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Max Flow, Min Cut
 COS 521

Kevin Wayne
Fall 2005
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Flow network.

! Digraph G = (V, E), nonnegative edge capacities c(e).

! Two distinguished nodes:  s = source, t = sink.

! Assumptions:  no parallel edges, no edges entering s or leaving t.

Minimum Cut Problem
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Cuts

Def.  An s-t cut is a partition (A, B) of V with s ! A and t ! B.

Def. The capacity of a cut (A, B) is:
  

! 

cap( A, B)  =  c(e)
e out of A

"
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 Capacity = 10 + 8 + 10 = 28
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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Def.  An s-t flow is a function that satisfies:

! For each e ! E:  (capacity)

! For each v ! V – {s, t}: (conservation)

Def.  The value of a flow f is:

Flows

! 

f (e)
e in to v

" = f (e)
e out of v

"

! 

0 " f (e) " c(e)

! 

val( f )  =  f (e)  
e out of s

" .
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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f (e)
e out of A

" # f (e)
e in to A

"  =  val( f )

 Value = 10 - 4 + 8 - 0 + 10
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Flows and Cuts

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then

Pf. ! 

f (e)
e out of A

" # f (e) = val( f )
e in to A

" .

! 

val( f ) = f (e)
e out of s

"

=
v #A

" f (e)
e out of v

"  $ f (e)
e in to v

"
% 

& 
' 

( 

) 
* 

= f (e)
e out of A

"  $ f (e).
e in to A

"

by flow conservation, all terms
except v = s are 0
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Flows and Cuts

Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30   "    Flow value # 30 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have

val(f) # cap(A, B).

Pf.

Flows and Cuts

! 

val( f ) = f (e)
e out of A

" # f (e)
e in to A

"

$ f (e)
e out of A

"

$ c(e)
e out of A

"

= cap(A, B)
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Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.

If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28   "    Flow value # 28
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

! Start with f(e) = 0 for all edge e ! E.

! Find an s-t path P where each edge has f(e) < c(e).

! Augment flow along path P.

! Repeat until you get stuck.
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s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality " global optimality

16

Residual Graph

Original edge:  e = (u, v)  ! E.

! Flow f(e), capacity c(e).

Residual edge.

! "Undo" flow sent.

! e = (u, v) and eR = (v, u).

! Residual capacity:

Residual graph:  Gf = (V, Ef ).

! Residual edges with positive residual capacity.

! Ef = {e : f(e) < c(e)}  $  {eR : c(e) > 0}.

u v 17
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capacity

u v 11

residual capacity
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residual capacity

flow
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c f (e) =
c(e)" f (e) if  e # E

f (e) if  e
R # E
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Ford-Fulkerson Algorithm
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Max-Flow Min-Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem.  [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf.  Let f be a flow. Then TFAE:

    (i) There exists a cut (A, B) such that val(f) = cap(A, B).

   (ii) Flow f is a max flow.

  (iii) There is no augmenting path relative to f.

(i)  " (ii)  This was the corollary to weak duality lemma.

(ii)  " (iii)  We show contrapositive.

! Let f be a flow.  If there exists an augmenting path, then we can

improve f by sending flow along path.

19

Proof of Max-Flow Min-Cut Theorem

(iii)  " (i)

! Let f be a flow with no augmenting paths.

! Let A be set of vertices reachable from s in residual graph.

! By definition of A, s ! A.

! By definition of f, t % A.

! 

val( f ) = f (e)
e out of A

" # f (e)
e in to A

"

= c(e)
e out of A

"

= cap(A, B)

original network
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t
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Analysis

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacities cf (e)

remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most val(f*) # nC iterations.

It can be implemented in O(mnC) time.

Pf.  Each augmentation increase value by at least 1.   !

Integrality theorem.  If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.

Pf.  Since algorithm terminates, theorem follows from invariant.   !
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Ford-Fulkerson:  An Exponential Input

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?
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Ford-Fulkerson:  A Pathological Input

Q.   Is Ford-Fulkerson algorithm finite?

Let r =     [ rn+2  = rn - rn+1 ]

Max flow = 1 + r + r2.

Augmentations:  first augment 1 unit, then repeatedly choose

path with lowest capacity.
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Choosing Good Augmenting Paths

Goal:  choose augmenting paths so that:

! Can find augmenting paths efficiently.

! Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]

! Max bottleneck capacity.

! Sufficiently large bottleneck capacity.

! Fewest number of edges.
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Shortest Augmenting Path:  Overview of Analysis

L1.  The length of the shortest augmenting path never decreases.

L2.   After at most m augmentations, the length of the shortest

augmenting path strictly increases.

Theorem.  The shortest augmenting path algorithm performs at most

O(mn) augmentations.  It can be implemented in O(m2n) time.

! O(m) time to find shortest augmenting path via BFS.

! O(m) augmentations for paths of exactly k edges.   !

k < n
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Shortest Augmenting Path:  Analysis

Level graph.
! Define l (v) = length of shortest s-v path in G.

! LG = (V, F) is subgraph of G that contains only those edges (u, v) ! E
with l (v) = l (u) + 1.

! Compute LG in O(m+n) time using BFS, deleting back and side edges.

! P is a shortest s-u path in G iff it is an s-u path LG.
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Shortest Augmenting Path:  Analysis

L1.  The length of the shortest augmenting path never decreases.

! Let f and f' be flow before and after a shortest path augmentation.

