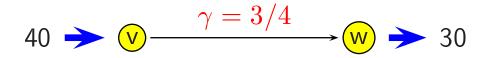
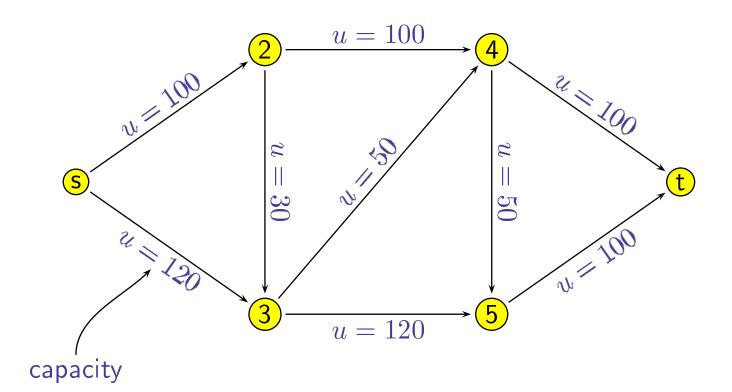
Generalized Max Flows

Kevin Wayne Cornell University www.orie.cornell.edu/~wayne



advisor: Éva Tardos

Maximum Flow Problem



Max flow sent to \boldsymbol{t}

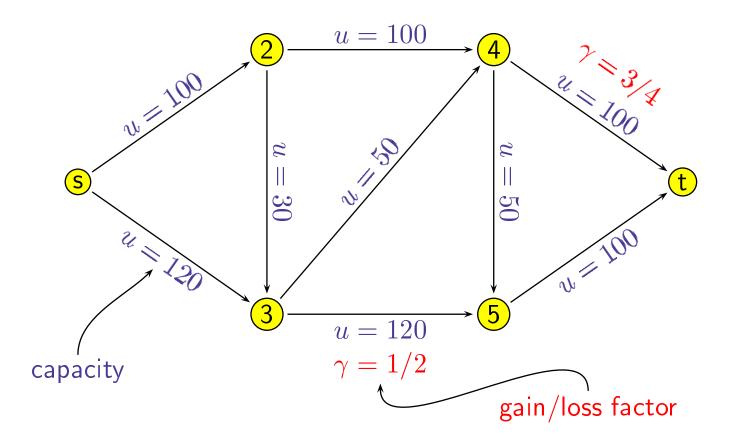
- capacity constraints
- flow conservation constraints

$$v \xrightarrow{u = 100} v$$

(generalized)

$$\gamma = 3/4$$

Generalized Maximum Flow Problem



Max flow sent to \boldsymbol{t}

- capacity constraints
- flow conservation constraints (generalized)

$$\gamma = 3/4$$

$$40 \rightarrow \boxed{v} \xrightarrow{u = 100} \boxed{w} \rightarrow 30$$

Organization of Talk

- 1. Applications
- 2. Previous work
- 3. Combinatorial structure and optimality conditions
- 4. Exponential-time augmenting path algorithm
- 5. Polynomial-time variant using gain-scaling

main part of talk

Applications

"generalized networks are coming to be appreciated as rivaling or even surpassing pure networks in their practical significance."

- Glover and Klingman

Physical transformations:

leaky pipes, theft, evaporation, attrition, spoilage, taxes, interest

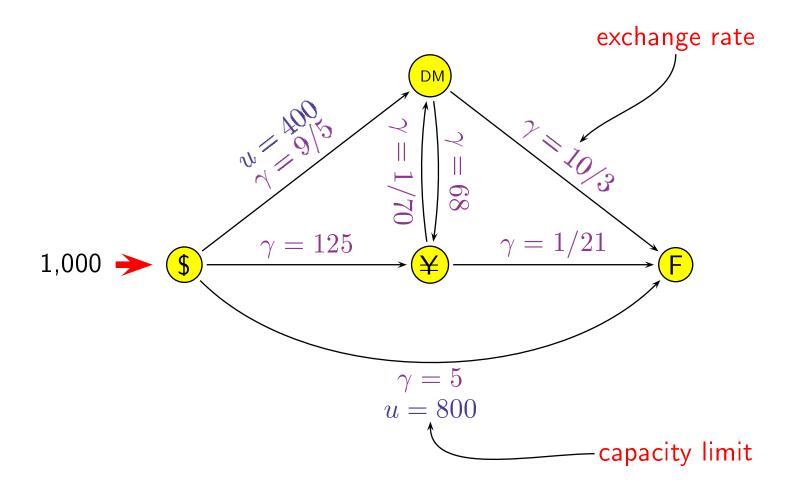
Administrative transformations:

currency conversion, production yields, energy blending, machine scheduling

Optimal Currency Conversion

Convert \$1,000 to maximum number of French Francs through sequence of currency conversions

