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Abstract

We present fast and simple fully polynomial-time approximation schemes (FPTAS) for gen-
eralized versions of maximum flow, multicommodity flow, minimum cost maximum flow, and
minimum cost multicommodity flow. We extend and refine fractional packing frameworks in-
troduced in FPTAS’s for traditional multicommodity flow and packing linear programs. Our
FPTAS’s dominate the previous best known complexity bounds for all of these problems, some
by more than a factor of n2, where n is the number of nodes. This is accomplished in part
by introducing an efficient method of solving a sequence of generalized shortest path problems.
Our generalized multicommodity FPTAS’s are now as fast as the best non-generalized ones. We
believe our improvements make it practical to solve generalized multicommodity flow problems
via combinatorial methods.

1 Introduction

Generalized network flow problems generalize traditional network flow problems by specifying a
gain factor γ(e)> 0 for each arc e. For each unit of flow that enters the arc, γ(e) units exit. For
traditional network flows, the gain factor of every arc is one. Generalized flows satisfy capacity
constraints and node conservation constraints just like traditional network flows. In this paper we
consider the following generalized flow problems.

Generalized maximum flow: Find a generalized flow that maximizes the amount of flow reaching
one distinguished node called the sink, given unlimited supply at another distinguished node called
the source.

Generalized minimum cost maximum flow: Given nonnegative arc costs, find a generalized
maximum flow of minimum cost.

Generalized maximum multicommodity flow: Given k source-sink pairs (sj , tj), find a gen-
eralized flow maximizing the sum over all pairs j of the flow reaching tj from sj .

Generalized maximum concurrent flow: Given k source-sink pairs (sj, tj) and demands dj,
1 ≤ j ≤ k, find the maximum λ and a corresponding generalized flow that delivers λdj units of flow
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to tj by sending flow from sj, for each j.

Generalized minimum cost concurrent flow: Given nonnegative arc costs, find a generalized
maximum concurrent flow of minimum cost.

We also consider a useful common generalization of all of the above problems.

k-commodity packing problem: Given A ∈ Rm×n
≥0 , c ∈ Rn

>0, b ∈ Rm
>0, d ∈ Rk

>0, and K ∈ Rk×n

that is block diagonal in which each block consists of exactly one row containing all ones, find a
vector x ∈ Rn and scalar λ that is a solution to max{λ | Ax ≤ b; −Kx+ dλ ≤ 0; x, λ ≥ 0}.

Generalized flows have many applications. Gain factors can represent physical transformations of
a commodity due to leakage, evaporation, breeding, theft, or interest rates. They can also repre-
sent transformations from one commodity into another as a result of manufacturing, scheduling,
or currency exchange: converting dollars into euros, raw materials into processed materials into
finished products, acres into feed into fattened cattle, crude oil into processed oil, and machine time
into completed orders. For more information and applications, see Ahuja, et al. [3] or Glover, et
al. [15].

In this paper, we design fast and simple approximation schemes for the above mentioned versions
of generalized flow. Our goal is to find an ε-approximate solution for any error parameter ε > 0.
For generalized maximum flow and maximum concurrent flow, an ε-approximate solution is a
generalized flow that has value at least (1 − ε) times the optimal. For versions with costs, an
ε-approximate solution is a generalized flow that has value at least (1 − ε) times the maximum
value and costs at most the optimal cost. For each problem, we develop a fully polynomial-time
approximation scheme (FPTAS). A FPTAS is a family of algorithms that finds an ε-approximate
solution for each ε > 0 in time polynomial in the size of the input and 1/ε. Here, the size of the
input is specified by the number of nodes n, the number of arcs m, the number of commodities k,
and the largest integer M used to specify any of the capacities, costs, gain factors, and demands.
To simplify the run times, we use Õ(f) to denote f logO(1) m.

1.1 Previous work

Generalized flow has a rich history. The problem was first studied by Kantorovich [25] and
Dantzig [9]. All of our problems can be solved exactly via general purpose linear programming
techniques, including simplex, ellipsoid, and interior point methods. Researchers have also designed
efficient combinatorial algorithms that exploit the underlying network flow structure of the problem.
Goldberg, Plotkin, and Tardos [17] designed the first polynomial-time combinatorial algorithms for
generalized maximum flow. Their algorithms were refined and improved upon in [18, 19, 34] with
the fastest exact algorithm developed so far by Goldfarb, Jin, and Orlin [19]. For generalized
maximum flow, researchers have also developed fast approximation schemes in [8, 32, 37]. The
second author [41] proposed the first polynomial combinatorial algorithms for generalized mini-
mum cost flow. There are no known exact polynomial combinatorial algorithms for generalized
multicommodity flow.

Our approximation schemes build upon combinatorial approximation schemes for traditional multi-
commodity flow. Shahrokhi and Matula [35] proposed a FPTAS for the maximum concurrent flow
problem with uniform arc capacities. They introduced a length function which is exponential in
the total flow going through that arc. They iteratively route flow along shortest paths with respect
to the exponential length function. The method was refined by Klein et al. [26] and extended
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to handle arbitrary arc capacities by Leighton et al. [27]. Plotkin, Shmoys, and Tardos [31] and
Grigoriadis and Khachiyan [20, 21] extended the method further to solve more general fractional
packing and covering problems. Goldberg [16] proposed a faster randomized version; Radzik [33]
derandomized it. Garg and Könemann [14] simplified the method for packing problems, drawing
on ideas from Young [43].

Oldham [30] proposed FPTAS’s for a variety of generalized flow problems, using the fractional
packing framework of Garg and Könemann [14]. When this framework is applied to traditional
network flow, each iteration routes flow along a shortest path with respect to the exponential length
function. The fundamental computation is a shortest path problem with nonnegative arc lengths.
For generalized flow, the framework requires a subroutine to solve a version of this shortest path
problem with gain factors. All efficient combinatorial methods for this subroutine make use of
a Bellman-Ford [5, 12, 29] style procedure of Aspvall and Shiloach [4] that tests whether or not
some guess on the generalized shortest path value is too big, too small, or just right. The presence
of gain factors makes computing shortest paths more complicated and expensive than standard
Bellman-Ford. Currently, the best complexity bound for the problem is Õ(mn2) due to [7, 23, 30].

1.2 Our contributions

We refine and extend the generalized flow FPTAS’s of Oldham [30] and the fractional packing
framework of Garg and Könemann [14]. We obtain faster approximation schemes for the following
problems: generalized maximum flow, generalized minimum cost maximum flow, generalized max-
imum multicommodity flow, generalized maximum concurrent flow, and generalized minimum cost
concurrent flow. We distinguish between networks with and without flow-generating cycles, as we
are able to obtain even faster and simpler algorithms in the latter case. Figure 1 summarizes our
run times for each problem, and compares them with previous work.

Oldham’s [30] generalized flow FPTAS’s rely on the fractional packing framework of Garg and
Könemann [14]. The crucial subroutine in [30] is a generalized shortest path computation: it
requires Õ(mn2) time using any of the subroutines in [7, 23, 30]. The packing algorithm involves
solving a sequence of shortest path problems. Significantly, the shortest path problems all involve
the same underlying graph, with only minor perturbations in arc lengths. Until now, researchers
did not know how to solve the sequence of shortest path problems any faster than solving each
one independently. We show how to reduce the amortized time per generalized shortest path
computation to O(mn). As a result, our algorithms are faster than previous ones by a factor of n.
To do this, we first observe that all of the above-mentioned generalized shortest path subroutines
rely on a Bellman-Ford style procedure due to Aspvall and Shiloach [4]. We are able to break
the Ω(mn2) barrier by extending a technique introduced in [11]: We directly embed the Aspvall-
Shiloach procedure in a simple and more practical scaling framework, instead of using one of the
generalized shortest path subroutines as a black box.

