Fast and Simple Approximation Algorithms for Generalized Flow

(flow with losses and gains)

Kevin Wayne Princeton University

 $www.cs.princeton.edu/{\sim}wayne$

(with Lisa Fleischer)

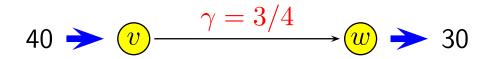
$$40 \rightarrow v \xrightarrow{\gamma = 3/4} w \rightarrow 30$$

Fast and Simple Approximation Algorithms for Generalized Flow

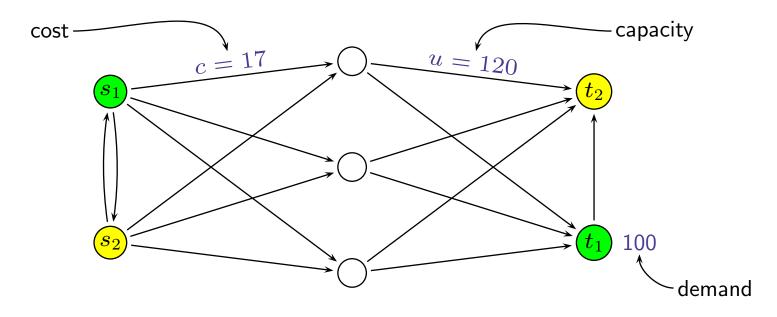
Lisa Fleischer Columbia University

 $www.ieor.columbia.edu/{\sim}lisa$

(with Kevin Wayne)



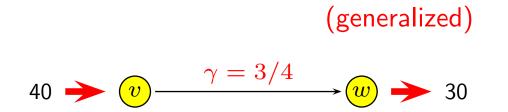
Multicommodity Flow



Send flow from sources to sinks as cheaply as possible

- capacity constraints
- flow conservation constraints

Generalized



Applications

Commodity leaks:

leaky pipes, defects, production yields, evaporation, spoilage, theft, taxes

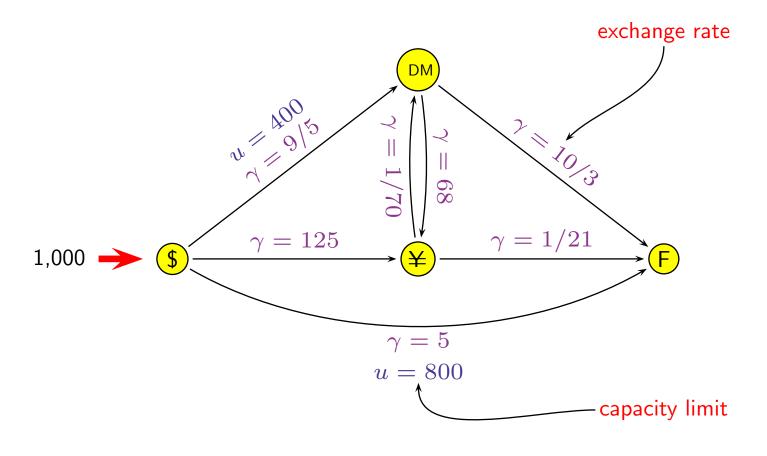
Transform one commodity into another: currency conversion, machine loading, fuel utilization, crop management, aircraft fleet assignment

\$40
$$\rightarrow$$
 (\$) $\xrightarrow{\gamma = 0.867}$ EUR \rightarrow 34.7 EUR

Currency Conversion

Convert \$1,000 US into maximum number of French Francs

- exploit discrepancies in exchange rates
- can only convert bounded amounts of currency

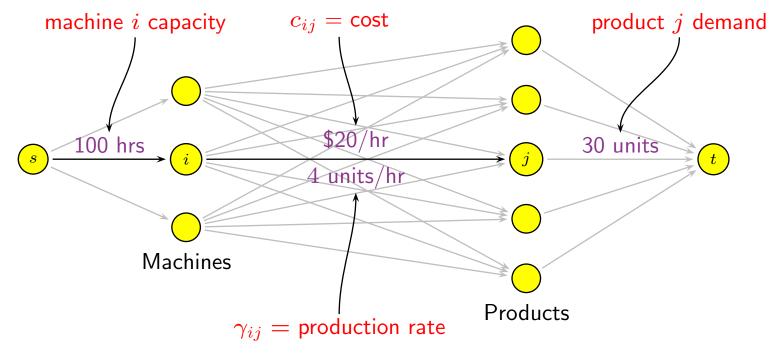


Machine Loading

Schedule p product types on q machines to minimize cost

- machines have limited capacity
- in 1 hour machine i processes γ_{ij} units of product j at cost c_{ij}
- find optimal product mix for each machine

