
A Polynomial Combinatorial Algorithm for Generalized Minimum

Cost Flow ∗

Kevin D. Wayne†

Abstract

We propose the first combinatorial solution to one of the most classic problems in combi-

natorial optimization: the generalized minimum cost flow problem (flow with losses and gains).

Despite a rich history dating back to Kantorovich and Dantzig, until now, the only known way

to solve the problem in polynomial-time was via general purpose linear programming techniques.

Polynomial combinatorial algorithms were previously known only for the version of our problem

without costs. We design the first such algorithms for the version with costs. Our algorithms also

find provably good solutions faster than optimal ones, providing the first strongly polynomial

approximation schemes for the problem.

Our techniques extend to optimize linear programs with two variables per inequality. Poly-

nomial combinatorial algorithms were previously developed for testing the feasibility of such

linear programs. Until now, no such methods were known for the optimization version.

1 Introduction

In the traditional minimum cost flow problem, the goal is to send a single commodity from supply

nodes to demand nodes without violating capacity constraints, and do so as cheaply as possible. The

generalized minimum cost flow problem is an important generalization in which each arc e also has

a positive multiplier γ(e), called a gain factor, associated with it. For each unit of flow that enters

the arc, γ(e) units exit. We formally define the problem in § 2. The gain factors can represent

physical transformations due to leakage, evaporation, breeding, theft, or interest rates. They
∗An extended abstract of this paper appears in the Proceedings of the 31st Annual ACM Symposium of Theory

of Computing 1999.
†Computer Science Department, Princeton University, Princeton, NJ 08544. Research supported while the author

was at Cornell in part by ONR through grant AASERT N00014-97-1-0681. Email: wayne@cs.princeton.edu.

1

2 K. WAYNE

can also represent transformations from one commodity to another as a result of manufacturing,

scheduling, or currency exchange. For example, a gain factor of 0.96 could represent the possibility

of converting one U.S. dollar into 0.96 Euros. Many applications are described in [2, 11, 12].

The problem has a distinguished history. Kantorovich [23] introduced the problem in his land-

mark 1939 paper, where he justified the use of optimization as a tool for planning and production:

his main applications were formulated as generalized flow problems. He also proposed a dual sim-

plex type method for the problem. In the late 1950’s Dantzig [8] extended the network simplex

method to handle generalized flow. Around the same time, Jewell [22] designed a combinatorial

primal-dual method for the problem.

Since our problem is a special case of linear programming, it can be solved in polynomial-time

using the ellipsoid [25] or interior point methods [24, 37]. These general purpose linear program-

ming methods rely on linear algebraic techniques, e.g., Gaussian elimination. We develop fast

combinatorial algorithms for the problem. Our combinatorial algorithms directly manipulate the

underlying graph. This approach has led to superior algorithms for a variety of optimization prob-

lems, including shortest path, maximum flow, minimum spanning tree, matching, and minimum

cost flow.

We design the first polynomial combinatorial algorithms for the generalized minimum cost flow

problem. Our algorithms actually solve the generalized minimum cost circulation problem, an

equivalent problem in which all supplies and demands are zero. The basic scheme is to start with

a circulation (e.g., the zero flow) and repeatedly augment flow along the generalized flow analogs

of paths and cycles. Our first algorithm is a direct “augmenting path” or “cycle-canceling” style

algorithm. Our second algorithm is a faster version that uses scaling.

Although the best interior point methods are faster than our combinatorial algorithms for com-

puting optimal solutions, our algorithms are faster for computing approximately optimal solutions

when the size of the input numbers is relatively large. The complexity of all known polynomial

linear programming algorithms depends on the size of the costs, capacities, and/or gain factors, i.e.,

they are not strongly polynomial. In practice, interior point methods find approximately optimal

solutions faster than optimal ones. However, no theorems are known to guarantee this, even for

generalized flow. As a result, only weakly polynomial algorithms were previously known, even when

computing a constant factor approximation. Our combinatorial algorithms are the first strongly

polynomial approximation schemes for the generalized minimum cost circulation problem. How-

GENERALIZED MINIMUM COST FLOW 3

ever, we note that our combinatorial approach does not imply a strongly polynomial approximation

scheme for the version with supplies and demands. The straightforward reduction from the version

with supplies or demands to the circulation version requires finding a feasible solution that satisfies

all of the demand; it is not known how to do this in strongly polynomial time.

Using an exponential length function in a packing framework, Oldham [30] and Wayne and Fleis-

cher [41] designed combinatorial approximation schemes for a version of the generalized minimum

cost flow problem. Their version has supplies and demands, but they do not insist on obtaining

feasible solutions. Instead, they construct a solution that nearly satisfies all of the demand or whose

cost is nearly optimal. The added flexibility makes the problem easier. Their methods have not led

to exact algorithms for the problem since the running time is exponential in the binary encoding

of the precision parameter.

We generalize the minimum ratio cycle-canceling algorithms of Wallacher [38], which in turn,

generalizes the minimum mean cycle-canceling algorithm of Goldberg and Tarjan [15], which in

turn generalizes the shortest augmenting path algorithm of Edmonds and Karp [9]. The recent

Goldberg-Rao [14] maximum flow algorithm builds upon ideas from Wallacher’s algorithm. Also,

different extensions of Wallacher’s algorithm have recently produced efficient methods for solving

unimodular linear programs [27], submodular flow [39], and certain classes of integer programs [33].

Our problem has no integrality theorem, so it does not fit into any of these categories.

The generalized maximum flow problem is a special case of our problem in which there are no

costs. In one version of the problem, the goal is to maximize the amount of flow sent through a given

arc. Goldberg, Plotkin, and Tardos [13] designed the first combinatorial polynomial algorithms for

this problem. Subsequently, researchers [7, 16, 17, 18, 31, 36, 41] proposed new polynomial algo-

rithms, also using flow-based techniques. All of these are primal-dual style algorithms. Remarkably,

the specializations of our algorithms to this well-studied problem are the first strictly primal meth-

ods that run in polynomial-time, i.e., they send flow only along “generalized augmenting paths,” a

nonbasic version of Dantzig’s primal simplex method.