We show how, in most natural applications, to replace the Bellman-Ford style procedure with a
faster and simpler O(m + n log n) Dijkstra-style [10, 13] procedure. The Dijkstra-style procedure
works under the practical assumption that the underlying network has no flow-generating cycles.
A flow-generating cycle is a cycle such that the product of its gain factors exceeds one. Flow-
generating cycles represent arbitrage in financial networks and perpetual energy sources in energy
networks, and do not appear to occur often in practice. Generalized networks with and without
flow-generating cycles are analogous to traditional shortest path networks with and without negative
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Exact algorithm for generalized flow Previous best FPTAS Our FPTAS
Maximum flow
Õ(m3I) [19] Õ(log ε−1m2n) [32] Õ(ε−2m2) †

Õ(m1.5n2I) [39] Õ(log ε−1m(m+ n log I)) [34, 37] Õ(log ε−1m(m+ n log I))
Minimum cost flow
Õ(m1.5n2I) [39] Õ(log ε−1m2n2) [41] Õ(ε−2m2J) †

Õ(ε−2m2nJ)
Maximum multicommodity flow
Õ(k2.5m1.5n2I) [39] Õ(ε−2km2n2) [30] Õ(ε−2m2) †

Õ((k0.5m3 + km1.5n1.5)(m+ I)I) [24] Õ(log ε−1(k0.5m3 + km1.5n1.5)nI) [24] Õ(ε−2m2n)
Maximum concurrent flow
same as max multicommodity flow same as max multicommodity flow Õ(ε−2(k +m)m) †

Õ(ε−2(k +m)mn)
Minimum cost concurrent flow
same as max multicommodity flow Õ(ε−2 log ε−1km2n3I) [30] Õ(m(km+ ε−2(k +m)J)) †

Õ(log ε−1(k0.5m3 + km1.5n1.5)nI) [24] Õ(mn(km+ ε−2(k +m)J))

Figure 1: Comparison of work on generalized flow problems. Above m denotes the number of
arcs, n denotes the number of nodes, k denotes the number of commodities, M denotes the biggest
integer used to represent any of the costs, capacities, or gain factors, and 1−ε is the approximation
ratio. I := logM ; J := log logM+log ε−1. † denotes run time for networks with no flow-generating
cycles.

cost cycles. By disallowing flow-generating cycles, we sacrifice a small amount of generality, but
this greatly simplifies the underlying combinatorial structure of the problem. As a result, our
specialized FPTAS’s are much simpler and faster than previous algorithms for the problem. They
are faster by roughly a factor of n over our FPTAS’s that work in networks with flow-generating
cycles, and by a factor of n2 or more over the best results prior to this paper.

Using a technique introduced in [11], we extend an improved version of the Garg-Köneman algo-
rithm to solve the generalized maximum multicommodity flow problem. This saves an additional
factor of k, where k is the number of commodities. This leads to overall improvements over previous
results by a factor of kn for networks with flow-generating cycles and by a factor of roughly kn2

for networks without flow-generating cycles.

Unlike the single commodity flow problem, the natural formulations of the multicommodity concur-
rent flow problems are not packing LP’s. Thus, the above techniques do not apply directly. To cope
with this obstacle, we extend the Garg and Könemann [14] framework to the k-commodity packing
problem. This enables us to achieve the same improvements for generalized multicommodity flow
that we obtained for the single commodity versions.
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2 Preliminaries

2.1 Generalized networks

A generalized network is a directed graph G = (V,E) with capacity function u : E → R>0, gain
function γ : E → R>0, and a cost function c : E → R. Since our goal in this paper is to design
approximation algorithms, we assume that all arc costs are nonnegative; otherwise, in order to
provide a meaningful approximation guarantee, we would need to determine whether the optimum
value is positive or negative, and this appears to be as difficult as solving the problem to optimality.

2.2 Lossy networks and networks with no flow-generating cycles

Arbitrary generalized networks allow each gain factor to be any positive number. We refer to
a network with no gain factor exceeding one as a lossy network. This captures many natural
generalized networks (including traditional networks), where flow only “leaks” or is conserved as
it is sent through the network. We specifically design some of our algorithms to take advantage of
the special structure of lossy networks.

A flow-generating cycle is a cycle such that the product of its gain factors exceeds one. Lossy
networks cannot have flow-generating cycles, but networks with no flow-generating cycles need not
be lossy. It is possible to transform a network with no flow-generating cycles into an equivalent
lossy network inO(mn) time: Given a network with no flow-generating cycles, introduce an artificial
node s, and connect this node to every other node with a unit gain arc. Compute the highest gain
path from s to every other node, and then delete s. The highest gain path is well-defined because
the network has no flow-generating cycles. The gain of the highest gain path can be computed in
O(mn) time using the Bellman-Ford shortest path algorithm [5, 12, 29] with lengths l = − log γ (or
by specializing the Bellman-Ford algorithm directly to problem to avoid taking logarithms). Let
µ(v) be the gain of the highest gain path from s to v. Now, replace the gain of each arc (v,w)
with its relabeled gain γ(v,w)µ(v)/µ(w). Since µ(w) ≥ µ(v)γ(v,w), the relabeled gain is at most
1. Relabel the capacity as u(v,w)/µ(v), and the cost as c(v,w)µ(v). Then, any generalized flow
g(v,w) in the relabeled network has a unique correspondence with a generalized flow g(v,w)µ(v)
in the original network. The two flows have the same cost, and each obeys capacity and flow
conservation constraints if the other does. This “relabeling” technique plays an important role in
many generalized flow algorithms, and was first used by Truemper [38].

2.3 Extensions

Our algorithms easily extend to handle other standard generalized flow variants. For example,
in the generalized maximum flow problem, we can choose to maximize the net flow sent out of
the source, rather than into the sink. We can also handle multiple sources by connecting a new
“super-source” to each of the original sources with an infinite (or sufficiently large) capacity arcs of
unit gain. Within the packing framework, we can also handle multiple budget constraints, different
cost functions for different commodities, and different gain factors for different commodities.
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2.4 Packing algorithm

Our algorithms are based on the packing framework of Garg and Könemann [14], which we review
in this section.

One important feature of this packing framework, when interpreted in the setting of network flow,
is that all computations are performed in the original network, and not in a residual network.
Consequently, if the original network has special structure, (e.g., no flow-generating cycles, lossy
network) then this property is retained throughout the algorithm and can be repeatedly exploited.
In contrast, the residual network does not maintain such properties. The efficiency of our FPTAS’s
depends critically on the ability to work in the original network, and not in a residual network.

The packing algorithm for traditional maximum flow. The Garg-Könemann maximum
flow algorithm can be best understood by considering the (exponential-size) path-formulation of
the problem. Let P denote the set of directed s-t paths. The variable x(P ) denotes the flow sent
on path P ∈ P. The maximum flow problem is to maximize

∑
P∈P x(P ) subject to

∑
P :e∈P x(P ) ≤

u(e),∀e ∈ E and x(P ) ≥ 0. The dual LP is min {
∑
u(e)l(e) |

∑
e∈P l(e) ≥ 1 ∀P ∈ P, l(e) ≥ 0}.

This is the problem of assigning nonnegative lengths l(e) for each arc e so that the length of the
shortest s-t path is at least 1, and

∑
u(e)l(e) is minimized. The length of arc e can be interpreted

as the marginal cost of using up one unit of capacity on arc e.

Given length function l, define α(l) as the length of the shortest s-t path, and D(l) =
∑
u(e)l(e).

The length function l that minimizes D(l)/α(l) is an optimal dual solution after scaling by α(l).

