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Generalized Multicommodity Flow
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Send flow from sources to sinks as cheaply as possible
• capacity constraints
• flow conservation constraints (generalized)
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Generalized Min Cost Circulation
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Send flow from sources to sinks as cheaply as possible
• capacity constraints
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Applications

Commodity leaks:
leaky pipes, defects, production yields, evaporation, spoilage,
theft, taxes

Transform one commodity into another:
currency conversion, machine loading, fuel utilization, crop
management, aircraft fleet assignment

$40 34.7 EUR$ EUR
γ = 0.867
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Currency Conversion

Convert $1,000 US into maximum number of French Francs

• exploit discrepancies in exchange rates

• can only convert bounded amounts of currency

1,000 $ Y= F

DM

exchange rate

capacity limit

γ = 125 γ = 1/21

γ
=

9/
5

u
=

40
0 γ =

10/3

γ
=

68

γ
=

1
/70

γ = 5
u = 800

3



Machine Loading

Schedule p product types on q machines to minimize cost

• machines have limited capacity
• in 1 hour machine i processes γij units of product j at cost cij
• find optimal product mix for each machine

Need to find generalized max flow of min cost:

ji ts

Products

Machines

product j demandmachine i capacity

γij = production rate

cij = cost

$20/hr

4 units/hr
100 hrs 30 units
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Exact Algorithms for Generalized Flow

Generalized flow: Kantorovich ’39, Dantzig ’62
simplex, network simplex

Generalized max flow: Goldberg-Plotkin-Tardos ’91
• first polynomial combinatorial algorithm
• other work: Cohen-Megiddo ’94, Radzik ’93,

Goldfarb-Jin-Orlin ’97, Tardos-Wayne ’98

Generalized min cost flow: Wayne ’99
first polynomial combinatorial algorithm

Generalized multi. flow: Vaidya ’89, Kamath-Palmon ’95
specialized interior point methods for multicommodity flow
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What We Do

• We give simple FPTAS for generalized max flow,
multicommodity flow and versions with costs

– find feasible flow that satisfies ≥ (1 − ε) fraction of
demand

– running time polynomial in 1/ε and input size
– much faster than exact algorithms

• Our algorithms based upon Garg-Könemann ’98 traditional
multicommodity flow FPTAS

– uses exponential length function: Shahrokhi-Matula ’90

– method refined and extended by: Klein, et al. ’94, Leighton,
et al. ’95, Goldberg ’92, Plotkin-Shmoys-Tardos ’95, Grigoriadis-
Khachiyan ’96, Radzik ’98, Oldham ’99
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A Practical Assumption: No Arbitrage

• Our algorithms work in networks with no flow-generating
cycles (product of its gain factors > 1)

$ Y=

DM

exchange rate
γ = 1/99

γ
=

2

γ
=

68

– financial networks - arbitrage

– energy networks - perpetual energy source

– most practical applications have no flow-generating cycles

• For talk, we assume all gains γ ≤ 1 (equivalent to no
arbitrage condition)
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Sampling of New Results

Generalized concurrent multicommodity flow: O∗(m2 + km)

• simplest known algorithm, appears quite practical
• matches complexity of fastest non-generalized methods
• Oldham ’99: O∗(km2n2) (even works with arbitrage)

Generalized max flow O∗(m2)

• interesting and well-studied special case
• previous best strongly poly algorithm: O∗(m2n) Radzik ’93

Generalized min cost flow O∗(m2 log log I)

• O∗(m2n3 log I) Oldham ’99

k commodities, I = biggest integer, ε>0 constant, O∗ hides polylog(m)
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Generalized Max Flow - Path Formulation