In this paper we also solve the related 2VPI optimization problem. Here the goal is to maximize

an arbitrary linear objective function subject to linear constraints with at most two variables per

inequality. Two important special cases of the TVPI optimization problem are: the shortest path

problem, and the dual of (uncapacitated) generalized minimum cost flow. The TVPI problem has

some applications of its own, but is probably most important because it is one of the simplest

4 K. WAYNE

classes of linear programs that is not well understood. Previously, researchers [3, 4, 6, 21, 29, 35]

developed combinatorial algorithms for the feasibility version of the problem. However, prior to this

paper, there was no way to handle arbitary objective functions without resorting to general purpose

linear programming techniques. We propose the first polynomial combinatorial algorithms for the

TVPI optimization problem. All previous polynomial combinatorial 2VPI feasibility algorithms

are extensions of the Bellman-Ford shortest path algorithm. In contrast, our 2VPI optimization

algorithms build upon existing minimum cost flow techniques.

2 Preliminaries

The input to the generalized minimum cost circulation problem is a generalized network G =

(V,E, u, c, γ), where (V,E) is a directed graph with node set V and arc set E, u : E → <≥0 is a

capacity function, c : E → < is a cost function, and γ : E → <>0 is a gain function. For notational

convenience we assume that there are no parallel arcs so that each arc can be uniquely specified by

its endpoints. We let n = |V | and m = |E|. A generalized circulation g : E → <≥0 is a nonnegative

function that satisfies the flow conservation constraints:

∀v ∈ V :
∑

w∈V :(v,w)∈E
g(v,w) =

∑
w∈V :(w,v)∈E

γ(w, v)g(w, v).

It is feasible if, in addition, it satisfies the capacity constraints:

∀(v,w) ∈ E : g(v,w) ≤ u(v,w).

We abuse notation slightly, and denote the cost of a circulation g by c(g) =
∑

(v,w)∈E c(v,w)g(v,w).

The generalized minimum cost circulation problem is to find a feasible generalized circulation of

minimum cost. We are also interested in finding provably good (but not necessarily optimal)

circulations. An ε-optimal generalized circulation is a feasible generalized circulation that has value

within a (1 + ε) factor of the optimum value. An approximation scheme is a family of algorithms

that finds a ε-optimal generalized circulation in polynomial-time for every fixed constant ε > 0.

A fully polynomial-time approximation scheme is an approximation scheme whose running time is

polynomial in the size of the input and in 1/ε. We assume the costs and capacities are integral and

that the gain factors are ratios of two integers, and we denote the biggest of these integers by B.

For notational convenience, we assume B ≥ m ≥ 2 and use Õ(f) to denote f logO(1)m. Also, we

sometimes omit the adjective “generalized” if its meaning is clear from context.

GENERALIZED MINIMUM COST FLOW 5

2.1 Residual Networks

For each e ∈ E, let ē denote its reverse arc. Let Ē = {ē : e ∈ E} denote the set of reverse arcs. The

gain factor of ē is 1/γ(e) and its cost is −c(e)/γ(e). Arc ē represents the possibility of pushing flow

back on arc e. Let g be a generalized circulation in network G. The residual capacity function of arc

e and ē is defined by ug(e) = u(e)−g(e) and ug(ē) = γ(e)g(e), respectively. Let Eg ⊆ E∪ Ē denote

the subset of arcs with positive residual capacity. The residual network is Gg = (V,Eg, ug, c, γ).

Solving the problem in the residual network is equivalent to solving it in the original network.

Residual cycles and residual circulations are cycles and circulations in the residual network.

2.2 Optimality Conditions.

The optimality conditions for the problem have been known since at least the 1970’s, and appear in

Gondran and Minoux [19]. Recall, in non-generalized networks, a feasible circulation f is optimal

if and only if the residual network Gf contains no negative cost cycles. An analogous result holds

for generalized flows.

First, we review some basic definitions. The gain of a cycle is the product of the gain factors

of arcs participating in that cycle. A unit-gain cycle is a cycle whose gain is equal to one. A

flow-generating (flow-absorbing) cycle is a cycle whose gain is greater (less) than one. By sending

flow around a flow-generating (flow-absorbing) cycle, we create (destroy) flow. A bicycle is shown

in Figure 1. It is a flow-generating cycle, a flow-absorbing cycle, and a (possibly trivial) path

from the first cycle to the second. We note that the arcs in the flow-generating and flow-absorbing

cycles need not be edge-disjoint. Unit-gain cycles and bicycles play the same role that cycles do

for non-generalized flows. Given a residual unit-gain cycle or bicycle, we can increase flow on these

arcs so that the capacity and flow conservation constraints are maintained. If in addition, at least

one arc becomes saturated, this operation is called canceling a unit-gain cycle or bicycle.

A circuit is a circulation that sends positive flow only along the arcs of a single residual unit-gain

cycle or bicycle. The boxed values in Figure 1 represent a circuit corresponding to the bicycle. The

following conformal decomposition lemma says that any generalized circulation can be decomposed

into a small collection of circuits. It follows by standard flow decomposition arguments.

Lemma 1 (e.g., see [19]). A generalized circulation g can be decomposed into components g1, . . . , gk

with k ≤ m such that g =
∑

i gi and each component gi is a circuit that is positive only on arcs e

with g(e) > 0.

6 K. WAYNE

1

2

3

4

5

6

5

2

1/2

10

1

2

6
3 1 72

3/4
72

1

54

circuit g

gain γ

Figure 1: A bicycle and a corresponding circuit.

It is now easy to characterize the optimality conditions. Recall that the cost of a circuit x is

c(x) =
∑

e∈E c(e)x(e). Note that even for circuits associated with unit-gain cycles, the cost is not

in general equal to the sum of the arc costs in the cycle. Because of the gain factors, the circuit

might send very different amounts of flow along different arcs in the cycle. Let g be a feasible

generalized circulation. Clearly the existence of a negative cost residual circuit implies that we can

improve the current circulation. The converse is also true and its proof is straightforward using

Lemma 1.