The Garg-Könemann maximum flow algorithm starts with the zero flow and lengths l0(e) = δ/u(e),
where δ = Θ(m−1/ε). In iteration i, it finds the shortest s-t path P using lengths li−1, and increases
the current flow on each arc in this path by the bottleneck capacity ν := min{u(e) | e ∈ P}, i.e.,
the minimum original capacity of any arc in the path. In general, the updated flow will violate
one or more arc capacity constraints since the augmentation amount is independent of residual
capacities. We may obtain a feasible flow by dividing all flows by the maximum factor of violation
of a capacity constraint. The length function is then updated by multiplying the length of each arc
e ∈ P by 1 + ε ν

u(e) . The algorithm terminates at the first iteration τ with D(lτ ) ≥ 1. Garg and
Könemann [14] prove that after scaling the final flow so that it is feasible for the primal problem,
the resulting solution is within 1−2ε of the best dual solution found by the algorithm. Then, linear
programming weak duality implies that the scaled flow is a 2ε-approximate maximum flow.

General LP packing algorithm. In order to use this algorithm to handle gain and loss factors,
it is necessary to consider a more general packing problem, the packing linear program, and extend
the algorithm to work in this setting. A packing LP is of the form max {cTx | Ax ≤ b, x ≥
0} with all entries of m × n matrix A nonnegative and all entries of vectors b and c positive.
(Without loss of generality, all rows and columns of A contain at least one nonzero entry.) Note
that the path formulation of the traditional maximum flow problem is a packing LP. The dual LP
is min {bT y | AT y ≥ c, y ≥ 0}. Denoting the hth column of A by A(h), this can be rewritten as
min {bT y | A(h)T y

c(h) ≥ 1 ∀1 ≤ h ≤ n, y ≥ 0}. Linear programming duality asserts that the optimal
dual value equals the optimal value of the packing LP, and that any feasible dual solution has value
greater than or equal to any feasible solution to the packing LP.

Given dual variable vector y, define α(y) := minh{A(h)T y/c(h)} and D(y) := bT y. The y that
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minimizes D(y)/α(y) also gives the optimal solution to the dual LP after scaling by α(y). In
this packing setting, the Garg-Könemann algorithm starts with primal solution x = 0, and an
infeasible dual solution, y0(r) = δ/b(r), 1 ≤ r ≤ n, for an appropriately chosen δ = Θ(m−1/ε). At
each iteration, it determines the most violated dual constraint, that is, the dual constraint that
determines the current value of α. It constructs a primal feasible solution that complements (in
the complementary slackness sense) this dual solution. This primal feasible solution is not taken as
the new primal solution, however. Instead, it is added to the current primal solution. Thus the new
primal solution is likely infeasible, since it can violate the packing constraints. At the very end,
the primal solution is scaled to be feasible. Specifically, the algorithm first determines the column
q of A that minimizes A(h)T y/c(h). For this column q, it then determines a row p for which
b(p)/A(p, q) ≤ b(r)/A(r, q) ∀ rows r, and increases x(q) by b(p)/A(p, q). (Here and throughout,
A(r, h) denotes the entry in the rth row and hth column of A.) The dual solution yi−1 is updated
by setting yi(r) = yi−1(r)[1 + ε b(p)/A(p,q)

b(r)/A(r,q) ]. The algorithm terminates at the first iteration τ with
D(yτ ) ≥ 1. By our previous observation, yτ/α(yτ ) is a feasible solution to the dual packing LP of
value β := D(yτ)/α(yτ ). Let zi be the value of primal solution constructed by the algorithm at the
end of iteration i. By the above discussion, z0 = 0 and zi = zi−1 + c(q)(b(p)/A(p, q)). Garg and
Könemann [14] prove the following sequence of lemmas, using δ = 1+ε

[(1+ε)m]1/ε .

Lemma 2.1 ([14], Claim 3.1) There is a feasible solution to the packing LP of value zt
log1+ε

1+ε
δ

.

Lemma 2.2 ([14], Theorem 3.1) The packing algorithm terminates in at most 1
εm(1+log1+εm)

iterations.

Lemma 2.3 ([14], Theorem 3.1) Upon termination, the ratio of the primal feasible objective
value to the optimal dual solution is at least (1− ε)2.

Let S(m,n) be the run time of a subroutine to find the most violated dual constraint and the
corresponding complementary primal feasible solution. Thus, a feasible solution to the packing LP
whose objective is at least (1− ε) times the optimum can be found in O(ε−2S(m,n)m logm) time.

2.5 Generalized shortest paths

To solve generalized flow problems using the packing framework described above, we will need a
subroutine to solve the generalized shortest path problem: given an uncapacitated digraph G =
(V,E) with a nonnegative length or cost function l : E → R≥0, a gain function γ : E → R>0, a
source node s ∈ V and a sink node t ∈ V , the goal is to send flow from s so that one unit of
flow arrives at the t as cheaply as possible. In this section we describe how to solve this problem
efficiently in general networks, and networks without flow-generating cycles.

Formally, a generalized shortest path is an optimal solution g(v,w) to the following linear program.
This reduces to the traditional shortest path problem if all gain factors are one.

min
∑

(v,w)∈E l(v,w)g(v,w)∑
(w,v)∈E γ(w, v)g(w, v) −

∑
(v,w)∈E g(v,w) =

{
1 v = t

0 v ∈ V \ {s, t}
∀(v,w) ∈ E : g(v,w) ≥ 0.
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Note that the assumption that all arc lengths are nonnegative is not a restriction for our purposes,
since the exponential length function that is used in the fractional packing framework is nonnegative.

2.5.1 Generalized shortest paths in networks with flow generating cycles

Optimality conditions for generalized flow problems are well-known [3]. Here, we review the struc-
ture of the optimal solution for the generalized shortest path problem. One possibility is that the
solution sends flow only along a single simple s-t path. If there are no flow-generating cycles, this
is the only possibility. However, in networks with flow-generating cycles, there is a second possi-
bility – the solution can send flow around a flow-generating cycle and then along a path to t. By
sending one unit of flow around a cycle, more than one unit reaches the first node of the cycle.
Thus, flow can be generated at any node of the cycle (typically at some cost), instead of at s. This
combination of a simple flow-generating cycle and a simple path from a node on this cycle to the
sink is called a generalized augmenting path (GAP).

Existing polynomial combinatorial methods for solving the generalized shortest path problem with
flow-generating cycles are all based on the Bellman-Ford algorithm. Extending this method to
generalized flow appears to require additional care and complexity. The best known complexity
bound is Õ(mn2) due to Cohen and Megiddo [7] and Hochbaum and Naor [23]. Their algorithms are
actually more general; they test the feasibility of a general two-variable-per-inequality linear system.
All of these algorithms are based on Procedure 2.4, which determines whether the generalized
shortest path value is bigger than, less than, or equal to a trial value L. Aspvall and Shiloach [4]
give a O(mn) time Bellman-Ford style algorithm for this procedure. Their algorithm exploits
structure described by Shostak [36].

Procedure 2.4 (Aspvall and Shiloach [4]) Let L∗ denote the value of the generalized shortest
path. Given L, it can be decided in O(mn) time whether L = L∗, L < L∗, or L > L∗.

Recently, Oldham [30] proposed an algorithm for directly solving the generalized shortest path
problem that matches the Õ(mn2) complexity bound. His algorithm combines the Aspvall-Shiloach
procedure with Megiddo’s [28] parametric search.