0 ≤ x(P ) = amount of flow reaching t on s-t path P
0 ≤ l(e) = length of arc e︸ ︷︷ ︸

marginal cost of 1 unit of capacity

(P ) max
∑
P

x(P ) (D) min
∑
e
u(e) l(e)∑

P :e∈P
γP (e)x(P ) ≤ u(e) ∀e l(e) ≥ 0

x(P ) ≥ 0 ∀P
∑
e∈P

γP (e)l(e) ≥ 1

γP (e) = flow sent on e to get 1 unit of flow at t on P

P : s v w t
γ = 1/3
γP = 12

γ = 1/2
γP = 4

γ = 1/2
γP = 2
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Garg-Könemann Max Flow Algorithm

Goal: find ε-approximate max flow

Maintain primal infeasible flow f(e), and dual infeasible length
function l(e) which is exponential in flow sent through arc e

Initialize x(P )← 0,∀e : l(e)← δ(m, ε)
repeat
P ← shortest s-t path using lengths l
u← bottleneck capacity of P (using original capacities)
x(P )← x(P ) + u
∀e ∈ P : l(e)← l(e)× (1 + εu/u(e))

until ∀P : l(P ) ≥ 1 (dual feasible)
return x scaled to be primal feasible

Theorem [GK ’98] O∗(ε−2m2) FPTAS
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Generalized Max Flow Algorithm

Goal: find ε-approximate generalized max flow

Maintain (infeasible) flow x(P ), length function l(e) which is
exponential in flow sent through arc e

initialize x(P )← 0, l(e)← δ(m, ε)
repeat
P ← “cheapest s-t path” l(P ) :=

∑
e∈P γP (e)l(e)

cost of getting 1 unit of flow at t (no capacities)
u← most flow that can reach t on P (original capacities)
x(P )← x(P ) + u

∀e ∈ P : l(e) ← l(e)× (1 + ε u γP (e)/u(e))
until ∀P : l(P ) ≥ 1 (dual feasible)
return x scaled to be feasible flow

Lemma ε-approximate after O∗(ε−2m) calls to subroutine
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A Fast Subroutine for Gen. Shortest Path

Goal: find cheapest way to deliver 1 unit of flow at t (in
uncapacitated network) from s l(P ) :=

∑
e∈P γP (e)l(e)

• use greedy Dijkstra approach
• costs l(e) ≥ 0, gains 0 < γ(e) ≤ 1

Update formula:

• π(v) = cheapest way to deliver 1 unit at v from s
• getting 1 unit at v, then along (v, w) costs π(v) + l(v, w)
• but only γ(v, w) units arrive at w

π(v) π(w) ≤
π(v) + l(v, w)

γ(v,w)
v w

γ(v, w)

l(v, w)

Lemma: compute π in O(m+ n logm) time

⇒ Theorem: O∗(ε−2m2) FPTAS for generalized max flow
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Generalized Min Cost Flow

0 ≤ x(P ) = amount of flow reaching t on s-t path P

(P ) max

P

P

x(P )

P
P :e∈P

γP(e) x(P ) ≤ u(e) ∀e
P

e
c(e)

P

P :e∈P
γP(e) x(P ) ≤ B

0 ≤ l(e) = length of arc e, 0 ≤ φ = budget constraint dual variable

(D) max

P

e
u(e)l(e) +Bφ

P

e∈P
γP(e) (l(e) + c(e)φ) ≥ 1 ∀P

• find cheapest path P using lengths l(e) + c(e)φ
• send as much flow on path P without violating original capacity

constraints or original budget constraint, update l and φ

Theorem: O∗(ε−2m2) FPTAS for cost-bounded max flow

Theorem: O∗(ε−2m2 log log I) FPTAS for min cost max flow 13



Closing Remarks

Generalized concurrent multicommodity flow: O∗(ε−2m(m + k))

• simple and appears quite practical
• at least factor n2 improvement
• matches complexity of fastest non-generalized methods
• with costs: O∗(ε−2km2 log log I)

Generalized max flow: O∗(ε−2m2)

• improves complexity even for well-studied problem
• using Tardos-Wayne gain-scaling technique, we reduce dependence

on error parameter from 1/ε2 to log(1/ε)

Open Problem: reduce dependency on error from 1/ε2 to log(1/ε) for
version with costs or multiple commodities
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