Theorem 2 (e.g., see [19]). A feasible generalized circulation g is optimal if and only if Gg con-

tains no negative cost circuits.

3 Minimum-Ratio Circuit Canceling Algorithm

In this section we present a simple (but not the most efficient) “circuit-canceling” algorithm for the

generalized minimum cost circulation problem.

The basic scheme is to start with a feasible circulation (e.g., the zero circulation), and then

repeatedly cancel a negative cost residual circuit. This strictly improves the objective function,

while maintaining feasibility. In non-generalized networks, this is known as Klein’s [26] cycle-

canceling algorithm. Klein’s algorithm may require exponential time, but it can be refined to a

polynomial algorithm by carefully choosing the negative cost cycles to cancel. Several efficient

cycle selection rules are known for the traditional minimum cost circulation problem. See Shigeno,

Iwata, and McCormick [34] for a recent survey of such cycle-canceling methods. The most famous

GENERALIZED MINIMUM COST FLOW 7

of these is Goldberg and Tarjan’s [15] minimum mean cost cycle rule. The mean cost of a cycle

Γ is
∑

e∈Γ c(e)/|Γ|, i.e., the ratio of its cost to the number of arcs. Repeatedly canceling the

minimum mean cost residual cycle is a strongly polynomial algorithm for the problem. Although

the algorithm extends to generalized flow, the complexity analysis does not.

Wallacher [38] proposed a different strategy, which is (apparently) more amenable for extensions

to generalized flow. Given a nonnegative time function t : E → <≥0, the ratio of a cycle Γ is defined

to be
∑

e∈Γ c(e)/
∑

e∈Γ t(e), i.e., the ratio of its cost to time. Finding such a cycle with arbitrary

costs and nonnegative times is known as the tramp steamer problem and has many applications

of its own [2]. If the times are chosen to be uniform for all arcs, minimum ratio cycles coincide

with minimum mean cycles. Wallacher also considered choosing the time of an arc to be the

reciprocal of its residual capacity. Using this novel rule, Wallacher [38] shows that repeatedly

canceling a minimum ratio cycle is a (weakly) polynomial algorithm for the traditional minimum

cost circulation problem. Intuitively, we would like to cancel a cycle that significantly improves

the objective function. We hope to find a cycle with very negative cost and with large residual

capacity; the minimum ratio cycle is a tradeoff between these two competing objectives.

A more direct way to achieve the same goal would be to cancel a most-improving cycle, i.e., a

cycle whose cancelation improves the objective function by the maximum amount. This is Wein-

traub’s algorithm [42]. However, it is NP-hard to find such a cycle. By solving a sequence of

assignment problems, Barahona and Tardos [5] find a collection of cycles whose cancelation im-

proves the objective function by at least as much as the most-improving cycle. However, we do not

see how to find an analogous object for our problem. It is possible to find a most-improving object

for generalized maximum flow [40].

Our generalized flow algorithm repeatedly cancels minimum ratio circuits. Motivated by the

cost-to-time ratio for traditional networks, we define the ratio of a circuit x to be:

∑
e∈E

c(e)x(e) /
∑
e∈E

t(e)x(e)

and, as in [38], we choose the time of an arc to be the reciprocal of its residual capacity. Note that

even for circuits corresponding to unit-gain cycles, the ratio is not simply the sum of the arc costs

divided by the sum of the arc times. Because of the gain factors, canceling a circuit may send very

different amounts of flow on different arcs in the unit-gain cycle. However, if every arc in the cycle

has unit gain, our definition coincides with Wallacher’s. In § 6 we describe an efficient method for

8 K. WAYNE

computing a minimum ratio circuit. The method is based upon the Bellman-Ford shortest path

algorithm.

The minimum ratio circuit canceling algorithm is described in Figure 2. We will show that the

gap between the cost of the current circulation and the optimum geometrically decreases to zero.

Because there is no integrality theorem for generalized flows and we may augment non-integral

amounts of flow, we terminate our algorithm when this gap is small (but possibly nonzero). After

a polynomial number of iterations, the gap will be sufficiently small, and this will guarantee that

the current circulation is ε-optimal. If we are interested in computing an optimal circulation, we

can stop when ε = B−7m and “round” the current circulation to an optimal one. Such a rounding

procedure is described in § 5. Since the running time grows only logarithmically will 1/ε, this is a

polynomial algorithm.

Input: generalized network G and precision parameter ε

Output: ε-optimal circulation g

Initialize g ← 0

for i = 1 to dme−1/2 log(1/ε)e do

∀e ∈ Eg : t(e) = 1/ug(e)

Cancel a min ratio circuit in Gg

Update g

end for
Figure 2: Minimum Ratio Algorithm

The next two lemmas imply that the cost of the circulation g that the algorithm maintains

geometrically converges to the optimum value. The first lemma says that canceling a circuit with

ratio µ improves the objective function by at least µ. The second crucial lemma says that the

minimum ratio circuit value is always within a factor of m of the optimum value. As a result, each

time we cancel a minimum ratio circuit, we capture at least a 1/m fraction of the remaining profit

in the network. Our proofs of these lemmas are similar to those in Wallacher [38].

Lemma 3. Let g be a feasible circulation. Let x be a negative cost circuit in Gg, and let µ denote

its ratio. Canceling circuit x improves the objective function value by at least µ.

Proof. First recall x has negative cost so µ is negative. When x is canceled, it is rescaled so

that it satisfies the residual capacity constraints and saturates at least one arc. After rescaling,

GENERALIZED MINIMUM COST FLOW 9

t(x) =
∑

e∈Eg x(e)/ug(e) ≥ 1 since at least one residual arc is saturated. Rescaling does not affect

the ratio; consequently c(x) = µt(x) ≤ µ < 0.

The key to the our complexity analysis is showing that there exists a circuit with a very negative

ratio.