2.5.2 Generalized shortest paths in networks with no flow generating cycles

In the case when there are no flow-generating cycles, the optimality conditions described in the
previous section imply that the generalized shortest path is a simple s-t path, since there can be no
GAP’s. Using the procedure described in Section 2.2, we first transform the network into a lossy
network. For lossy networks, we now describe a more efficient Dijkstra-like algorithm, similar to
that proposed by Charnes and Raike [6], to find a generalized shortest path. The difference between
this approach and the approach required in the setting with flow-generating cycles is analogous to
the difference between the traditional shortest path problem with and without negative cost arcs.
As a result, these faster methods do not extend to networks with flow-generating cycles.

For each node v, we maintain a distance π(v) in a priority queue. Upon termination, π(v) is the
cheapest cost of sending flow from s so that one unit arrives at v, given an unlimited and free supply
at the source. Our algorithm is identical to Dijkstra’s, except in the way the distances are updated.
We examine the cheapest node v and delete it from the priority queue. We update the distances



9

of all its neighbors. Suppose the unit cost of getting flow at v is π(v). Then, obtaining one unit of
flow at v and shipping to w along arc (v,w) costs π(v)+ l(v,w). But, only γ(v,w) units would then
arrive at w. So, we should scale everything by the gain factor. This leads to updating π(w) with
min{π(w), π(v)+l(v,w)

γ(v,w) }. Using Fibonacci heaps, as in Fredman and Tarjan’s [13] implementation of
Dijkstra’s algorithm, leads to the following theorem.

Theorem 2.5 The generalized shortest path problem in lossy networks with nonnegative lengths
can be solved in O(m+ n logm) time.

3 Generalized maximum flow

In this section, we first describe a fast and simple FPTAS for generalized maximum flow in networks
with no flow-generating cycles. It runs in Õ(ε−2m2) time, which, even for this well-studied problem,
is an improvement over previous work. For any constant ε > 0, it is faster by a factor of n than
the previous best known strongly-polynomial bound in [32]. It also dominates the previous best
weakly-polynomial bound of Õ(log(1/ε)(m2 + mn log logM)) in [34, 37] for sparse networks or
when M is very large.

Next we discuss how to turn this FPTAS into an exact algorithm using the “gain-scaling” technique
in [37]. This leads to a Õ(log(1/ε)(m2 + mn log logM)) approximation scheme, which exactly
matches the running time in [34, 37]. In this framework, the run time is proportional to log(1/ε)
instead of ε−2, allowing us to solve the generalized maximum flow problem to optimality by using
a sufficiently small value of ε. We note that our gain-scaling algorithm also works in networks with
flow-generating cycles, but, as in [17, 34, 37], we first need to perform an Õ(min{m2n,mn2 logM})
preprocessing step to “cancel” all flow-generating cycles.

3.1 Generalized max flow packing algorithm

We formulate the generalized maximum flow problem in lossy networks as a packing LP (P). In
Section 2.5.2, we explained that in lossy networks the generalized shortest path is a simple s-t
path, so we need not worry about GAP’s. Let P denote the set of all directed s-t paths. In the
generalized flow setting, variable x(P ) represents the amount of flow that reaches t on path P ∈ P.
Note that this does not typically equal the amount of flow leaving s. There is a capacity constraint
for each arc. This is straightforward to model, but we first need some notation since our decision
variables only implicitly determine how much flow goes through a given arc. Given an s-t path
P = {e1, . . . , er}, we define γP (eq) := 1/

∏r
i=q γ(ei). It is the amount of flow that must be sent

into arc eq in order to deliver one unit of flow at t using path P .

max
∑

P x(P )
∀e ∈ E :

∑
P :e∈P

γP (e)x(P ) ≤ u(e)

∀P ∈ P : x(P ) ≥ 0.

(P)

The linear programming dual (D) is to find an assignment of nonnegative arc lengths or costs l
so that

∑
e u(e)l(e) is minimized. The constraints require that the marginal cost (using costs l) of

getting one unit of flow to reach t, using any s-t path, is at least one.
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min
∑

e u(e)l(e)
∀P ∈ P :

∑
e∈P

γP (e)l(e) ≥ 1

∀e ∈ E : l(e) ≥ 0.

(D)

We interpret the packing algorithm of [14] for (P). The algorithm maintains a length function l(e)
that is exponential in the total flow going through that arc. Initially, we set l(e) = δ

u(e) , where

δ = Θ(m−1/ε) is chosen as in Section 2. Although (D) has an exponential number of constraints,
finding the most violated dual constraint corresponds to finding a generalized shortest path P .
Using path P is the cheapest way to send flow from s so that one unit arrives at t. Such a
subroutine is described in Section 2.5.2. Once path P is obtained, the algorithm sends as much
flow as possible along P , without violating the capacity constraints in the original network. That
is, it sends flow from s along P so that ν = mine∈P

u(e)
γP (e) units arrive at t. We update the length

function: for each arc e ∈ P , we multiply its length by a factor of (1 + ε ν
u(e)/γP (e)). The algorithm

terminates when the dual objective value
∑

e u(e)l(e) ≥ 1. Lemmas 2.1, 2.2, and 2.3 imply that
after O(ε−2m logm) iterations, we obtain an ε-approximate generalized maximum flow. Combining
this with Theorem 2.5 yields the following theorem.

Theorem 3.1 An ε-approximate generalized maximum flow in networks with no flow-generating
cycles can be computed in O(ε−2m(m+ n logm) log n) time.

3.2 An exact algorithm

We extend our algorithm to exactly solve the generalized maximum flow problem, even in networks
with flow-generating cycles. To do this efficiently, we use “error-scaling.” The basic idea is to run
the packing algorithm, say with ε = 1/2, and obtain a 1/2-approximate generalized maximum flow
g. Then, we repeatedly run the packing algorithm in the residual network Gg, adding the resulting
flow to g. Each iteration captures at least 1/2 of the remaining flow possible, so the optimality
gap geometrically decreases to zero. We obtain an ε-approximate flow after log(1/ε) iterations. If
ε is sufficiently small, say M−3m, then the ε-approximate flow can be efficiently “rounded” to an
optimal flow [17].

The main flaw in this approach is that the residual network may contain flow-generating cycles,
even if the original network did not. Recall, our fast generalized shortest path subroutine does
not work if there are flow-generating cycles. To overcome this obstacle, before running the packing
algorithm, we first cancel residual flow-generating cycles, as described in [17]. That is, we repeatedly
send flow around flow-generating cycle until (at least) one arc becomes saturated. In the process,
excess (but no deficit) is created at one node of the cycle. If the cycles are chosen carefully (e.g.,
minimum mean cost cycles using costs c = − log γ) then all flow-generating cycles can be canceled
in polynomial time. Canceling flow-generating cycles appears to be more expensive than canceling
negative cost cycles. Goldberg, Plotkin, and Tardos [17] give a Õ(mn2 logM) time algorithm. After
canceling all flow-generating cycles, the resulting residual network may contain nodes with excess.
Before applying the original packing algorithm to this network, we add a new unit gain arc from s
to each excess node, make its capacity equal to the node’s excess, and remove the excess from the
network. This allows the excess created from canceling flow-generating cycles to be subsequently
sent to the sink by the algorithm along source to sink paths.

This approach leads to an Õ(log(1/ε)mn2 logM) algorithm. The complexity can be significantly
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improved using the gain-scaling technique of Tardos and Wayne [37]. We sketch the method here,
but the reader is referred to [37] for more details. The bottleneck computation is canceling flow-
generating cycles. To reduce this bottleneck, we first round down all of the gain factors in the
original network to powers of a certain base b > 1. In this rounded network, flow-generating cycles
can be canceled more efficiently. Moreover, the rounding causes only a modest degradation in the
approximation guarantee. In the next iteration, the gain factors are re-rounded to powers of a
smaller base in order to refine the approximation guarantee. By slowly rounding the gain factors,
the amortized complexity of canceling flow-generating cycles is reduced from Õ(mn2 logM) to
Õ(mn log logM) per iteration. After O(log(1/ε)) iterations, the flow is ε-optimal.