Need to find generalized max flow of min cost:



Exact Algorithms for Generalized Flow

Generalized flow: Kantorovich '39, Dantzig '62 simplex, network simplex

Generalized max flow: Goldberg-Plotkin-Tardos '91

- first polynomial combinatorial algorithm
- other work: Cohen-Megiddo '94, Radzik '93, Goldfarb-Jin-Orlin '97, Tardos-Wayne '98

Generalized min cost flow: Wayne '99 first polynomial combinatorial algorithm

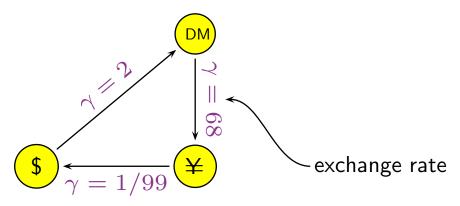
Generalized multi. flow: Vaidya '89, Kamath-Palmon '95 specialized interior point methods for multicommodity flow

What We Do

- We give simple FPTAS for generalized max flow, multicommodity flow and versions with costs
 - find feasible flow that satisfies $\geq (1-\epsilon)$ fraction of demand
 - running time polynomial in $1/\epsilon$ and input size
 - much faster than exact algorithms
- Our algorithms based upon Garg-Könemann '98 traditional multicommodity flow FPTAS
 - uses exponential length function: Shahrokhi-Matula '90
 - method refined and extended by: Klein, et al. '94, Leighton, et al. '95, Goldberg '92, Plotkin-Shmoys-Tardos '95, Grigoriadis-Khachiyan '96, Radzik '98, Oldham '99

A Practical Assumption: No Arbitrage

• Our algorithms work in networks with no flow-generating cycles (product of its gain factors > 1)



- financial networks arbitrage
- energy networks perpetual energy source
- most practical applications have no flow-generating cycles
- For talk, we assume all gains $\gamma \leq 1$ (equivalent to no arbitrage condition)

Sampling of New Results

Generalized concurrent multicommodity flow: $\mathcal{O}^*(m^2 + km)$

- simplest known algorithm, appears quite practical
- matches complexity of fastest non-generalized methods
- Oldham '99: $\mathcal{O}^*(km^2n^2)$ (even works with arbitrage)

Generalized max flow $\mathcal{O}^*(m^2)$

- interesting and well-studied special case
- previous best strongly poly algorithm: $\mathcal{O}^*(m^2n)$ Radzik '93

Generalized min cost flow $\mathcal{O}^*(m^2 \log \log I)$

• $\mathcal{O}^*(m^2n^3\log I)$ Oldham '99

k commodities, $I = \text{biggest integer}, \epsilon > 0$ constant, \mathcal{O}^* hides polylog(m)

Generalized Max Flow - Path Formulation

 $\begin{array}{l} 0 \leq x(P) = \text{amount of flow reaching } t \text{ on } s\text{-}t \text{ path } P \\ 0 \leq l(e) = \underbrace{ \text{length of arc } e }_{\text{marginal cost of 1 unit of capacity}} \end{array}$

$$(P) \max \sum_{P} x(P) \qquad (D) \min \sum_{e} u(e) l(e)$$
$$\sum_{\substack{P:e \in P \\ x(P) \ge 0}} \gamma_{P}(e) x(P) \le u(e) \quad \forall e \qquad l(e) \ge 0$$
$$\forall P \qquad \sum_{e \in P} \gamma_{P}(e) l(e) \ge 1$$

 $\gamma_P(e) =$ flow sent on e to get 1 unit of flow at t on P

$$P: \quad \bigotimes \xrightarrow{\gamma = 1/3} \underbrace{v}_{\gamma_P = 12} \xrightarrow{\gamma = 1/2} \underbrace{w}_{\gamma_P = 4} \xrightarrow{\gamma = 1/2} \underbrace{v}_{\gamma_P = 2} \xrightarrow{\gamma = 1/2} \underbrace{t}_{\gamma_P = 2}$$

Garg-Könemann Max Flow Algorithm

Goal: find ϵ -approximate max flow

Maintain primal infeasible flow f(e), and dual infeasible length function l(e) which is exponential in flow sent through arc e