Lemma 4. Let g be a feasible circulation that is not optimal. Let µ∗ denote the minimum ratio

circuit value in Gg. Then OPT(Gg) ≤ µ∗ ≤ OPT(Gg)/m < 0.

Proof. The first inequality follows from Lemma 3. The third inequality follows from the sub-

optimality of g. Now, let xOPT be an optimal circulation in Gg. Since any circulation can be

decomposed into circuits (see Lemma 1), the value of the minimum ratio circulation is equal to

the value of the minimum ratio circuit. Then, by definition of µ∗, we have µ∗ ≤ c(xOPT)/t(xOPT).

Recall t(xOPT) =
∑

e x
OPT(e)/ug(e). Since xOPT is feasible, we have t(xOPT) ≤ m. Combining

these two inequalities and recalling that c(xOPT) is negative yields:

µ∗ ≤ c(xOPT)/t(xOPT) ≤ c(xOPT)/m = OPT(Gg)/m.

Lemma 4 says that value of the minimum ratio circuit µ∗ and the optimality gap OPT(Gg) are

always within a factor of m of each other. Since the optimality gap geometrically decreases to zero,

so does µ∗. So while our algorithm does not explicitly use a scaling parameter, it implicitly drives

the parameter µ∗ to zero.

Theorem 5. The minimum ratio circuit-canceling algorithm computes an ε-optimal generalized

minimum cost circulation in Õ(m2n3 log(1/ε)) time. In Õ(m3n3 logB) time it computes an optimal

circulation.

Proof. Lemma 4 says that the minimum ratio circuit value is always within a factor of m of the

optimality gap. Lemma 3 says that if we cancel a circuit of ratio µ, then the optimality gap decreases

by at least that quantity. Combining these two lemmas, we see that each iteration captures at least

a 1/m fraction of the remaining profit. In other words, each iteration decreases the optimality gap

by at least a 1 − 1/m factor. Thus, there are O(m log(1/ε)) iterations since (1 − 1/m)m ≥ 1/(2e)

for m ≥ 2. The bottleneck computation in each iteration is computing a minimum ratio circuit; in

§ 6 we propose a Õ(mn3) time subroutine. This proves the first part of the theorem.

10 K. WAYNE

We will show in § 5 that the value of a vertex in the underlying polytope requires onlyO(m logB)

bits of precision. The resulting Lemma 11 shows how a B−7m-optimal circulation can be rounded

to an optimal vertex by canceling at most m additional circuits. This proves the second part of

the theorem.

4 A Scaling-Version

In this section we propose a faster version of the minimum ratio algorithm. The overwhelming

bottleneck in the original algorithm is computing minimum ratio circuits. The crucial idea needed

for improving the complexity is that we do not really need to cancel the exact minimum ratio

circuit. The same idea was used by Wallacher [38] for non-generalized flows. Canceling such a

circuit would improve the objective function by at least µ∗, where µ∗ is the minimum ratio circuit

value. However, this requires Õ(mn3) time. Our improved version cancels circuits in phases. Each

phase is characterized by a scaling parameter µ < 0, which at the beginning of a phase is at least

as small as µ∗/2. Instead of canceling the minimum ratio circuit, we cancel one that has ratio at

least as small as µ. To do this we introduce the cost function cµ(e) := c(e) − µt(e). We cancel

negative cost circuits with respect to these modified costs cµ. It is easy to see that such negative

cost circuits have ratio at least as small as µ. Now, finding negative cost circuits requires only

Õ(mn2) time and speeds up the overall algorithm by a factor of n. We halve µ when it becomes

an overestimate of the current minimum ratio circuit value. When µ is sufficiently close to zero,

the optimality gap is small enough to guarantee an approximately optimal solution. The scaling

algorithm is given in Figure 3.

Lemma 6. There are at most 2m cancelations per scaling phase.

Proof. In a µ-phase, each circuit canceled has ratio at least as small as µ. Lemma 3 implies that

this improves the objective function by at least µ.

At the end of a 2µ scaling phase, there are no negative c2µ-cost residual circuits. This implies

2µ ≤ µ∗, where µ∗ is the value of the minimum ratio circuit at the end of the phase. Combining

this with Lemma 4, we obtain 2mµ ≤ OPT(Gg) < 0.

Now, at the beginning of a µ-phase, we know that the objective function can be improved by

at most 2mµ. Since, each cancelation improves the objective function by at least µ, there can be

at most 2m cancelations per phase.

GENERALIZED MINIMUM COST FLOW 11

Input: generalized network G and precision parameter ε

Output: ε-optimal flow g

Initialize g ← 0, µ← min ratio circuit value

∀e ∈ Eg : t(e) = 1/ug(e), cµ(e) = c(e) − µt(e)

repeat

while ∃ negative cµ-cost residual circuit do

Cancel a negative cost (with respect to cµ) circuit in Gg

Update g, t, and cµ

end while

µ← µ/2

until µ ≥ ε
mc(g) (g is ε-optimal)

Figure 3: Scaling Min Ratio Circuit-Canceling Algorithm

The next lemma shows that when our algorithm terminates, the circulation g is ε-optimal.

Lemma 7. Suppose at the end of a µ scaling phase we have µ ≥ ε
2mc(g), where g is the current

circulation. Then g is ε-optimal.

Proof. Let µ∗ denote the value of the minimum ratio circuit at the end of the µ-scaling phase. As

in the proof of Lemma 6 we have 2µ ≤ µ∗. Now,

ε

m
c(g) ≤ 2µ ≤ µ∗ ≤ OPT(Gg)

m
.

The third inequality follows from Lemma 4. Multiplying through by m and using the fact that

OPT(G) = OPT(Gg) + c(g) we obtain OPT(G) ≥ (1 + ε) c(g) as claimed.

Theorem 8. The scaling algorithm finds an ε-optimal circulation in Õ(m2n2 log(1/ε)) time. It

finds an optimal circulation in Õ(m3n2 logB) time.

Proof. The bottleneck computation is detecting a negative cost circuit. In § 6 we show that this can

be done in Õ(mn2) time using a Bellman-Ford style algorithm. There are at most 2m cancelations

per phase.

