
1

Max Flow, Min Cut
 COS 521

Kevin Wayne
Fall 2005

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

3

Flow network.

! Digraph G = (V, E), nonnegative edge capacities c(e).

! Two distinguished nodes: s = source, t = sink.

! Assumptions: no parallel edges, no edges entering s or leaving t.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

capacity

source sink

4

Cuts

Def. An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:

!

cap(A, B) = c(e)
e out of A

"

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

 Capacity = 10 + 8 + 10 = 28

5

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 8 + 10 = 28

 A

6

Def. An s-t flow is a function that satisfies:

! For each e ! E: (capacity)

! For each v ! V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

!

f (e)
e in to v

" = f (e)
e out of v

"

!

0 " f (e) " c(e)

!

val(f) = f (e)
e out of s

" .

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

7

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

8

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

!

f (e)
e out of A

" # f (e)
e in to A

" = val(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

 A

9

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf. !

f (e)
e out of A

" # f (e) = val(f)
e in to A

" .

!

val(f) = f (e)
e out of s

"

=
v #A

" f (e)
e out of v

" $ f (e)
e in to v

"
%

&
'

(

)
*

= f (e)
e out of A

" $ f (e).
e in to A

"

by flow conservation, all terms
except v = s are 0

10

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30 " Flow value # 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

 A

11

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have

val(f) # cap(A, B).

Pf.

Flows and Cuts

!

val(f) = f (e)
e out of A

" # f (e)
e in to A

"

$ f (e)
e out of A

"

$ c(e)
e out of A

"

= cap(A, B)

12

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 " Flow value # 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0
 A

13

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

14

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

15

Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality " global optimality

16

Residual Graph

Original edge: e = (u, v) ! E.

! Flow f(e), capacity c(e).

Residual edge.

! "Undo" flow sent.

! e = (u, v) and eR = (v, u).

! Residual capacity:

Residual graph: Gf = (V, Ef).

! Residual edges with positive residual capacity.

! Ef = {e : f(e) < c(e)} $ {eR : c(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6

residual capacity

flow

!

c f (e) =
c(e)" f (e) if e # E

f (e) if e
R # E

$
%
&

17

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

18

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf. Let f be a flow. Then TFAE:

 (i) There exists a cut (A, B) such that val(f) = cap(A, B).

 (ii) Flow f is a max flow.

 (iii) There is no augmenting path relative to f.

(i) " (ii) This was the corollary to weak duality lemma.

(ii) " (iii) We show contrapositive.

! Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

19

Proof of Max-Flow Min-Cut Theorem

(iii) " (i)

! Let f be a flow with no augmenting paths.

! Let A be set of vertices reachable from s in residual graph.

! By definition of A, s ! A.

! By definition of f, t % A.

!

val(f) = f (e)
e out of A

" # f (e)
e in to A

"

= c(e)
e out of A

"

= cap(A, B)

original network

s

t

A B

20

Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val(f*) # nC iterations.

It can be implemented in O(mnC) time.

Pf. Each augmentation increase value by at least 1. !

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. !

21

Ford-Fulkerson: An Exponential Input

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

G G

22

Ford-Fulkerson: A Pathological Input

Q. Is Ford-Fulkerson algorithm finite?

Let r = [rn+2 = rn - rn+1]

Max flow = 1 + r + r2.

Augmentations: first augment 1 unit, then repeatedly choose

path with lowest capacity.

s

a

c

tb

a

c

b

r2

1

r

!

"1 + 5

2
 # 0.618...

23

Choosing Good Augmenting Paths

Goal: choose augmenting paths so that:

! Can find augmenting paths efficiently.

! Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

! Max bottleneck capacity.

! Sufficiently large bottleneck capacity.

! Fewest number of edges.

24

Shortest Augmenting Path: Overview of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest

augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most

O(mn) augmentations. It can be implemented in O(m2n) time.

! O(m) time to find shortest augmenting path via BFS.

! O(m) augmentations for paths of exactly k edges. !

k < n

25

Shortest Augmenting Path: Analysis

Level graph.
! Define l (v) = length of shortest s-v path in G.

! LG = (V, F) is subgraph of G that contains only those edges (u, v) ! E
with l (v) = l (u) + 1.

! Compute LG in O(m+n) time using BFS, deleting back and side edges.

! P is a shortest s-u path in G iff it is an s-u path LG.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

 LG

number of edges

26

Shortest Augmenting Path: Analysis

L1. The length of the shortest augmenting path never decreases.

! Let f and f' be flow before and after a shortest path augmentation.

! Let L and L' be level graphs of Gf and Gf '

! Only back edges added to Gf '

! Path with back edge has length greater than previous length.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

s

2

3

5

6 t

 L

 L'

27

Shortest Augmenting Path: Analysis

L2. After at most m augmentations, the length of the shortest

augmenting path strictly increases.

! At least one edge (the bottleneck edge) is deleted from L after

each augmentation.