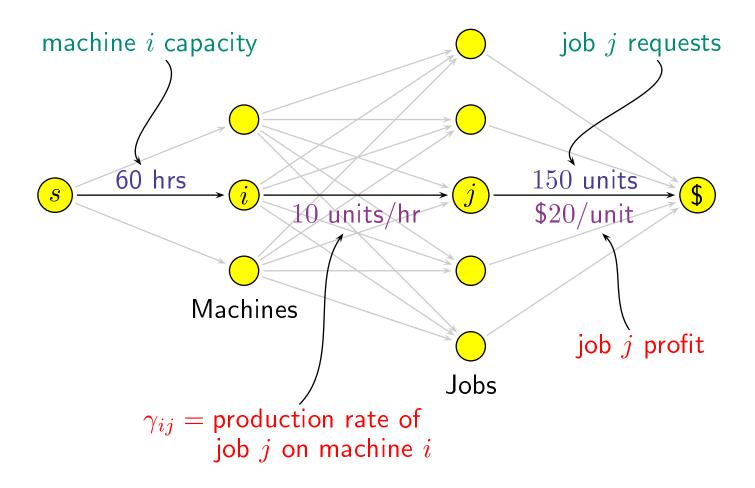
- exchange rates
- limits on trading capacity



Scheduling Unrelated Parallel Machines

Assign jobs to machines to maximize total profit

- machines have speeds and capacities
- profit for completing each job requested
- can split jobs between machines



General Approach

Combinatorial approach (Ford and Fulkerson '50s)

- Exploit underlying network structure
- Superior algorithms for traditional network problems
 - shortest path
 - max flow
 - min cost flow
 - matching
 - minimum spanning tree
- Not so much known about combinatorial algorithms for
 - multicommodity flow
 - generalized flow

Can also be solved by general purpose LP techniques

• simplex, ellipsoid, interior point

Combinatorial Approach

Why generalized flows are harder:

- supply \neq demand
- no integrality theorem
- no max flow min cut theorem

Can still use:

• linear programming duality

New bit-scaling technique:

• gain-scaling

Problem History

Linear programming

Dantzig '62 network simplex

Onaga '66, Jewell '62 augmenting path

Goldberg, Plotkin, Tardos '88 Fat-Path, MCF

- first polynomial-time combinatorial algorithms
- developed combinatorial machinery

Goldfarb, Jin, Orlin '96

• best worst-case complexity - $\mathcal{O}^*(m^3 \log B)$

$m=\#~{ m arcs}$	$\mathcal{O}^* = hides \ polylog(m) \ factors$
n = # nodes	B = biggest gain/capacity integer

Approximate Problem History

Can find provably good flows faster than optimal flows

Approximate flows An $\epsilon\text{-optimal}$ flow is a flow with value at least $(1-\epsilon)$ OPT

Cohen, Meggido '92

 strongly polynomial approximation algorithm (# operations depends on size of network only)

Radzik '93a, '93b Fat-Path

- original Fat-Path is strongly polynomial approximation algorithm
- Fat-Path variant
 - $\mathcal{O}^*(m^2 + mn\log\log B)$ approximation algorithm
 - complicated

My Work

Gain-scaling technique provides:

- this Cleanest and simplest polynomial-time algorithm talk
 - variant of primal-dual method of Truemper '77
 - First polynomial-time preflow-push algorithm for generalized flows
 - Goldberg-Tarjan preflow-push is most practical traditional max flow algorithm
 - practical implementation
 - Fat-Path variant
 - matches best running time for approximate flows
 - much simpler than Radzik's variant

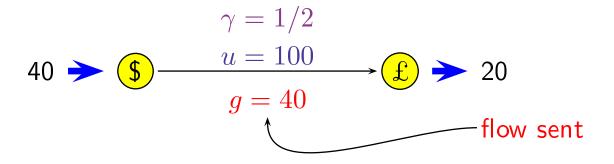
Organization of Talk

- 1. Applications
- 2. Previous work
- 3. Combinatorial structure and optimality conditions
- 4. Exponential-time augmenting path algorithm
- 5. Polynomial-time variant using gain-scaling

Residual Network

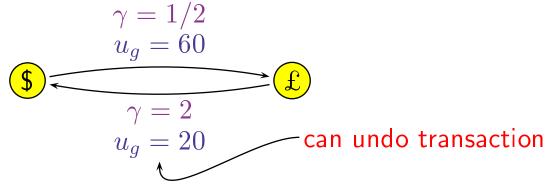
Produces equivalent but potentially simpler problem

Original network: G = (V, E, u)



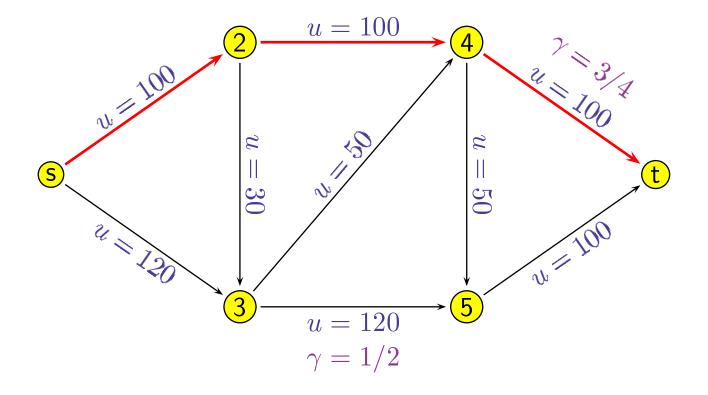
$$u={\sf capacity}, \gamma={\sf gain}$$

Residual network: $G_g = (V, E_g, u_g)$



Augmenting Paths

Residual network G_g :