We complete the proof by showing that there are O(log(m/ε)) scaling phases. Let µ0 be the

value of the minimum ratio circuit in the original network G, and let g0 be circulation just after

canceling the first circuit. By Lemma 3 we have µ0 ≥ c(g0). The parameter µ halves in each phase,

12 K. WAYNE

so after O(log(2m/ε)) phases we have µ ≥ ε
2mc(g0) ≥ c(g), where the last inequality follows since

the objective function is monotone decreasing throughout the algorithm. This implies that after

O(log(2m/ε)) iterations, the stopping condition µ ≥ ε
2mc(g) is satisfied. Lemma 7 guarantees g is

ε-optimal when the stopping condition is satisfied.

5 Rounding to a Vertex

In this section, we propose a method to convert one generalized circulation into another circulation

that is a vertex of the underlying polytope. The cost of the vertex we obtain will be no larger

than the cost of the original circulation. In linear programming terminology, this process is called

purification. Our purification method uses flow-type techniques instead of linear algebra. This

purification process is useful to “round” an essentially optimal circulation into an optimal one.

First, it is easy to characterize the vertices of the underlying polytope.

Lemma 9. Let g be a feasible generalized circulation and let A := {e ∈ Eg : 0 < g(e) < u(e)} be

the subset of arcs that have residual capacity in both directions. Then g is a vertex if and only if

the subgraph induced by A has no unit-gain cycles or bicycles.

Now, we show how to “round” a generalized circulation into a vertex. Let g be a feasible

circulation, and let A be defined as above. If there are no unit-gain cycles or bicycles in the

subgraph induced by A, then g is a vertex. Otherwise, we cancel such a unit-gain cycle or bicycle

(in a direction that improves or does not change the objective function). We update A, and repeat

this process until we obtain a vertex. There are at most m iterations, since each cancelation

saturates at least one new arc in A. The bottleneck computation is detecting unit-gain cycles or

bicycles. In § 6, we describe how to do this in O(mn) time using two Bellman-Ford computations.

This subroutine is a factor of n faster finding negative cost unit-gain cycles or bicycles.

Lemma 10. Given a feasible generalized circulation g of cost c(g), we can find another feasible

circulation g′ that is a vertex and has cost no more than c(g) in O(m2n) time.

The following lemma establishes the precision necessary to be able to “round” to an optimal

circulation.

Lemma 11. Given a B−7m-optimal generalized circulation g, we can determine an optimal circu-

lation in O(m2n) time.

GENERALIZED MINIMUM COST FLOW 13

Proof. First, applying Lemma 10, we find a vertex g′ that has cost at least as good as g. The

optimum value can be bounded from below by −mB2, since each arc has capacity at most B and

cost at least −B. Thus,

c(g′) ≤ c(g) ≤ OPT

1 +B7m ≤ OPT (1−B−7m) ≤ OPT +mB2B−7m < OPT +B−4m.

The last inequality follows from our assumption that m ≤ B. By Kramer’s rule, the cost of each

vertex (including g′ and some optimal circulation) is a rational number, and these costs have a

common denominator no bigger than B4m. Thus, c(g′) = OPT and g′ is optimal.

6 Minimum Ratio Circuit Subroutine

In this section we describe a combinatorial method for computing minimum ratio circuits. First,

we discuss how to detect circuits and negative cost circuits. As we will see, detecting negative cost

circuits is intimately related to testing the feasibility of 2VPI (two variable per inequality) linear

programs.

6.1 Detecting a Circuit.

We describe how to detect a circuit in O(mn) time using two Bellman-Ford style computations.

This will provide some intuition for detecting a minimum ratio circuit. Also, the subroutine was

used in § 5 when we showed how to “round” a nearly-optimal circulation into an optimal one.

The basic approach is to first identify a bicycle if one exists; if we don’t find one, then we

detect unit-gain cycles. We must do the computation in this order, since for general networks it

is NP-hard to detect unit-gain cycles. The NP-hardness can be establish by reducing SUBSET-

PRODUCT (see problem SP14 in Garey and Johnson [10]) to the unit-gain cycle problem.

Step 1. First, we describe how to detect bicycles. Recall, a bicycle is a flow-generating cycle

and a flow-absorbing cycle connected by a path from the first cycle to the second. Let N denote the

subset of nodes that either participate in a flow-absorbing cycle or can reach one along a path. We

compute the subset N using a single Bellman-Ford style computation, with the following distance

update rule along arc (v,w):

π(v) ← min{π(v), π(w)γ(v,w)}.

14 K. WAYNE

Initially we set π(v) = 1 for all nodes v ∈ V . Then we run 2n Bellman-Ford style iterations as shown

in Figure 4. The subset N consists of those node potentials that were changed between iterations

n and 2n. Such vertices must either participate in a flow-absorbing cycle or have a path leading to

one. This observation is well-known in traditional networks. I.e. if we use the lengths l = + log γ

then, flow-absorbing cycles are in one-to-one correspondence with negative length cycles.

Input: generalized network G

Output: subset of nodes that can reach a flow-absorbing cycle via a directed path

Initialize ∀v ∈ V : π0(v)← 0

for i = 1 to 2n do

∀e ∈ E : πi(v) ← min{πi−1(v), πi−1(w)γ(v,w)}

end for

output N ← { v : π2n(v) < πn(v) }
Figure 4: Finding subset of nodes that participate in a flow-absorbing cycle or can reach one via

a directed path.

Now, we detect flow-generating cycles in the subgraph induced by N . Obviously, if we find such

a flow-generating cycle, we can find a bicycle by connecting it to a flow-absorbing cycle in N . By

the definition of N , such a flow-absorbing cycle will exist. Again, detecting flow-generating cycles

can be done with a single Bellman-Ford style computation. As before, we initialize π(v) = 1 for all

nodes v ∈ N . Now, we use the following modified update rule along arc (v,w) :

π(w) ← max{π(w), π(v)γ(v,w)}.