! No new edges added to L until length of shortest path strictly

increases.

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

s

2

3

5

6 t

 L

 L'

28

Shortest Augmenting Path: Review of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest

augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most

O(mn) augmentations. It can be implemented in O(m2n) time.

Note: &(mn) augmentations necessary on some networks.

! Try to decrease time per augmentation instead.

! Dynamic trees " O(mn log n) [Sleator-Tarjan, 1983]

! Simple idea " O(mn2)

29

Shortest Augmenting Path: Improved Version

Two types of augmentations.

! Normal augmentation: length of shortest path doesn't change.

! Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.

! Explicitly maintain level graph - it changes by at most 2n edges

after each normal augmentation.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete at least one edge

– if get stuck, delete node

s

2

3

5

6 t

l = 0 l = 1 l = 2 l = 3

 L

30

Shortest Augmenting Path: Improved Version

s

2

3

5

6 t

 L

s

2

3

5

6 t

 L

s

2 5

6 t

 L

augment

augment

delete 3

bottleneck edge

got stuck,
delete node

bottleneck edge

31

Shortest Augmenting Path: Improved Version

s

2 5

6 t

 L

s

2 5

6 t

 L

Stop: length of shortest path must have strictly increased.

bottleneck edge

augment

32

Shortest Augmenting Path: Improved Version

Two types of augmentations.

! Normal augmentation: length of shortest path doesn't change.

! Special augmentation: length of shortest path strictly increases.

L3. Group of normal augmentations takes O(mn) time.

! At most n advance steps before you either

– get stuck: delete a node from level graph

– reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn2) time.

! O(mn) time between special augmentations.

! At most n special augmentations.

33

History of Worst-Case Running Times

Dantzig

Discoverer

Simplex

Method Asymptotic Time

m n2 C †1951

Year

Ford, Fulkerson Augmenting path m n C †1955

Edmonds-Karp Shortest path m2 n1970

Dinitz Improved shortest path m n21970

Edmonds-Karp, Dinitz Capacity scaling m2 log C †1972

Dinitz-Gabow Improved capacity scaling m n log C †1973

Karzanov Preflow-push n31974

Sleator-Tarjan Dynamic trees m n log n1983

Goldberg-Tarjan FIFO preflow-push m n log (n2 / m)1986

.

Goldberg-Rao Length function
 m3/2 log (n2 / m) log C †
mn2/3 log (n2 / m) log C †

1997

Edmonds-Karp Fattest path m log C (m log n) †1970

† Edge capacities are between 1 and C. next time

Disjoint Paths

35

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,

find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

36

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,

find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

37

Max flow formulation: assign unit capacity to every edge.

Edge Disjoint Paths

s

2

3

4

5

6

7

t

1

1

1

1

1

1

1

1

1

1

1

11

38

Unit Capacity Networks

Unit capacity network.

! Every edge capacity is one.

! If G is unit capacity, so is Gf, assuming f is 0-1 flow.

Ex: disjoint paths, bipartite matching.

s

2

3

4

5

6

7

t

1

1

1

1

1

1

1

1

1

1

1

11

39

Unit Capacity Networks

Level graph

Augment

Lemma 1. Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

40

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

delete node and retreat

41

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

Augment

42

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

Stop: length of shortest path has increased

43

Unit Capacity Networks

Lemma 1. Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

! O(m) running time.

– O(m) to create level graph

– O(1) per edge, since each edge traversed at most once

– O(1) per node deletion

Unit Capacity Simple Networks

45

Unit Capacity Simple Networks

Unit capacity simple network.

! Every edge capacity is one.

! Every node has either:

(i) at most one incoming edge, or

(ii) at most one outgoing edge.

! If G is simple unit capacity, then so is

Gf, assuming f is 0-1 flow.

Theorem. Shortest augmenting path algorithm runs in O(m n1/2) time.

! L1. Each phase of normal augmentations takes O(m) time.

! L2. After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! L3. After at most n1/2 additional augmentations, flow is optimal.

1

1

1

46

Unit Capacity Simple Networks

Lemma 2. After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! After n1/2 phases, length of shortest augmenting path is > n1/2.

! Level graph has more than n1/2 levels.

! Let 1 # h # n1/2 be layer with min number of nodes: |Vh| # n1/2.

VhV0 Vn
1/2

Level graph

V1

47

Unit Capacity Simple Networks

Lemma 2. After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! After n1/2 phases, length of shortest augmenting path is > n1/2.

! Level graph has more than n1/2 levels.

! Let 1 # h # n1/2 be layer with min number of nodes: |Vh| # n1/2.
! A := {v : l (v) < h} $ {v : l (v) = h and v has # 1 outgoing residual edge}.

! capf (A, B) # |Vh| # n1/2 " val(f) ' val(f*) - n1/2.

VhV0 Vn
1/2V1

Level graphresidual edges

A