Theorem 3.2 The packing algorithm, in conjunction with gain-scaling, computes an ε-approximate
generalized maximum flow in Õ(log ε−1(m2 +mn log logM)) time.

This exactly matches the best known complexity bound of Radzik [34] and Tardos and Wayne [37].

4 Generalized minimum cost flow

In this section, we describe how to extend the FPTAS’s for generalized maximum flow problems
to versions with nonnegative arc costs. In Section 4.1 we consider the budget constrained ver-
sion, where the total shipping cost is constrained to be at most some fixed budget. The budget
constrained problem arises as a subproblem in finding a maximum flow of minimum cost. In Sec-
tion 4.2 we describe a FPTAS for the minimum cost maximum flow problem in networks with no
flow-generating cycles; in Section 4.3, we describe a FPTAS for the version with flow-generating
cycles.

4.1 Generalized maximum flow with budget constraint

We first consider the generalized maximum flow problem with a budget constraint. Each arc e
has a nonnegative cost c(e), representing the unit cost of shipping one unit of flow into e. Given
budget B we seek a generalized maximum flow x among all flows that have cost at most B, i.e.,∑

P∈P
∑

e∈P c(e)γP (e)x(P ) ≤ B. Like the generalized maximum flow problem, this is also a packing
LP. The dual LP (D′) for this problem is

min
∑

e u(e)l(e) + Bφ∑
e∈P

γP (e) [l(e) + c(e)φ] ≥ 1 ∀ P

l(e) ≥ 0 ∀ e
φ ≥ 0.

(D′)

We maintain a dual variable l(e) for each arc and a dual variable φ. Initially we set l(e) = δ/u(e)
and φ = δ/B. The problem of finding a most violated dual inequality for (D′) is the problem
of finding a generalized shortest path P using length function l(e) + c(e)φ. Thus, with slight
modifications, the same algorithm we describe in Section 2.5 works here. To determine how much
additional flow to send on P , we need to find the row of matrix A that constrains P the most. This
is either determined as in Section 3, or by the budget constraint. That is, we send flow so that by
ν = min{mine∈P

u(e)
γP (e) ,

BP
e∈P c(e)γP (e)} units arrive at t. We update the length function exactly as
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before: for each arc e ∈ P , we multiply its length by a factor of (1 + ε ν
u(e)/γP (e)). We update the

dual variable corresponding to the budget constraint by φi = φi−1(1 + ε ν
B/
P
e∈P c(e)γP (e)). There are

O(ε−2m logm) iterations by Lemma 2.2.

In lossy networks, each iteration requires O(m + n log n) time to find a generalized shortest path
using Theorem 2.5. In networks with no flow generating cycles, we must first relabel the network.
However, once we relabel it, the network remains lossy for the remainder of the algorithm. The
run time for relabeling is dominated by the remainder of the algorithm.

Theorem 4.1 An ε-approximate generalized maximum flow of cost at most B in networks with no
flow generating cycles can be computed in O(ε−2m logm(m+ n log n)) time.

Oldham derived a corresponding result for networks with flow-generating cycles using Procedure 2.4
in conjunction with Megiddo’s parametric search [28]. We give an improved theorem and procedure
for networks with flow-generating cycles in Section 4.3.

Theorem 4.2 (Oldham [30]) An ε-approximate generalized maximum flow of cost at most B in
networks with flow-generating cycles can be computed in Õ(ε−2m logm(mn2 logm)) time.

4.2 Generalized minimum cost maximum flow in networks with no flow gener-
ating cycles

We describe how to find an approximate generalized minimum cost flow in lossy networks. Recall,
if a maximum flow of minimum cost delivers U∗ units of flow at the sink and has cost B∗, then an
ε-approximate minimum cost maximum flow is defined to deliver at least (1 − ε)U∗ units of flow
at the sink and costs no more than B∗. To find such a flow, we can binary search for the optimal
budget B∗, and at each step find an ε-approximate maximum flow (using Theorem 4.1) that does
not exceed the given budget. However, the optimal cost of a generalized flow can be exponentially
small, Θ(M−n), since the amount of the flow reaching the sink depends on the product of gains of
arcs along the path. Therefore, standard binary search could increase the run time by a factor of
n logM .

To reduce this run time, suppose we could estimate B∗ within a (1 + ε) factor, say by B∗ ≤ B ≤
B∗(1 + ε). Then, we can use B in the budget constraint. By Theorem 4.1, we can find a flow of
value (1 − ε) times the optimum among flows that have cost at most B. This flow might exceed
the optimum budget B∗, so we scale it down by a factor of (1 + ε). Now, the scaled flow has value
at least (1− ε)/(1 + ε) ≥ 1− 2ε and has cost at most B∗.

To find a suitable approximation to B∗, we use the geometric-mean binary search technique of
Hassin [22] (§4). Given a lower bound LB and an upper bound UB on the desired value B∗, con-
ventional binary search uses the arithmetic mean (LB+UB)/2 and shrinks the difference UB−LB
in half. Our goal is actually to decrease the ratio of the two endpoints UB/LB. Using the geomet-
ric mean

√
(LB)(UB), each iteration halves the log of the ratio, i.e., the ratio is “square-rooted.”

Thus, after log log1+ε(UB/LB) = O(log(ε−1) + log log(UB/LB)) calls to the budget constrained
generalized maximum flow algorithm, the ratio between the search interval endpoints is at most
(1+ε). To compute the geometric mean, we need to take square roots. But again, an approximation
suffices, and traditional techniques (e.g., Newton’s method) can be used to approximately compute
square roots.
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Theorem 4.3 An ε-approximate generalized minimum cost maximum flow in networks with no
flow generating cycles can be computed in Õ(ε−2m2(log ε−1 + log logM)) time.

Proof: We begin by transforming the network into a lossy network in O(nm) time. In each search
iteration, we approximately solve a generalized maximum flow with budget constraint problem.
By Theorem 4.1, this requires O(ε−2m logm(m + n log n)) time per search iteration. There are
O(log ε−1 + log log(UB/LB)) geometric-mean binary search iterations. Since each arc has capacity
and cost at most M , the value of the generalized minimum cost maximum flow is at most mM2.
Since each gain factor is at least 1/M , the value is at least 1/Mn, assuming it is positive. If it is
zero, this case can be easily detected and solved using Theorem 3.1. Thus, the number of search
iterations is O(log 1

ε + log logm+ log n log logM).

4.3 Networks with flow-generating cycles

We design a faster and simpler FPTAS for finding a generalized maximum flow of minimum cost
in networks with flow-generating cycles. The packing algorithm requires a subroutine to find a
generalized shortest path in networks with flow-generating cycles. In Theorem 4.2, this subroutine
is Procedure 2.4 in conjunction with Megiddo’s parametric search [28]. This is essentially Old-
ham’s [30] algorithm. Adapting and extending ideas in [11], we propose a simpler alternative to
parametric search, and improve the run time by a factor of n.

The first fact we use is that, in the packing framework, it is not necessary to find the most violated
dual constraint (i.e., the exact generalized shortest path). Instead, it suffices to find a nearly
most violated dual constraint (i.e., a path of length at most (1 + ε)L∗, where L∗ is the length
of the generalized shortest path). This fact has been used before in other ε-approximate packing
algorithms (see [20, 27, 31]) and is proved for the Garg-Könemann packing algorithm in [11].