We run n Bellman-Ford style iterations. If we don’t detect a flow-generating cycle after n iterations,

then we conclude no such cycles exist.

Step 2. Now, assuming there are no bicycles, we show how to detect unit-gain cycles in linear

time, using the information extracted from the two previous Bellman-Ford computations. First, we

detect unit-gain cycles in the subgraph induced by V \N . This problem is equivalent to detecting

zero length cycles in a traditional network using lengths l = + log γ(v,w). By the definition of N ,

this subgraph has no negative length cycles. Thus, there exists node potentials π such that the

reduced lengths lπ(v,w) := log γ(v,w)−π(v)+π(w) ≥ 0 for all arcs (v,w) ∈ G(V \N,E). Moreover,

the first Bellman-Ford style computation produces them. Now, identifying a zero length cycle is

GENERALIZED MINIMUM COST FLOW 15

equivalent to finding a cycle in the subgraph induced by zero reduced length arcs. Using depth first

search, we can do this in linear time. The second case is to detect unit-gain cycles in the subgraph

induced by N . In this subgraph, there are no flow-generating cycles, since otherwise we would have

detected a bicycle. By a similar argument as in the first case, there exist node potentials π′ such

that the reduced lengths l′π′(v,w) := − log γ(v,w)−π′(v)+π′(w) ≥ 0. for all arcs (v,w) ∈ G(N,E).

The second Bellman-Ford computation produces these potentials. As above, we can use depth first

search to detect unit-gain cycles in this subgraph.

6.2 Detecting a Negative Cost Circuit

Now, we describe how to detect a negative cost circuit. First, we note that it is sufficient to detect

a negative cost circulation, since, by Lemma 2, any circulation can be decomposed into circuits.

That is, we want to find a solution to system (I) below.

c(x) < 0, x circulation (I)

∀(v,w) ∈ E : cπ(v,w) := c(v,w) + π(v)− γ(v,w)π(w) ≥ 0. (II)

Note that system(II) has two variables per inequality. The 2VPI system (II) is related to system

(I) through linear programming duality. Linear programming weak duality asserts that for any cost

function c and gain function γ, systems (I) and (II) can’t both be feasible. This is easy to verify,

since if system (I) and (II) are both feasible, we have:

0 ≤
∑

(v,w)∈E
cπ(v,w)x(v,w)

=
∑

(v,w)∈E
c(v,w)x(v,w) +

∑
(v,w)∈E

π(v)x(v,w) −
∑

(v,w)∈E
γ(v,w)π(w)x(v,w)

= c(x) +
∑
v∈V

π(v)
∑

w∈V :(v,w)∈E
x(v,w) −

∑
v∈V

π(v)
∑

w∈V :(w,v)∈E
γ(w, v)x(w, v)

= c(x)

< 0.

The first inequality follows since both cπ and x are nonnegative. The last equality follows from flow

conservation. Intuitively, variable π(v) represents the market price for the commodity at node v.

16 K. WAYNE

The quantity cπ(v,w) represent the cost of buying one unit at node v, shipping it to node w, and

then selling off the γ(v,w) units that arrive at node w. Linear programming strong duality asserts

that if there are no negative cost circulations, then there exist a set of market prices for which there

is no incentive to buy, ship, and sell. That is, there exists a negative cost circulation if and only if

the 2VPI system (II) is infeasible. Thus, we could determine the existence of a negative cost circuit

if we had a 2VPI feasibility subroutine. Fortunately, researchers have previously developed such

specialized 2VPI feasibility algorithms. Moreover, all of these algorithms either return a feasible

solution to (II) or output a minimal “certificate of infeasibility.” The certificate corresponds to a

negative cost circuit.

6.3 2VPI Feasibility

To gain intuition and perspective, we give a brief review of the fundamental idea behind these flow-

based 2VPI feasibility algorithms. We refer the reader to [21, 6] for more details. They are all based

on the Bellman-Ford shortest path algorithm. To see the connection, we formulate the shortest path

problem as a 2VPI linear program. The decision variables are the node labels {π(v) : v ∈ V }. For

each (v,w) ∈ E, the node labels must satisfy the metric inequality π(w) ≤ π(v)+d(v,w). Note that

all of the coefficients are either 0, +1, or -1. Detecting a negative cost cycle is equivalent to testing

the feasibility of the associated 2VPI linear program, and can be done using the Bellman-Ford

algorithm.

Building upon the Bellman-Ford algorithm, researchers have designed algorithms to detect the

feasibility of general 2VPI linear programs. For each 2VPI system, there is an associated directed

network: variables correspond to nodes, and two-variable inequalities correspond to arcs between

nodes of participating variables. The orientation of the arcs depend on the sign of the multiplier.

The algorithms exploit the graph structure by “propagating inequalities” along paths and cycles,

using a Bellman-Ford style approach. Recall, given distances d(v,w), the Bellman-Ford algorithm

computes the shortest path distances {π(v) : v ∈ V } from the source s to all other nodes. Initially

π(s) = 0 and all other distance labels are infinite. Then it propagates distance information using

the metric inequality: π(w) ≤ pi(v) + π(v,w).

The propagation method naturally extends to handle more general two variable inequalities.

Suppose we have an upper bound on π(v). Then we can use the inequality π(w) ≤ γ(v,w)π(v) +

c(v,w) to propagate the distance information, and potentially obtain a new upper bound for π(w).

GENERALIZED MINIMUM COST FLOW 17

When all coefficients are 0, +1, or −1, propagating inequalities around a cycle either leads to a

redundant inequality or implies that the underlying system is infeasible. If arbitary coefficients are

permitted, the analogous objects are unit-gain cycles and bicycles. That is, tracing inequalities

around one of the objects leads to a redundant inequality or proves that the underlying system is

infeasible. This fact follows from Lemma 1. Non-unit gain cycles also play an important role. For

example, consider the three inequalities: 2π(x) ≤ 6π(y)+5, 6π(y) ≤ 14π(z)+16, and 14π(z) ≤ π(x).

