14

30

Value = 28

Flows

Def. Ans-t flow is a function that satisfies:

« Foreache€E: 0 = fle) = cle) (capacity)
« ForeachveV-{s, t} St = I fle) (conservation)
eintov eoutof v

Def. The value of a flow fis: val(f) = I f(eo) .

e outof s

9
10
1 9
10 40 15 15 0 10
4 8 9
® 5 ©) 8 ® 10 ®
4 10
40 6 15 0 10

capacity — 15

flow — 14
1 Value = 28

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Sfle) = Yfle) = val(f)

eoutof A einto A
10 o 6
10 44 15 15 0 10
3 8 8
5 3 8 »(6 10
1 10
40 6 15 0 10

A 15
11
1 Value=10-4+8-0+10
30 =24

Flows and Cuts Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the

S - S f@= vallh) value of the flow is at most the capacity of the cut.
e)— e)= va .

eoutof A einto A
Cut capacity = 30 = Flow value < 30
Pf. val(f) = 3 f(e
eoutof s
by flow conservation, all terms ~ —» = E (E fe) - E f(e)) /:2) 9 @
exceptv=sareO vEA \eoutofv eintov
= E fle) - E fe). 10 4 15 15 10
eoutof A einto A
s —>@ ; ® © @
A
15 i 6 15 10
\@ . @ Capacity = 30
Flows and Cuts Certificate of Optimality
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have Corollary. Let f be any flow, and let (A, B) be any cut.
val(f) < cap(A, B). If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.
Pf. I0F) = _ Value of flow = 28
vl eoulEOfAf(g) mEmAf(E) Cut capacity =28 = Flow value < 28
s 3 flo
eoutof A
< > c(e) 9
eoutof A
= cap(A,B) . /? 9 @
10 . 9
10 40 15 15 0 10
4 9

Towards a Max Flow Algorithm Towards a Max Flow Algorithm

Greedy algorithm. Greedy algorithm.
. Start with f(e) = O for all edge e € E. . Start with f(e) = O for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e). « Find an s-t path P where each edge has f(e) < c(e).
« Augment flow along path P. « Augment flow along path P.
« Repeat until you get stuck. « Repeat until you get stuck.
1 1
0 0 20 X 0
20 10 20 10
30 0 30 H20
10 20 10 20
| = = 2
0 v 0 Flow value = 0 0 v X 20 Flow value = 20
2 2
Towards a Max Flow Algorithm Residual Graph
Greedy algorithm. Original edge: e =(u,v) €E. y capacity
. Start with f(e) = O for all edge e € E. = Flow f(e), capacity c(e). @ 17 ®

=« Find an s-t path P where each edge has f(e) < c(e).
« Augment flow along path P. N fiow
« Repeat until you get stuck.
™ locally optimality # global optimality Residual edge.
= "Undo" flow sent.
. e=(u,v)and eR = (v, u).

r’'d
« Residual COpOCiTyl % 11 j\a
20 0 20 10 6

20 10 20 10 cle)-f(e) if e€EE
Cy (e) = f(e) if FEE ™ residual capacity

6

residual capacity

30 20 30 10

Residual graph: G, = (V, E;).
« Residual edges with positive residual capacity.
« Er={e:f(e)<ce)} U {eR:c(e)>0}

10 20 10 20
0 20 10 20

greedy = 20 opt = 30

(i) = (i)

Ford-Fulkerson Algorithm

>4
?\ capacity
e

Proof of Max-Flow Min-Cut Theorem

« Let f be a flow with no augmenting paths.

« Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.
« By definition of f, t & A.

val(f)

> fle- 3 fle)

eoutof A einto A

> cle)

eoutof A

cap(A, B) u

original network

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.
Pf. Let f be a flow. Then TFAE:
(i) There exists a cut (A, B) such that val(f) = cap(A, B).
(i) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) = (i) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

« Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities ¢ (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val(f*) < nC iterations.

It can be implemented in O(mnC) time.
Pf. Each augmentation increase value by at least 1. =

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Ford-Fulkerson: An Exponential Input Ford-Fulkerson: A Pathological Input

Q. Is generic Ford-Fulkerson algorithm polynomial in input size? Q. Is Ford-Fulkerson algorithm finite?

-1+ 5
2

.n,and log €
m, n, and log Letr= ~ 0.618... [pn+2 = pn - r“*l]

Max flow = 1+ r +r2,

Augmentations: first augment 1 unit, then repeatedly choose
path with lowest capacity.

1 1
1 X 0 1 X X 1
c c c c
1 71 1 ¥XO0
b t
c c ¢
0 4 X1 6 X v X 1
2 2
Choosing Good Augmenting Paths Shortest Augmenting Path: Overview of Analysis
Goal: choose augmenting paths so that: L1. The length of the shortest augmenting path never decreases.
= Can find augmenting paths efficiently.
. Few iterations. L2. After at most m augmentations, the length of the shortest
augmenting path strictly increases.
Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970] Theorem. The shortest augmenting path algorithm performs at most
» Max bottleneck capacity. O(mn) augmentations. It can be implemented in O(m2n) time.
= Sufficiently large bottleneck capacity. « O(m) time to find shortest augmenting path via BFS.
« Fewest number of edges. « O(m) augmentations for paths of exactly k edges. =

k<n

Shortest Augmenting Path: Analysis Shortest Augmenting Path: Analysis

Level graph. - "umber of edges L1. The length of the shortest augmenting path never decreases.
« Define /(v) = length of shortest s-v path in 6. . Let f and f' be flow before and after a shortest path augmentation.
« Lg = (V, F)is subgraph of G that contains only those edges (u, v) €EE « LetLand L' be level graphs of 6; and 6, -

with £(v) = ¢(u) + 1. =« Only back edges added to &
« Compute Lgin O(m+n) time using BFS, deleting back and side edges. « Path with back edge has length greater than previous length.
« Pis ashortest s-upath in G iff it is an s-u path L.
2 >
L
B »(3 (6 »(+
LG /=0 /=1 (=2 /=3
2 >
@ g
=0 3
Shortest Augmenting Path: Analysis Shortest Augmenting Path: Review of Analysis