To take advantage of this fact, we maintain a lower bound L on the true generalized shortest
path length L∗. We use (1 + ε)L as our guess for the shortest path length in Procedure 2.4. If
Procedure 2.4 determines that the shortest path is greater than (1 + ε)L, then we can update
our lower bound L to (1 + ε)L. Otherwise, Procedure 2.4 outputs a generalized path of length at
most (1 + ε)L. Since L is a lower bound on the generalized shortest path, the value of the path is
within a (1 + ε) factor of the shortest such path. We use this path in the packing framework. The
improvement in the running time (over parametric search) comes from showing that the final value
of L is at most (1+ε)/δ times the starting value of L, and hence L increases at most log1+ε((1+ε)/δ)
times.

Lemma 4.4 The final value of L is at most (1 + ε)/δ times the starting value of L.

Proof: Initially, L is determined by some generalized shortest path P0 using l0 = δ/u. That is,
L0 = minP

∑
e∈P γP (e)l0(e), where the minimum is determined by P0. At the final iteration τ , we

have that Lτ ≤
∑

e∈P γP (e)l(e) for all P ∈ P. In particular, this inequality must hold for path P0.

Since we terminate the algorithm when the dual objective function reaches 1, we have that lτ (e) ≤
(1 + ε)/u(e). Hence the ratio lτ/l0 is at most (1 + ε)/δ. Combining this with the conclusion of the
preceding paragraph yields the lemma.
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Theorem 4.5 An ε-approximate generalized maximum flow of cost at most B in networks with
flow-generating cycles can be computed in O(ε−2m2n logm) time.

Proof: We analyze the number of calls to Procedure 2.4, which is the bottleneck computation. If
the generalized shortest path length is within a (1 + ε) factor of our current lower bound L, we find
a path with a length that is within a (1 + ε) factor of the shortest path, with just a single call to
Procedure 2.4. Lemma 2.2 implies that this happens O(ε−2m logm) times. Otherwise, we increase
the value of L by a (1 + ε) factor. Lemma 4.4 implies this happens at most O(ε−2 logm) times,
given our choice of δ.

Using geometric binary search as in Section 4.2, we obtain a FPTAS for finding a generalized
maximum flow of minimum cost.

Theorem 4.6 An ε-approximate generalized minimum cost maximum flow in networks with flow-
generating cycles can be computed in Õ(ε−2m2n(log ε−1 + log logM)) time.

5 Generalized maximum multicommodity flow

We present FPTAS’s for the generalized maximum multicommodity flow problem, both for networks
with and without flow-generating cycles. The problem falls into the packing framework, and a
straightforward analysis leads to a Õ(ε−2km2) FPTAS for networks with no flow-generating cycles.
Interestingly, the fastest known FPTAS for the non-generalized version of the problem requires
Õ(ε−2m2) time [11]. After presenting the straightforward analysis, we combine the ideas in [11]
with Lemma 4.4 to exactly match the run time of the non-generalized FPTAS. We also use the
same idea to obtain a fast FPTAS in networks with flow-generating cycles.

The path formulation of the generalized maximum multicommodity flow problem is also a packing
LP. Let P denote the set of all directed paths from si to ti for all commodities 1 ≤ i ≤ k.

max
∑

P∈P x(P )
∀e ∈ E :

∑
P :e∈P

γP (e)x(P ) ≤ u(e)

∀P ∈ P : x(P ) ≥ 0.

For the single commodity case, finding a most violated dual constraint corresponds to finding a
generalized shortest path from s to t. For the multicommodity case, we need to find the generalized
shortest path from si to ti among all commodities 1 ≤ i ≤ k. This can be accomplished in lossy
networks or networks with flow-generating cycles using k single commodity generalized shortest
path computations. The number of iterations of the packing algorithm remains O(ε−2m logm) by
Lemma 2.2.

For lossy networks, the subroutine to find the most violated dual constraint in one iteration consists
of k of our modified Dijkstra computations. Depending on the value of k, this can be done more
efficiently. It suffices to perform an all-pairs generalized shortest path computation, e.g., with only
n Dijkstra computations instead of k.

Theorem 5.1 An ε-approximate solution to the generalized maximum multicommodity flow prob-
lem in networks with no flow-generating cycles can be computed in O(ε−2 min{k, n}m logm(m +
n log n)) time.
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We improve upon this theorem by incorporating the essential idea in [11]: avoid computing a
shortest path for each commodity in each iteration, by sticking with a single commodity as long as
the shortest path for that commodity is at most (1+ε)L. When this no longer holds, the algorithm
moves on to the next commodity. In this manner, the commodities are cycled through once per
update to L. Thus there is only one shortest path computation per iteration, plus k shortest path
computations per update to L. By grouping commodities by common source, this k can be replaced
with n.

Theorem 5.2 An ε-approximate solution to the generalized maximum multicommodity flow prob-
lem in lossy networks can be computed in O(ε−2m logm(m+ n log n)) time.

We note that all our multicommodity formulation can easily accommodate distinct gain factors
for distinct commodities. In this case, we need to perform a separate generalized shortest path
computation for each commodity using the same costs generated by the exponential length function,
but different gain factors. This would prevent grouping of commodities by common source node.

For flow-generating cycles, we combine the above ideas with Procedure 2.4 embedded in the scaling
framework described in Section 4.3. Using a similar analysis, we obtain the following theorem.

Theorem 5.3 An ε-approximate solution to the generalized maximum multicommodity flow prob-
lem in networks with flow-generating cycles can be computed in O(ε−2m2n logm) time.

6 Generalized concurrent flow

Unlike the single commodity flow problem, the natural formulations of the traditional multicom-
modity concurrent flow problems are not packing LP’s. For these problems, Garg and Könemann
modify their approximate maximum flow algorithm to handle multiple commodities [14]. This
modification assumes A is a 0-1 matrix. We show that the algorithm for the packing LP can be
modified to extend to a packing LP with multiple commodities in a similar fashion, and thus we
can provide approximation algorithms for generalized concurrent flow problems.

6.1 LP formulation of the generalized concurrent flow problem

We use the path formulation of the generalized maximum concurrent flow problem. The LP for the
generalized maximum concurrent flow problem and its dual are given below. As with the maximum
multicommodity flow problem, this formulation easily accommodates distinct gain/loss factors for
distinct commodities. For simplicity, we assume the gain function is the same for all commodities.
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(P′′)

max λ
∀e :

∑
P :e∈P

γP (e)x(P ) ≤ u(e)

∀j :
∑
P∈Pj

x(P )− λdj ≥ 0

∀P : x(P ) ≥ 0
λ ≥ 0.

(D′′)

min
∑

e u(e)l(e)
∀P (P ∈ Pj) :

∑
e∈P

γP (e)l(e) ≥ zj∑
j djzj ≥ 1

∀e : l(e) ≥ 0
zj ≥ 0.

This path formulation is a special case of the k-commodity packing problem described next.

6.2 The k-commodity packing problem

The k-commodity packing problem is a somewhat more general form of the packing LP. We develop a
FPTAS for the problem and will use it in the next two sections to solve generalized multicommodity
flow problems. The k-packing problem is: max{λ | Ax ≤ b; −Kx + dλ ≤ 0; x, λ ≥ 0} where
A ∈ Rm×n

≥0 , c ∈ Rn
>0, b ∈ Rm

>0, d ∈ Rk
>0, and K is a k×n block diagonal matrix in which each block

consists of exactly one row containing all ones. The variables corresponding to columns with non-
zero entries in block j are referred to as commodity j variables, and this set of columns is denoted by
Cj. The dual of the k-commodity packing problem is min{bT y | AT y−KT z ≥ 0; dT z ≥ 1; y, z ≥ 0}.