They form a cycle in the associated graph, and summing up the three inequalities implies π(x) ≤ 21.

Tracing inequalities around cycles provides a method for obtaining upper and lower bounds on the

variables. It is this difficulty that makes the 2VPI feasibility problem more difficult than the shortest

path problem. Shostak [35] proved that the 2VPI feasibility problem can be solved by tracing only

simple paths and cycles in the underlying graph; this has been the foundation for all subsequently

considered algorithms for the problem. It was later refined to a polynomial algorithm by Aspvall

and Shiloach [4]. Currently, the best known complexity bound is Õ(mn2), due to Hochbaum

and Naor [21] and Cohen and Megiddo [6]. The latter algorithm has a parallel running time of

Õ(n) using O(mn) processors. Later, we will use this parallel version to speed up our sequential

minimum ratio circuit algorithm. We also note that Cohen and Megiddo give an improved version

of their algorithm using randomization, achieving a Õ(n3 +mn) expected running time. Using this

randomized version, we can improve our complexity bound for the scaling algorithm accordingly.

6.4 Finding a Minimum Ratio Circuit

Now, we describe how to identify a minimum ratio circuit. This subroutine is used in our first

algorithm (Figure 2), but is not essential to our faster version (Figure 3), except to obtain the

strongly polynomial bound on computing approximately optimal flows. Our method combines a

negative cost circuit detection subroutine with binary search. We obtain a faster and strongly-

polynomial algorithm by using Megiddo’s parametric search instead of binary search.

To find the optimal ratio µ∗, we first estimate µ∗ with a guess µ, and then linearize the objective

function with the parametric cost function cµ(e) := c(e)− µt(e). It is easy to see that a circuit has

ratio less than µ if and only if there exists a negative cost circuit with respect to the cost function cµ.

In a preceding subsection, we discussed a Õ(mn2) subroutine for detecting negative cost circuits.

We use this subroutine in the network with cost function cµ. If there is a negative cost circuit,

then µ overestimates µ∗; otherwise, if every non-trivial circuit has positive cost, then µ is too small;

18 K. WAYNE

otherwise, µ∗ = µ. This provides a binary search framework and we can find µ∗ in Õ(m2n2 logB)

time, since O(m logB) bits of precision are required. By incorporating the parametric search

techniques of Megiddo [28] and using the parallel implementation of the Cohen-Megiddo [6] 2VPI

feasibility subroutine, we can improve this bound to Õ(mn3).

7 Optimizing 2VPI Linear Programs

In this section we outline how our algorithms can be extended to optimize 2VPI linear programs

of the form:

min
∑

v∈V b(v)π(v)

∀(v,w) ∈ E : π(v)− γ(v,w)π(w) ≥ c(v,w),
(TV PI)

where {π(v) : v ∈ V } is the set of decision variables, E indexes the set of constraints, γ : E → < is

the vector of multipliers, c : E → < is the vector of right hand sides, and b : V → < is the vector

of objective function coefficients. We first relate the uncapacitated generalized minimum cost flow

problem (P) to (TVPI).

max
∑

(v,w)∈E c(v,w)g(v,w)

∀v :
∑

w:(v,w)∈E
g(v,w) −

∑
w:(w,v)∈E

γ(w, v)g(w, v) = b(v)

∀(v,w) ∈ E : g(v,w) ≥ 0.

(P)

(P) and (TVPI) are almost dual linear programs. The only obstacle is that we assumed the

gain factors γ in (P) are positive, whereas the multipliers in (TVPI) can be positive or negative.

Therefore, the inequalities in the dual linear program of (P) are all monotone, i.e., each two variable

inequality has one positive coefficient and one negative coefficient. Thus, our algorithms from §3

and §4 extend to optimize monotone 2VPI linear programs, since the algorithms simultaneously

find primal and dual optimal solutions. We show they also extend to the non-monotone case.

We sketch below how to extend our algorithm to solve the 2VPI optimization problem. The

critical idea needed to handle the non-monotone case is to allow negative gain factors. This is

analogous to the “bidirected generalized networks” proposed by Cohen and Megiddo [7] for solving

a generalized version of the shortest path problem. Intuitively, an arc with a negative gain factor

represents the possibility of destroying flow at both of its endpoints. Its “residual arc” offers the

GENERALIZED MINIMUM COST FLOW 19

possibility of creating flow at both of its endpoints. To handle this, we extend the generalized

minimum cost flow problem to allow negative gain factors. To undo the flow shipped across a

negative gain arc, we must ship a negative amount of flow back along the “residual arc.” Thus, we

allow arcs to have nonpositivity constraints, in addition to the usual nonnegativity constraints.

We also need to generalize our definition of the residual network. As before, for each e ∈ E, we

let ē denote its reverse arc and Ē denote the set of reverse arcs as before. Also, the gain factor of

ē is 1/γ(e) and its cost is −c(e)/γ(e). Let g be a generalized circulation in network G. We extend

the definition of Eg to be the subset of arcs with nonzero residual capacity; this includes arcs

with negative residual capacity. The residual capacity function and residual network are defined

as before. Solving the problem in the residual network is equivalent to solving it in the original

network.

We assume without loss of generality that b = 0. If not, we could add artificial self-loop arcs and

assign them very high cost. Then, a feasible solution is easy to identify. The residual problem is now

of the desired form. We note, however, that this transformation is not approximation preserving.

Now, the algorithm is exactly as before except that we need to abstract our definition of circu-

lation and circuit to allow for the negative gain factors and nonpositive capacity constraints. Our

previous algorithms and analyses remain essentially unchanged.

Theorem 12. There exists a polynomial combinatorial algorithm to optimize linear programs with

two variables per inequality. It runs in Õ(m3n2 logB) time, where n is the number of variables and

m is the number of inequalities.

In fact, Hochbaum et al. [20] gave a transformation which shows that optimizing general 2VPI

linear programs is no harder than optimizing monotone 2VPI ones. Our algorithms easily extend

to directly solve the seemingly more general version so we do not need to use their reduction.