Initialize $x(P) \leftarrow 0, \forall e : l(e) \leftarrow \delta(m, \epsilon)$ repeat $P \leftarrow$ shortest *s*-*t* path using lengths l $u \leftarrow$ bottleneck capacity of P (using original capacities) $x(P) \leftarrow x(P) + u$ $\forall e \in P : l(e) \leftarrow l(e) \times (1 + \epsilon u/u(e))$ until $\forall P : l(P) \ge 1$ (dual feasible) return x scaled to be primal feasible

Theorem [GK '98] $\mathcal{O}^*(\epsilon^{-2}m^2)$ FPTAS

Generalized Max Flow Algorithm

Goal: find ϵ -approximate generalized max flow

Maintain (infeasible) flow x(P), length function l(e) which is exponential in flow sent through arc e

initialize $x(P) \leftarrow 0, \ l(e) \leftarrow \delta(m, \epsilon)$

repeat

 $P \leftarrow \text{"cheapest } s\text{-}t \text{ path"} \quad \boxed{l(P) := \sum_{e \in P} \gamma_P(e)l(e)} \\ \text{cost of getting 1 unit of flow at } t \text{ (no capacities)} \\ u \leftarrow \text{most flow that can reach } t \text{ on } P \text{ (original capacities)} \\ x(P) \leftarrow x(P) + u \\ \forall e \in P : l(e) \leftarrow l(e) \times (1 + \epsilon u \gamma_P(e)/u(e)) \\ \text{until } \forall P : l(P) \ge 1 \text{ (dual feasible)} \\ \text{return } x \text{ scaled to be feasible flow} \end{cases}$

Lemma ϵ -approximate after $\mathcal{O}^*(\epsilon^{-2}m)$ calls to subroutine

A Fast Subroutine for Gen. Shortest Path

Goal: find cheapest way to deliver 1 unit of flow at t (in uncapacitated network) from $s l(P) := \sum_{e \in P} \gamma_P(e) l(e)$

- use greedy Dijkstra approach
- costs $l(e) \ge 0$, gains $0 < \gamma(e) \le 1$

Update formula:

- $\pi(v) = \text{cheapest way to deliver 1 unit at } v \text{ from } s$
- getting 1 unit at v, then along (v, w) costs $\pi(v) + l(v, w)$
- but only $\gamma(v,w)$ units arrive at w

$$\pi(v) \quad \underbrace{v} \xrightarrow{\gamma(v,w)} \underbrace{l(v,w)} \quad \overline{w} \quad \pi(w) \le \frac{\pi(v) + l(v,w)}{\gamma(v,w)}$$

Lemma: compute π in $\mathcal{O}(m + n \log m)$ time

 \Rightarrow Theorem: $\mathcal{O}^*(\epsilon^{-2}m^2)$ FPTAS for generalized max flow

Generalized Min Cost Flow

 $0 \leq x(P) =$ amount of flow reaching t on s-t path P

$$(P) \max \sum_{P} x(P)$$

$$\sum_{P:e \in P} \gamma_{P}(e) x(P) \le u(e) \qquad \forall e$$

$$\sum_{e} c(e) \sum_{P:e \in P} \gamma_{P}(e) x(P) \le B$$

 $0 \leq l(e) =$ length of arc e, $0 \leq \phi =$ budget constraint dual variable

$$\begin{array}{ll} (D) & \max \sum\limits_{e} u(e)l(e) + B\phi \\ & \sum\limits_{e \in P} \gamma_P(e) \left(l(e) + c(e)\phi \right) \geq 1 \quad \forall P \end{array}$$

- find cheapest path P using lengths $l(e) + c(e)\phi$
- send as much flow on path P without violating original capacity constraints or original budget constraint, update l and ϕ

Theorem: $\mathcal{O}^*(\epsilon^{-2}m^2)$ FPTAS for cost-bounded max flow **Theorem:** $\mathcal{O}^*(\epsilon^{-2}m^2 \log \log I)$ FPTAS for min cost max flow

13

Closing Remarks

Generalized concurrent multicommodity flow: $\mathcal{O}^*(\epsilon^{-2}m(m+k))$

- simple and appears quite practical
- at least factor n^2 improvement
- matches complexity of fastest non-generalized methods
- with costs: $\mathcal{O}^*(\epsilon^{-2}km^2\log\log I)$

Generalized max flow: $\mathcal{O}^*(\epsilon^{-2}m^2)$

- improves complexity even for well-studied problem
- using Tardos-Wayne gain-scaling technique, we reduce dependence on error parameter from $1/\epsilon^2$ to $\log(1/\epsilon)$

Open Problem: reduce dependency on error from $1/\epsilon^2$ to $\log(1/\epsilon)$ for version with costs or multiple commodities