Fibonacci Heaps

ecture slides adapted from

- Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.
- Chapter 9 of The Design and Analysis of Algorithms by Dexter Kozen.
$\cos 423$ Theory of Algorithms . Kevin Wayne . Spring 2007

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap \dagger	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	$\log n$	$\log n$	1	1
delete-min	n	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	n	$\log n$	$\log n$	1	1
delete	n	$\log n$	$\log n$	$\log n$	$\log n$
union	1	n	$\log n$	1	1
find-min	n	1	$\log n$	1	1

$n=$ number of elements in priority queue $\quad \dagger$ amortized

Hopeless challenge. O(1) insert, delete-min and decrease-key. Why?

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap t	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	$\log n$	$\log n$	1	1
delete-min	n	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	n	$\log n$	$\log n$	1	1
delete	n	$\log n$	$\log n$	$\log n$	$\log n$
union	1	n	$\log n$	1	1
find-min	n	1	$\log n$	1	1

$n=$ number of elements in priority queue

Theorem. Starting from empty Fibonacci heap, any sequence of a_{1} insert, a_{2} delete-min, and a_{3} decrease-key operations takes $\mathrm{O}\left(a_{1}+a_{2} \log n+a_{3}\right)$ time.

Fibonacci Heaps

History. [Fredman and Tarjan, 1986]

- Ingenious data structure and analysis.
- Original motivation: improve Dijkstra's shortest path algorithm from $O(E \log V)$ to $O(E+V \log V)$. \checkmark insert, V delete-min, E decrease-key

Basic idea.

- Similar to binomial heaps, but less rigid structure.
- Binomial heap: eagerly consolidate trees after each insert.

- Fibonacci heap: lazily defer consolidation until next delete-min.

Fibonacci heap.
each parent larger than its children

- Set of heap-ordered trees.

Maintain pointer to minimum element.

- Set of marked nodes.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees
- Maintain pointer to minimum element
- Set of marked nodes.

1
use to keep heaps flat (stay tuned)

Fibonacci heap

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

Notation.

- $n=$ number of nodes in heap
- $\operatorname{rank}(x)=$ number of children of node x
- $\operatorname{rank}(H)=$ max rank of any node in heap H
- trees $(H)=$ number of trees in heap H.
- marks $(H)=$ number of marked nodes in heap H.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

potential of heap H

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).
insert 21

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).
insert 21

Actual cost. O(1)
Change in potential. +1
Amortized cost. O(1)

Linking Operation
$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$
Delete Min
potential of heap H

Linking operation. Make larger root be a child of smaller root.

tree T_{1}

tree T_{2}

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min
. Consolidate trees so that no two roots have same rank

Delete min.
. Delete min; meld its children into root list; update min.

- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
. Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min
. Consolidate trees so that no two roots have same rank.

link 23 into 17

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 24 into 7

Delete min.

- Delete min; meld its children into root list; update min.
. Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min
. Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min; meld its children into root list; update min

Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
. Consolidate trees so that no two roots have same rank.

Fibonacci Heaps: Delete Min Analysis

Delete min.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

potential function

Actual cost. $\quad \mathrm{O}(\operatorname{rank}(H))+\mathrm{O}($ trees $(H))$

- $\mathrm{O}(\operatorname{rank}(H))$ to meld min's children into root list.
- $\mathrm{O}(\operatorname{rank}(H))+\mathrm{O}($ trees (H)) to update min.
. $\mathrm{O}(\operatorname{rank}(H))+\mathrm{O}($ trees $(H))$ to consolidate trees.

Change in potential. $\mathrm{O}(\operatorname{rank}(H))-\operatorname{trees}(H)$

- $\operatorname{trees}\left(H^{\prime}\right) \leq \operatorname{rank}(H)+1$ since no two trees have same rank.
- $\Delta \Phi(H) \leq \operatorname{rank}(H)+1-\operatorname{trees}(H)$.

Amortized cost. $\mathrm{O}(\operatorname{rank}(H))$
Q. Is amortized cost of $\mathrm{O}(\operatorname{rank}(H))$ good?
A. Yes, if only insert and delete-min operations.

- In this case, all trees are binomial trees.
- This implies $\operatorname{rank}(H) \leq \lg n$.
we only link trees of equal rank

A. Yes, we'll implement decrease-key so that $\operatorname{rank}(H)=\mathrm{O}(\log n)$.

Fibonacci Heaps: Decrease Key

Intuition for deceasing the key of node x.

- If heap-order is not violated, just decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- To keep trees flat: as soon as a node has its second child cut, cut it off and meld into root list (and unmark it).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Case 1. [heap order not violated]

- Decrease key of x.

Change heap min pointer (if necessary).

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

- Decrease key of x
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Case 2a. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2a. [heap order violated]

- Decrease key of x
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Case 2a. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of x
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of x
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;

Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

Fibonacci Heaps: Decrease Key

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it; Otherwise, cut p, meld into root list, and unmark
(and do so recursively for all ancestors that lose a second child).