L2. After at most m augmentations, the length of the shortest L1. The length of the shortest augmenting path never decreases.

augmenting path strictly increases.
« At least one edge (the bottleneck edge) is deleted from L after L2. After at most m augmentations, the length of the shortest
each augmentation. augmenting path strictly increases.
« No new edges added to L until length of shortest path strictly
increases. Theorem. The shortest augmenting path algorithm performs at most
5 G O(mn) augmentations. It can be implemented in O(m?n) time.
L Note: ©(mn) augmentations necessary on some networks.
« Try to decrease time per augmentation instead.
8 »Q 140 > . Dynamic trees = O(mnlogn) [Sleator-Tarjan, 1983]
=0 =1)= 2 =3 « Simpleidea = O(mn?)
2 >

Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
« Explicitly maintain level graph - it changes by at most 2n edges
after each normal augmentation.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete at least one edge
- if get stuck, delete node

2 »(5
L
s :@ 7\6/ »(t
/=0 /=1 /=2 /=3
Shortest Augmenting Path: Improved Version
L augment
bottleneck edge
L

Stop: length of shortest path must have strictly increased.

Shortest Augmenting Path: Improved Version

augment
bottleneck edge

delete 3

got stuck,
delete node

augment

bottleneck edge

Shortest Augmenting Path: Improved Version

Two types of augmentations.
= Normal augmentation: length of shortest path doesn't change.
= Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.
= At most n advance steps before you either
- get stuck: delete a node from level graph
- reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn?) time.
= O(mn) time between special augmentations.
« At most n special augmentations.

History of Worst-Case Running Times

1951 Dantzig Simplex mn2Ct

1955 Ford, Fulkerson Augmenting path _

1970 Edmonds-Karp Shortest path o mn

1970 Edmonds-Karp Fattest path m log C (m log n)

1970 Dinitz Improved shortest path _

1972 Edmonds-Karp, Dinitz Capacity scaling m2log C t

1973 Dinitz-Gabow Improved capacity scaling mnlog Ct

1974 Karzanov Preflow-push n3

1983 Sleator-Tarjan Dynamic trees mnlogn

1986 Goldberg-Tarjan FIFO preflow-push mn log (n2/ m)

1997 Goldberg-Rao Length function _
t Edge capacities are between 1 and C. \naxf time

Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Disjoint Paths

Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete all edges on path
- if get stuck, delete node and retreat to previous node

Augment
O O
O O O O
»O O O
O
Level graph @)

Unit Capacity Networks

Unit capacity network.
« Every edge capacity is one.
« If Gis unit capacity, so is 6¢, assuming f is 0-1 flow.

Ex: disjoint paths, bipartite matching.

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete all edges on path
- if get stuck, delete node and retreat to previous node

delete node and retreat
|
o o0 @ y @
(\O O O O— O O
—»o/ o) o o 0 o
O

Level graph @)

o

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete all edges on path
- if get stuck, delete node and retreat to previous node

Augment
O O O O O
o O——0— O o
\O—m/ o o —N;\o—re/p
O
Level graph o

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete all edges on path
- if get stuck, delete node and retreat to previous node

= O(m) running time.
- O(m) to create level graph
- O(1) per edge, since each edge traversed at most once
- O(1) per node deletion

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.
. Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete all edges on path
- if get stuck, delete node and retreat to previous node

Stop: length of shortest path has increased

O @) @ O
@) @) @) @) @) @)
@) O @) O O @) @)
@)
Level graph o

Unit Capacity Simple Networks

Unit Capacity Simple Networks

Unit capacity simple network.

« Every edge capacity is one. 1 .0
« Every node has either: ~
(i) at most one incoming edge, or © he
(ii) at most one outgoing edge. @)
« If Gis simple unit capacity, then so is o

6;, assuming f is 0-1 flow.

O O O O O
O

Theorem. Shortest augmenting path algorithm runs in O(m n/2) time.

« L1. Each phase of normal augmentations takes O(m) time.

. L2. After at most nl/2 phases, val(f) = val(f*) - nl/2,

. L3. After at most n!/2 additional augmentations, flow is optimal.

Unit Capacity Simple Networks

Lemma 2. After at most n'/2 phases, val(f) = val(f*) - n'/2,

. After n/2 phases, length of shortest augmenting path is > nl/2,

« Level graph has more than n'/2 levels.

. Let 1= h=n'2be layer with min number of nodes: |V,| = n'/2,
« Ai={v:/(v)< h}U{v:¢(v)=handv has < 1 outgoing residual edge}.

« caps (A, B) = [Vl = n¥2 = val(f) = val(f*) - nl/2

r‘eSldualedges Level graph
o S - ° o o
R o 0 o 0 O
_
Q. O © O O @) o
o
v1 Vh O vn1/2

Unit Capacity Simple Networks

Lemma 2. After at most n'/2 phases, val(f) = val(f*) - n/2,

. After n/2 phases, length of shortest augmenting path is > nl/2,

« Level graph has more than n'/2 levels.

. Let 1= h=n'2be layer with min number of nodes: |V,| = n'/2,

Level graph
O O O O O O
O O O O O O O
O O @) O O O ©
O
vV A @) v 12

