Priority Queues Performance Cost Summary

Fibonacci Heaps

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	п	log n	log n	log n	log n
decrease-key	п	log <i>n</i>	log <i>n</i>	1	1
delete	п	log n	log n	log n	log n
union	1	п	log n	1	1
find-min	п	1	log n	1	1

n = number of elements in priority queue

† amortized

Theorem. Starting from empty Fibonacci heap, any sequence of a_1 insert, a_2 delete-min, and a_3 decrease-key operations takes $O(a_1 + a_2 \log n + a_3)$ time.

COS 423 Theory of Algorithms . Kevin Wayne . Spring 2007

• Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.

• Chapter 9 of The Design and Analysis of Algorithms by Dexter Kozen.

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	п	log n	log n	log n	log n
decrease-key	п	log n	log n	1	1
delete	п	log n	log n	log n	log n
union	1	п	log n	1	1
find-min	п	1	log n	1	1

n = number of elements in priority queue

Lecture slides adapted from:

† amortized

Hopeless challenge. O(1) insert, delete-min and decrease-key. Why?

Fibonacci Heaps

History. [Fredman and Tarjan, 1986]

- Ingenious data structure and analysis.
- Original motivation: improve Dijkstra's shortest path algorithm from $O(E \log V)$ to $O(E + V \log V)$.

V insert. V delete-min. E decrease-kev

2

Basic idea.

- Similar to binomial heaps, but less rigid structure.
- Binomial heap: eagerly consolidate trees after each insert.

• Fibonacci heap: lazily defer consolidation until next *delete-min*.

Fibonacci Heaps: Structure

each parent larger than its children

Fibonacci heap.

• Set of heap-ordered trees.

- Maintain pointer to minimum element.
- Set of marked nodes.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.
 - find-min takes O(1) time

mir

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

use to keep heaps flat (stay tuned)

Fibonacci Heaps: Notation

Notation.

- \cdot *n* = number of nodes in heap.
- rank(x) = number of children of node x.
- rank(H) = max rank of any node in heap H.
- *trees*(*H*) = number of trees in heap *H*.
- *marks*(*H*) = number of marked nodes in heap *H*.

Fibonacci Heaps: Potential Function

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

insert 21

13

15

Linking Operation

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

16

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

19

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min Analysis

Delete min.

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

potential function

Actual cost. O(rank(H)) + O(trees(H))

- O(*rank*(*H*)) to meld min's children into root list.
- O(*rank*(*H*)) + O(*trees*(*H*)) to update min.
- O(*rank*(*H*)) + O(*trees*(*H*)) to consolidate trees.

Change in potential. O(*rank*(*H*)) - *trees*(*H*)

- $trees(H') \leq rank(H) + 1$ since no two trees have same rank.
- $\Delta \Phi(H) \leq rank(H) + 1 trees(H)$.

Amortized cost. O(rank(H))

Fibonacci Heaps: Delete Min Analysis

- Q. Is amortized cost of O(*rank*(*H*)) good?
- A. Yes, if only *insert* and *delete-min* operations.
- In this case, all trees are binomial trees.
- This implies $rank(H) \leq \lg n$.

we only link trees of equal rank

33

35

A. Yes, we'll implement *decrease-key* so that $rank(H) = O(\log n)$.

Fibonacci Heaps: Decrease Key

Intuition for deceasing the key of node *x*.

- If heap-order is not violated, just decrease the key of *x*.
- Otherwise, cut tree rooted at *x* and meld into root list.
- To keep trees flat: as soon as a node has its second child cut, cut it off and meld into root list (and unmark it).

Fibonacci Heaps: Decrease Key

Case 1. [heap order not violated]

Decrease key of *x*.

- Change heap min pointer (if necessary).

Decrease Key

Fibonacci Heaps: Decrease Key

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Case 2a. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent *p* of *x* is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut *p*, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent *p* of *x* is unmarked (hasn't yet lost a child), mark it; Otherwise, cut *p*, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

47

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent *p* of *x* is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

46

48

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of *x*.
- Cut tree rooted at *x*, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

Decrease-key.

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

Analysis

potential function

Actual cost. O(c)

- O(1) time for changing the key.
- O(1) time for each of *c* cuts, plus melding into root list.

Change in potential. O(1) - c

- trees(H') = trees(H) + c.
- $marks(H') \leq marks(H) c + 2.$
- $\Delta \Phi \leq c + 2 \cdot (-c+2) = 4 c.$

Amortized cost. O(1)

Analysis Summary

Insert.O(1)Delete-min.O(rank(H)) †Decrease-key.O(1) †

† amortized

Key lemma. $rank(H) = O(\log n)$.

```
number of nodes is exponential in rank
```

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let *x* be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to *x*. Then:

Pf.

- When y_i was linked into x, x had at least *i*-1 children $y_1, ..., y_{i-1}$.
- Since only trees of equal rank are linked, at that time rank(y_i) = rank(x_i) ≥ i 1.
- Since then, y_i has lost at most one child.
- Thus, right now $rank(y_i) \ge i 2$.

or y_i would have been cut

49

Lemma. Fix a point in time. Let *x* be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to *x*. Then:

Def. Let F_k be smallest possible tree of rank k satisfying property.

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let *x* be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to *x*. Then:

Def. Let F_k be smallest possible tree of rank *k* satisfying property.

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let *x* be a node, and let $y_1, ..., y_k$ denote its children in the order in which they were linked to *x*. Then:

Def. Let F_k be smallest possible tree of rank k satisfying property.

Fibonacci fact. $F_k \ge \phi^k$, where $\phi = (1 + \sqrt{5}) / 2 \approx 1.618$. Corollary. $rank(H) \le \log_{\phi} n$. golden ratio **Fibonacci Numbers**

Fibonacci Numbers: Exponential Growth

Def. The Fibonacci sequence is: 1, 2, 3, 5, 8, 13, 21, ...

 $\mathbf{F}_{\mathbf{k}} = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ \mathbf{F}_{\mathbf{k}\cdot\mathbf{l}} + \mathbf{F}_{\mathbf{k}\cdot\mathbf{2}} & \text{if } k \geq 2 \end{cases}$ slightly non-standard definition

Lemma. $F_k \ge \phi^k$, where $\phi = (1 + \sqrt{5}) / 2 \approx 1.618$.

- **Pf.** [by induction on k]
- Base cases: $F_0 = 1 \ge 1$, $F_1 = 2 \ge \phi$. Inductive hypotheses: $F_k \ge \phi^k$ and $F_{k+1} \ge \phi^{k+1}$

pinecone

57

59

cauliflower

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Union

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Actual cost. O(1)

Change in potential. 0

Amortized cost. O(1)

potential function

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

potential function

 min 23 26 46 17 7 3 41 18 52 41 18 52 41 19 44 39 44

Fibonacci Heaps: Delete

Delete node *x*.

63

- decrease-key of x to $-\infty$.
- *delete-min* element in heap.

Amortized cost. O(*rank*(*H*))

- O(1) amortized for *decrease-key*.
- O(*rank*(*H*)) amortized for *delete-min*.