! Let L and  L' be level graphs of Gf and Gf '

! Only back edges added to Gf '

! Path with back edge has length greater than previous length.
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Shortest Augmenting Path:  Analysis

L2.   After at most m augmentations, the length of the shortest

augmenting path strictly increases.

! At least one edge (the bottleneck edge) is deleted from L after

each augmentation.

! No new edges added to L until length of shortest path strictly

increases.
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Shortest Augmenting Path:  Review of Analysis

L1.  The length of the shortest augmenting path never decreases.

L2.   After at most m augmentations, the length of the shortest

augmenting path strictly increases.

Theorem.  The shortest augmenting path algorithm performs at most

O(mn) augmentations.  It can be implemented in O(m2n) time.

Note:  &(mn) augmentations necessary on some networks.

! Try to decrease time per augmentation instead.

! Dynamic trees  "   O(mn log n)    [Sleator-Tarjan, 1983]

! Simple idea    "   O(mn2)
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Shortest Augmenting Path:  Improved Version

Two types of augmentations.

! Normal augmentation:  length of shortest path doesn't change.

! Special augmentation:  length of shortest path strictly increases.

L3.  Group of normal augmentations takes O(mn) time.

! Explicitly maintain level graph - it changes by at most 2n edges

after each normal augmentation.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete at least one edge

– if get stuck, delete node
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Shortest Augmenting Path:  Improved Version
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Shortest Augmenting Path:  Improved Version
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Shortest Augmenting Path:  Improved Version

Two types of augmentations.

! Normal augmentation:  length of shortest path doesn't change.

! Special augmentation:  length of shortest path strictly increases.

L3.  Group of normal augmentations takes O(mn) time.

! At most n advance steps before you either

– get stuck:  delete a node from level graph

– reach t:  augment and delete an edge from level graph

Theorem.  Algorithm runs in O(mn2) time.

! O(mn) time between special augmentations.

! At most n special augmentations.
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History of Worst-Case Running Times

Dantzig

Discoverer

Simplex

Method Asymptotic Time

m n2 C †1951

Year

Ford, Fulkerson Augmenting path m n C †1955

Edmonds-Karp Shortest path m2 n1970

Dinitz Improved shortest path m n21970

Edmonds-Karp, Dinitz Capacity scaling m2 log C †1972

Dinitz-Gabow Improved capacity scaling m n log C †1973

Karzanov Preflow-push n31974

Sleator-Tarjan Dynamic trees m n log n1983

Goldberg-Tarjan FIFO preflow-push m n  log (n2 / m)1986

. . . . . . . . .. . .

Goldberg-Rao Length function
   m3/2 log (n2 / m) log C † 
mn2/3 log (n2 / m) log C †

1997

Edmonds-Karp Fattest path m  log C (m log n) †1970

† Edge capacities are between 1 and C. next time

Disjoint Paths

35

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,

find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,

find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Max flow formulation:  assign unit capacity to every edge.

Edge Disjoint Paths
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Unit Capacity Networks

Unit capacity network.

! Every edge capacity is one.

! If G is unit capacity, so is Gf, assuming f is 0-1 flow.

Ex:  disjoint paths, bipartite matching.

s

2

3

4

5

6

7

t

1

1

1

1

1

1

1

1

1

1

1

11

39

Unit Capacity Networks

Level graph

Augment

Lemma 1.  Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node
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Unit Capacity Networks

Lemma 1.  Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

delete node and retreat
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Unit Capacity Networks

Lemma 1.  Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

Augment
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Unit Capacity Networks

Lemma 1.  Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

Level graph

Stop:  length of shortest path has increased
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Unit Capacity Networks

Lemma 1.  Phase of normal augmentations takes O(m) time.

! Start at s, advance along an edge in L until reach t or get stuck.

– if reach t, augment and delete all edges on path

– if get stuck, delete node and retreat to previous node

! O(m) running time.

– O(m) to create level graph

– O(1) per edge, since each edge traversed at most once

– O(1) per node deletion

Unit Capacity Simple Networks
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Unit Capacity Simple Networks

Unit capacity simple network.

! Every edge capacity is one.

! Every node has either:

(i)  at most one incoming edge, or

(ii) at most one outgoing edge.

! If G is simple unit capacity, then so is

Gf, assuming f is 0-1 flow.

Theorem.  Shortest augmenting path algorithm runs in O(m n1/2) time.

! L1.  Each phase of normal augmentations takes O(m) time.

! L2.  After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! L3.  After at most n1/2 additional augmentations, flow is optimal.
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Unit Capacity Simple Networks

Lemma 2.  After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! After n1/2 phases, length of shortest augmenting path is >  n1/2.

! Level graph has more than n1/2 levels.

! Let 1 # h # n1/2 be layer with min number of nodes:  |Vh| #  n1/2.

VhV0 Vn
1/2

Level graph

V1
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Unit Capacity Simple Networks

Lemma 2.  After at most n1/2 phases, val(f) ' val(f*) - n1/2.

! After n1/2 phases, length of shortest augmenting path is >  n1/2.

! Level graph has more than n1/2 levels.

! Let 1 # h # n1/2 be layer with min number of nodes:  |Vh| #  n1/2.
! A := {v : l (v) <  h} $ {v : l (v) = h and v has # 1 outgoing residual edge}.

! capf (A, B)  #  |Vh| #  n1/2    "  val(f)  '  val(f*)  -  n1/2.

VhV0 Vn
1/2V1

Level graphresidual edges

A