Decrease-key.
$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Analysis

Actual cost. O(c)

- O(1) time for changing the key.
- O(1) time for each of cuts, plus melding into root list.

Change in potential. $\mathrm{O}(1)-c$

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+c$.
. $\operatorname{marks}\left(H^{\prime}\right) \leq \operatorname{marks}(H)-c+2$.
$\Delta \Phi \leq c+2 \cdot(-c+2)=4-c$.

Amortized cost. O(1)

Insert. O(1)
Delete-min. $\quad \mathrm{O}(\operatorname{rank}(H))+$
Decrease-key. O(1) \dagger
\dagger amortized

Analysis Summary

number of nodes is exponential in rank

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y_{1}, \ldots, y_{k} denote its children in the order in which they were linked to x. Then:

```
rank (\mp@subsup{y}{i}{})\geq{\begin{array}{ll}{0}&{\mathrm{ if }i=1}\\{i-2}&{\mathrm{ if }i\geq1}\end{array}
```


Pf.

- When y_{i} was linked into x, x had at least $i-1$ children $y_{1}, \ldots, y_{\mathrm{i}-1}$
- Since only trees of equal rank are linked, at that time $\operatorname{rank}\left(y_{i}\right)=\operatorname{rank}\left(\mathrm{x}_{\mathrm{i}}\right) \geq i-1$.
- Since then, y_{i} has lost at most one child.
- Thus, right now $\operatorname{rank}\left(y_{i}\right) \geq i-2$. -
or y, would have been cur

Lemma. Fix a point in time. Let x be a node, and let y_{1}, \ldots, y_{k} denote its children in the order in which they were linked to x. Then:

$$
\operatorname{rank}\left(y_{i}\right) \geq \begin{cases}0 & \text { if } i=1 \\ i-2 & \text { if } i \geq 1\end{cases}
$$

Def. Let F_{k} be smallest possible tree of rank k satisfying property.

Fibonacci Heaps: Bounding the Rank

Lemma. Fix a point in time. Let x be a node, and let y_{1}, \ldots, y_{k} denote its children in the order in which they were linked to x. Then:

```
rank (\mp@subsup{y}{i}{})\geq{\begin{array}{ll}{0}&{\mathrm{ if }i=1}\\{i-2}&{\mathrm{ if }i\geq1}\end{array})
```


Def. Let F_{k} be smallest possible tree of rank k satisfying property.
Fibonacci fact. $F_{k} \geq \phi^{k}$, where $\phi=(1+\sqrt{ } 5) / 2 \approx 1.618$.
Corollary. $\operatorname{rank}(H) \leq \log _{\phi} n$.

Lemma. Fix a point in time. Let x be a node, and let y_{1}, \ldots, y_{k} denote its children in the order in which they were linked to x. Then:

```
rank}(\mp@subsup{y}{i}{})\geq{\begin{array}{ll}{0}&{\mathrm{ if }i=1}\\{i-2}&{\mathrm{ if }i\geq1}
```


Def. Let F_{k} be smallest possible tree of rank k satisfying property.

8
13

$8+13=21$

Def．The Fibonacci sequence is： $1,2,3,5,8,13,21, \ldots$

$$
\mathrm{F}_{\mathrm{k}}=\left\{\begin{array}{ll}
1 & \text { if } k=0 \\
2 & \text { if } k=1 \\
\mathrm{~F}_{\mathrm{k}-1}+\mathrm{F}_{\mathrm{k}-2} & \text { if } k \geq 2
\end{array} \quad\right. \text { slightly non-standard definition }
$$

Lemma．$\quad F_{k} \geq \phi^{k}$ ，where $\phi=(1+\sqrt{ } 5) / 2 \approx 1.618$.

Pf．［by induction on k］
．Base cases：$F_{0}=1 \geq 1, F_{1}=2 \geq \phi$ ．
－Inductive hypotheses：$F_{k} \geq \phi^{k}$ and $F_{k+1} \geq \phi^{k+1}$

```
F}\mp@subsup{F}{k+2}{}=\mp@subsup{F}{k}{}+\mp@subsup{F}{k+1}{
    \geq}\mp@subsup{\phi}{}{k}+\mp@subsup{\phi}{}{k+1
    = 加
    = 都}(\mp@subsup{\phi}{}{2}
    = 里
（definition）
（inductive hypothesis）
（algebra）
（ \(\phi^{2}=\phi+1\) ）
（algebra）
```


pinecone

cauliflower

Fibonacci Heaps：Union

Union．Combine two Fibonacci heaps．

Representation．Root lists are circular，doubly linked lists．

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Delete

Actual cost. O(1)
Change in potential. 0

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Amortized cost. O(1)

Fibonacci Heaps: Delete

Delete node x.

- decrease-key of x to $-\infty$.
. delete-min element in heap.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

potential function

Amortized cost. O(rank(H))

- O(1) amortized for decrease-key.
- O(rank(H)) amortized for delete-min.