It is straightforward to see that the generalized concurrent flow problem is a special case of k-
commodity packing: in this case, A is the arc-path incidence matrix weighted by the arc gains, b is
the arc capacity vector, K(j, P ) = 1 if P is a path for commodity j and 0 otherwise, and d is the
vector of commodity demands. The k-commodity packing problem is more general since it allows
matrices A whose support is more general than that of an incidence matrix. We start by describing
and analyzing an FPTAS for the k-commodity packing problem. In Section 6.3, we then explain
how this specializes in the case of generalized concurrent flows.

6.2.1 The algorithm

Our FPTAS for the k-commodity packing problem works in phases, and each phase consists of
k iterations. In the jth iteration of the ith phase, we increase the total value of commodity j
variables by dj . Each variable has a corresponding increment amount that is unchanged throughout
the algorithm. The increment amount of variable x(h) equals minr{b(r)/A(r, h)}. Each iteration
consists of a sequence of steps. In any one step, a commodity j variable is increased by the minimum
of its increment amount and d′j , where d′j is the difference between dj and the total amount that
commodity j variables have been increased so far in this iteration. The resulting primal solution x
is likely not feasible. We can make x feasible by scaling it by the largest factor of violation of an
inequality in the system Ax ≤ b. If k = 1, then the algorithm we describe here is essentially the
packing algorithm described in Section 2.4.

The algorithm starts with x ≡ 0 and with dual variables y0(r) = δ/b(r), 1 ≤ r ≤ m. Given any
y, we may find a z and scale both y and z so that we obtain a feasible solution to the dual in the
following manner: We set z(j) = minh∈Cj A(h)T y, 1 ≤ j ≤ k, so that AT y −KT z ≥ 0 is always
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satisfied. Then, we scale y and z by dT z, so that the last dual inequality is also satisfied. Thus, we
explicitly maintain y and not z below.

Any one step looks a lot like the packing algorithm described in Section 2.4. In step s for com-
modity j, we find a most violated dual constraint q among the constraints corresponding to primal
commodity j variables. We next determine the increment amount of primal variable x(q), and set
the actual increment ν to be the minimum of this and the remaining demand d′j . After incrementing
x(q) by ν, y is updated by setting y(r) = y(r)(1 + ε ν

b(r)/A(r,q)). This algorithm is summarized in
Figure 2.

K-CommodityPacking (A, b,K)
Input: matrices: m× n A, m× 1 b, k × n K
Output: primal and dual (infeasible) solutions x and y

Initialize y(r) = δ/b(r) ∀r, D(y) = mδ, x ≡ 0.
while bT y < 1 do

for j = 1 to k do
d′j = dj
while d′j > 0 and bT y < 1

q ← argminh∈Cj A(h)T y
p← argminr b(r)/A(r, q)
ν = min{d′j , b(p)/A(p, q)} /* increment amount */
x(q)← x(q) + ν /* primal update */
d′j ← d′j − ν /* remaining demand of commodity j */
y(r)← y(r)(1 + ε ν

b(r)/A(r,q)), ∀r /* dual update */
If bT y ≥ 1, stop. Return (x, y) scaled to be feasible.

Figure 2: k-commodity packing algorithm

Let α(y, z) =
∑

j djz(j) and D(y) = bT y. The algorithm stops as soon as D(y) ≥ 1. We extend
the analysis in [14] to show that this algorithm leads to approximately optimal solutions for the
k-commodity packing problem.

6.2.2 Approximation guarantee

Let t be the final phase of the algorithm. In the first t−1 phases, the algorithm increases commodity
j variables by a total of (t− 1)d(j) units, possibly violating the packing constraints. After scaling
the final x to obey the packing constraints, let λ the maximum value such that Kx ≥ dλ.

Lemma 6.1 λ ≥ t−1
log1+ε

1
δ

.

Proof: If the primal solution is not feasible, it is because there is a violated packing constraint∑
hA(r, h)x(h)/b(r) ≤ 1. When the algorithm increases x(q) by b(p)/A(p, q), the left hand side of

this constraint increases by v := A(r,q)b(p)
b(r)A(p,q) . At the same time, dual variable y(r) is multiplied by

1 + εv. By the choice of p, v ≤ 1 and thus each increase in the left hand side of the rth constraint
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by 1 causes y(r) to be multiplied by at least 1 + ε. Since D(t − 1) < 1, yt−1(r) < 1/b(r). Since
y0(r) = δ/b(r), the value of the left hand side of the rth constraint after t − 1 phases is at most
log1+ε

1
δ . This holds for all primal constraints, and hence scaling the primal solution obtained after

t − 1 phases by log1+ε
1
δ satisfies the packing constraints. Scaling λ by the same value maintains

the validity of the commodity constraints.

Lemma 6.2 For δ = (m/(1 − ε))−1/ε, the ratio of the optimal dual solution to the primal feasible
solutions obtained by the algorithm is θ ≤ (1− ε)−3.

Proof: Let ysij and zsij be the dual variable setting at the end of the sth step in the jth iteration
of the ith phase. Let νsij denote the increment amount in this step. Iteration j ends at the step π
when d′j = 0. We will let yij and zij denote the value of y and z at the start of iteration j + 1,
D(i) := D(yπik) and α(i) = α(yπik, z

π
ik). At the end step s of iteration j we have

D(ysij) =
∑

r b(r)y
s
ij(r) =

∑
r

b(r)ys−1
ij (r) + ε νsij

∑
r

arqy
s−1
ij (r)

= D(ys−1
ij ) + ε νsij A

T
q y

s−1
ij

= D(ys−1
ij ) + ε νsij z

s−1
ij (j).

Note that y is monotone increasing throughout the algorithm. This implies that z is also. We have

D(ysij) ≤ D(ys−1
ij ) + ε νsij z

π
ij(j)

Using the fact that
∑

s ν
s
ij = d(j),

D(yπij) = D(yij) ≤ D(yi,j−1) + ε d(j) zij(j).

Summing over all iterations in a phase, we have

D(yik) ≤ D(yi0) + ε α(yik, zik),

or, rewriting,

D(i) ≤ D(i− 1) + ε α(i).

Let β be the optimal dual value. Thus β ≤ D(i)
α(i) which is the value of the dual feasible solution

corresponding to yik/α(i). As in [14], we start with the assumption that β ≥ 1. We remove this
assumption later. Thus,

D(i) ≤ D(i− 1)
1− ε/β .

Since D(0) = mδ and β ≥ 1, for i ≥ 1

D(i) ≤ mδ

(1− ε/β)i
=

mδ

1− ε/β (1 +
ε

β − ε)i−1 ≤ mδ

1− ε/β e
ε(i−1)
β(1−ε) .

The algorithm stops at the first phase t for which D(t) ≥ 1. Thus

1 ≤ D(t) ≤ mδ

1− ε/β e
ε(t−1)
β(1−ε) ,
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and

β

t− 1
≤ ε

(1− ε) ln 1−ε
mδ

. (1)

The ratio of the values of the optimal dual solution to the primal feasible solution obtained is
θ := β

t−1 log1+ε 1/δ. Setting δ == (m/(1 − ε))−1/ε yields the result.

6.2.3 Complexity

We now discuss how to remove assumptions on β, and analyze the run time of this algorithm. Our
discussion extends the arguments in [14], which uses ideas in [31].

By weak duality, 1 ≤ θ = β
t−1 log1+ε 1/δ. This implies that the number of phases, t, is at most

1 + β log1+ε 1/δ = 1 + β
ε log1+ε

m
1−ε . Thus the running time depends on β.

Let ζj be the maximum sum of j-commodity variables that satisfy all constraints Ax ≤ b (e.g.,
when all other variables are zero). Let ζ = minj ζj/dj . Then ζ/k ≤ β ≤ ζ, and these upper and
lower bounds on β differ by at most a factor of k. We scale d so that this lower bound equals 1.
Now 1 ≤ β ≤ k.