8 An Open Problem

Currently, the existence of a strongly-polynomial algorithm (combinatorial or linear programming

based) for generalized minimum cost flow and 2VPI optimization remains a challenging open ques-

tion. The question is even unresolved for generalized maximum flow. On the other hand, strongly-

polynomial algorithms are known for traditional minimum cost flow and the 2VPI feasibility prob-

lem.

20 K. WAYNE

McCormick and Shioura [27] showed that the minimum ratio algorithm is not a strongly poly-

nomial algorithm for the (non-generalized) minimum cost circulation problem. They construct a

network with irrational data and show the the minimum ratio algorithm does not terminate in

finite time. We can modify our algorithm by rounding the circulation to a better vertex at each

iteration, as in Section § 5. Now, our modified algorithm terminates, even for irrational data, since

it can visit each vertex at most once. Thus, the counterexample in McCormick and Shioura [27]

does not apply.

Acknowledgments. The author is thankful to Éva Tardos and Tom McCormick for helpful

discussions and comments on an earlier version of this paper. The author also thanks the anonymous

referees for many helpful suggestions for improving the presentation of this paper.

References

[1] Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.

Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] B. Aspvall. Efficient algorithms for certain satisfiability and linear programming problems. PhD thesis,

Department of Computer Science, Stanford University, 1980.

[4] B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems of linear inequalities with

two variables per inequality. SIAM Journal on Computing, 9:827–845, 1980.

[5] F. Barahona and É. Tardos. Note on Weintraub’s minimum-cost circulation algorithm. SIAM Journal

on Computing, 18:579–583, 1989.

[6] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables per inequality.

SIAM Journal on Computing, 23:1313–1347, 1994.

[7] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Mathematical Programming,

64:325–336, 1994.

[8] G. B. Dantzig. Linear programming and extensions. Princeton University Press, Princeton, NJ, 1963.

[9] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow

problems. Journal of the ACM, 19:248–264, 1972.

[10] M. S. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of NP-compleness.

W. H. Freeman, New York, 1979.

GENERALIZED MINIMUM COST FLOW 21

[11] F. Glover, J. Hultz, D. Klingman, and J. Stutz. Generalized networks: A fundamental computer based

planning tool. Management Science, 24:1209–1220, 1978.

[12] F. Glover, D. Klingman, and N. Phillips. Netform modeling and applications. Interfaces, 20:7–27, 1990.

[13] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial algorithms for the generalized circulation

problem. Mathematics of Operations Research, 16:351–379, 1991.

[14] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM, 45:753–782,

1998.

[15] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles.

Journal of the ACM, 36:388–397, 1989.

[16] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized circulation problem.

Mathematics of Operations Research, 21:529–539, 1996.

[17] D. Goldfarb, Z. Jin, and Y. Lin. A polynomial dual simplex algorithm for the generalized circulation

problem. Technical report, Department of Industrial Engineering and Operations Research, Columbia

University, 1998.

[18] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest gain augmenting path algorithms for the

generalized circulation problem. Mathematics of Operations Research, 22:793–802, 1997.

[19] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, New York, 1984.

[20] D. S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms

for integer programs with two variables per inequality. Mathematical Programming, 62:69–83, 1993.

[21] D. S. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two

variables per inequality. SIAM Journal on Computing, 23-6:1179–1192, 1994.

[22] W. S. Jewell. Optimal flow through networks with gains. Operations Research, 10:476–499, 1962.

[23] L. V. Kantorovich. Mathematical methods of organizing and planning production. Publication House

of the Leningrad State University, page 68, 1939. Translated in Management Science, 6:366–422, 1960.

[24] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395,

1984.

[25] L. G. Khachiyan. Polynomial algorithms in linear programming. Zh. Vychisl. Mat. Mat. Fiz., 20:53–72,

1980.

[26] M. Klein. A primal method for minimal cost flows with applications to the assignment and and trans-

portation problems. Management Science, 14:205–220, 1967.

22 K. WAYNE

[27] S. T. McCormick and A. Shioura. Minimum ratio canceling is polynomial for linear programming, but

not strongly polynomial, even for networks. Unpublished manuscript, 1999.

[28] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Journal of

the ACM, 30:852–865, 1983.

[29] N. Megiddo. Toward a genuinely polynomial algorithm for linear programming. SIAM Journal on

Computing, 12:347–353, 1983.

[30] J. D. Oldham. Combinatorial approximation algorithms for generalized flow problems. In ACM/SIAM

[1], pages 704–714.

[31] T. Radzik. Faster algorithms for the generalized network flow problem. Mathematics of Operations

Research, 23:69–100, 1998.

[32] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester, 1986.

[33] A. S. Schulz and R. Weismantel. An oracle-polynomial time augmentation algorithm for integer pro-

gramming. In ACM/SIAM [1], pages 967–968.

[34] M. Shigeno, S. Iwata, and S. T. McCormick. Relaxed most negative cycle and most positive cut canceling

algorithms for minimum cost flow. Unpublished manuscript, 1998.

[35] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28:769–779,

1981.

[36] É. Tardos and K. D. Wayne. Simple generalized maximum flow algorithms. In 7th International Integer

Programming and Combinatorial Optimization Conference, pages 310–324, 1998.

[37] P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In 30th Annual IEEE

Symposium on Foundations of Computer Science, pages 332–337, 1989.

[38] C. Wallacher. A generalization of the minimum-mean cycle selection rule in cycle canceling algorithms.

Technical report, Institute für Angewandte Mathematik, Technische Universität Braunschweig, 1989.

[39] C. Wallacher and U. T. Zimmermann. A polynomial cycle canceling algorithm for submodular flows.

To appear in Mathematical Programming, 1999.

[40] K. D. Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Department of Operations Research

and Industrial Engineering, Cornell University, 1999.

[41] K. D. Wayne and L. Fleischer. Faster approximation algorithms for generalized flow. In ACM/SIAM

[1], pages 981–982.

[42] A. Weintraub. A primal algorithm to solve network flow problems with convex costs. Management

Science, 21:87–97, 1974.