We run the algorithm, and if it does not stop after T := 21
ε log1+ε

m
1−ε phases, then β > 2. We

then multiply demands by 2, so that β is halved, and still at least 1. We continue the algorithm,
and again double demands if it does not stop after T phases. After repeating this at most log k
times, the algorithm stops. The total number of phases is T log k. As noted in [14, 31], we can
reduce the number of phases further by first computing a 1/2-approximation (within a factor of 2)
to our problem, using this scheme. This takes O(log k logm) phases. We get a value β̂ such that
β ≤ β̂ ≤ 2β. Thus with at most T additional phases, we obtain an ε-approximate solution. Using
the fact that there are at most k iterations per phase, we have the following lemma.

Lemma 6.3 The total number of iterations required by the k-commodity packing algorithm is at
most 2k logm(log k + ε−2).

It remains to bound the number of steps. For each step except the last step in an iteration, the
algorithm increases some dual variable by a multiplicative factor of 1 + ε (i.e., variable y(p)). Since
each variable y(r) has initial value δ/b(r) and value at most 1

b(r) before the final step of the algorithm
(since D(t− 1) < 1), the number of steps in the entire algorithm exceeds the number of iterations
by at most m log1+ε

1
δ = m log1+ε

m
1−ε .

Let S(m,n) be the time required to find p and q in one step of one iteration.

Theorem 6.4 Given ζj, a (1 + ε)-approximate solution to the k-commodity packing problem can
be obtained in Õ(ε−2S(m,n)(k +m)) time.

We don’t actually need the exact values of ζj , since they are just used to get an estimate on β. In
fact, if we are willing to lose log factors in the run time, it suffices that these estimates be within
a factor polynomial in m of β. That is, if our estimate ζ̂j is ≥ 1

mζj , then we have upper and lower
bounds on β that differ by a factor of at most mk.
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One way to get an approximate value of ζj is to use the approximate generalized maximum flow
algorithm described in Sections 2.4 and 3.1 for the single commodity packing LP. Doing this sep-
arately for each commodity requires Õ(m2) time per commodity in lossy networks, for a total of
Õ(km2) time. In networks with flow-generating cycles, this requires a total of Õ(kmmin{(m +
n log logM),mn}) time, using the FPTAS in one of [32, 34, 37].

6.3 Generalized maximum concurrent flows

The algorithm for the generalized maximum concurrent flows works in phases, and each phase
consists of k iterations. In the jth iteration of the ith phase, we send flow from sj so that dj units
of flow arrive at tj . Each iteration consists of a sequence of steps. In any one step, flow is routed
along a single (sj, tj) path. The amount of flow sent along this path is determined by the minimum
of the capacity of this path in the original graph, and the remaining unsatisfied demand at this
iteration.

This problem is a k-commodity packing problem, and hence the analysis of the algorithm in the
previous section applies. The subroutine to find a most violated primal constraint is a generalized
shortest path problem using length function l.

To get estimates of ζj for each commodity 1 ≤ j ≤ k, we could use our approximate generalized
maximum flow algorithm. However, we would like something faster, because otherwise this compu-
tation will be the bottleneck computation of our algorithm. As before, it suffices to get a solution
within a factor polynomial in m of ζj .

Lemma 6.5 In lossy networks, estimates ζ̂j , j = 1, . . . , k for which ζ̂j ≥ ζj/m, can be computed
for all j in O(min{k, n}(m+ n log n)) time.

Proof: When there are no flow-generating cycles, a maximum generalized flow can be decomposed
into at most m s-t path flows, e.g., see [17]. The path in this decomposition that delivers the
most flow to t thus generates at least a 1/m fraction of the maximum possible. The s-t path that
maximizes the amount of flow reaching t over all such paths is at least as good. This path is a
generalized maximum capacity path. The standard maximum capacity path problem can be solved
by modifying Dijkstra’s algorithm to update node labels not with the shortest path distance, but
with the maximum bottleneck capacity. The generalized maximum capacity path problem can
be solved by modifying our definition of bottleneck capacity. Let π(v) denote the capacity of
the maximum capacity path reaching v. Then the capacity of a path reaching w through node
v is min{u(v,w), π(v)}γ(v,w). Thus π(w) ≤ min{u(v,w), π(v)}γ(v,w). Since we are concerned
with lossy networks, γ(e) ≤ 1 ∀e, and thus π(w) = maxv min{u(v,w), π(v)}γ(v,w). Starting with
π(s) = ∞, we use this as our update rule in a modified Dijkstra’s algorithm to compute the
generalized maximum capacity s-t path. Such a method was described in [40]. We set ζ̂j = π(tj).
The maximum capacity path for all possible s-t pairs can be determined with at most min{k, n}
such computations.

Finding a most violated dual constraint corresponds to a generalized shortest path computation.
By Theorem 2.5 S(m,n) = O(m + n log n) for lossy networks. Combining this with Lemma 6.5
and Theorem 6.4 we obtain the following theorem.

Theorem 6.6 There exists a FPTAS for the generalized concurrent multicommodity flow problem
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in networks with no flow generating cycles that requires O(ε−2(m+ n log n)(m+ k)) time.

This matches the run time of one of the asymptotically fastest FPTAS for traditional maximum
concurrent flow [11].

To obtain an algorithm for networks with flow-generating cycles, we need to determine ζ̂j for 1 ≤ j ≤
k and describe the generalized shortest path algorithm. To obtain ζ̂j , we use our approximation
algorithm for the single commodity generalized flow problem. To compute generalized shortest
paths, we embed Procedure 2.4 in a scaling framework as described in Section 4.3. In this setting,
we maintain a lower bound Lj for each commodity j. A straightforward analysis yields the following
theorem.

Theorem 6.7 There exists a FPTAS for the generalized concurrent multicommodity flow problem
in networks with flow-generating cycles that requires Õ(ε−2(k +m)mn) time.

6.4 Generalized minimum cost concurrent flow

As with the single commodity problem, we can add a budget constraint to the multiple commodity
problem, and find a generalized concurrent flow that satisfies the budget constraint and satisfies
at least a (1 − ε) fraction of the maximum demand possible. This is because a budget constraint
is a packing constraint, and hence the resulting LP is a k-commodity packing LP. Since we have
a different variable for each commodity-path pair, this budget constraint can easily incorporate
different costs for different commodities.

The subroutine to find a most violated primal constraint is, as with the generalized maximum flow
with a budget constraint, the generalized shortest path problem using length function l(e) +φc(e),
where c is the cost vector and φ is the dual variable for the budget constraint. This can be easily
adapted to multiple budget constraints with corresponding dual variables φi and cost vectors ci
using length function l +

∑
i φici.

To get estimates on ζj for all 1 ≤ j ≤ k, as needed to delimit β, it suffices to compute O(m)-
approximations to the min{n2, k} generalized maximum flow with budget problems. We use the
algorithms discussed in Section 4, with a constant value for ε.

To find a ε-approximate generalized maximum concurrent flow of cost no more than the minimum
cost generalized maximum concurrent flow, we can use geometric-mean binary search as discussed
in Section 4.2. In the following theorems, the first expression in the run time comes from finding
ζ̂j, and the second expression is the time needed to solve the scaled problem obtained with the
bounds given by the ζ̂j .

Theorem 6.8 There exists a FPTAS for the generalized minimum cost concurrent flow problem
in lossy networks that requires Õ(km2 + ε−2m(k +m)(log ε−1 + log logM)) time.

Theorem 6.9 There exists a FPTAS for the generalized minimum cost concurrent flow problem
in networks with flow-generating cycles that requires Õ(km2n+ ε−2mn(k+m)(log ε−1 +log logM))
time.
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