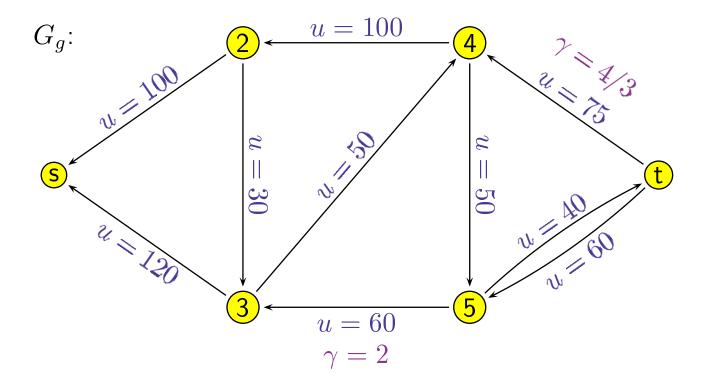


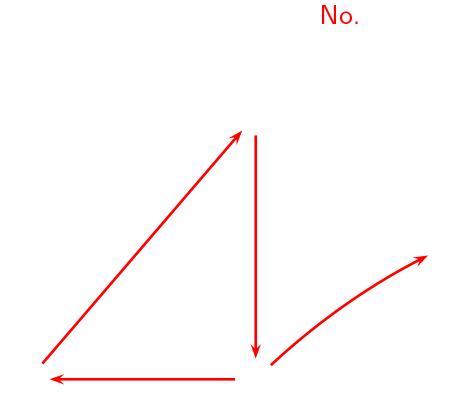
Augmenting path: residual path from s to t

Send 1 unit from s to t along path P then $\gamma(P) = \prod_{e \in P} \gamma(e)$ arrive at t

Generalized Augmenting Paths

optimality \iff no augmenting paths ?



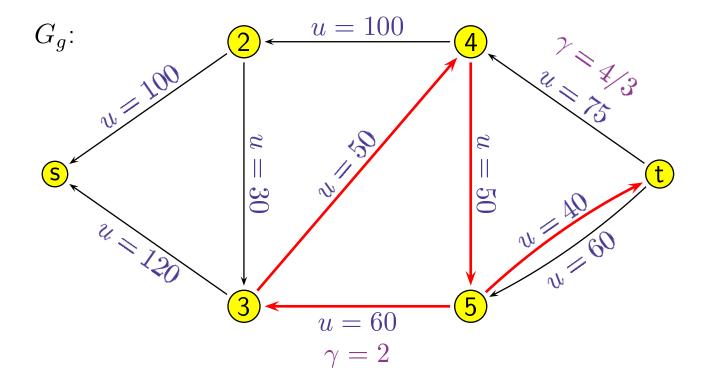


Flow-generating cycle: cycle Γ with $\gamma(\Gamma)>1$ arbitrage

GAP: Residual flow-generating cycle + path to t

Generalized Augmenting Paths

optimality \iff no augmenting paths ? No.



Flow-generating cycle: cycle Γ with $\gamma(\Gamma)>1$ arbitrage

GAP: Residual flow-generating cycle + path to t

Optimality Conditions

For generalized max flow:

Theorem. [Onaga '66] generalized flow g optimal iff no augmenting paths or GAPs in G_g .

For min cost max-flow:

Theorem. [Negative Cost Cycle] flow f optimal iff no augmenting paths or negative cost cycles in G_g .

flow-generating cycle \iff negative cost cycle using cost function $c(v,w) = -\log\gamma(v,w)$

Organization of Talk

- 1. Applications
- 2. Previous work
- 3. Combinatorial structure and optimality conditions
- 4. Exponential-time augmenting path algorithm
- 5. Polynomial-time variant using gain-scaling

Onaga's Algorithm '66

Analog to successive shortest path algorithm for min cost flows

- Assumes no arbitrage initially (i.e., no residual flowgenerating cycles)
- Repeatedly augment flow along some highest-gain (most efficient) augmenting path
- Can find with shortest path computation using costs $c(v,w) = -\log \gamma(v,w)$

Correctness: Does not create flow-generating cycles if augmentations along highest gain path

Complexity: Very bad!

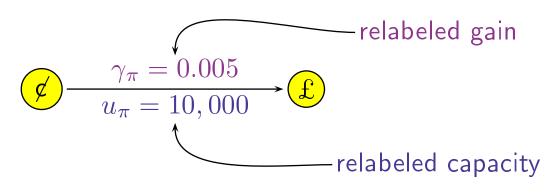
Relabeled Network

Node labels (dual variables): $\pi(v) \ge 0, \pi(t) = 1$ Changes local units in which flow is measured

Example: Node v changed from dollars to pennies $\pi(v) = 100 = \#$ new units per old unit

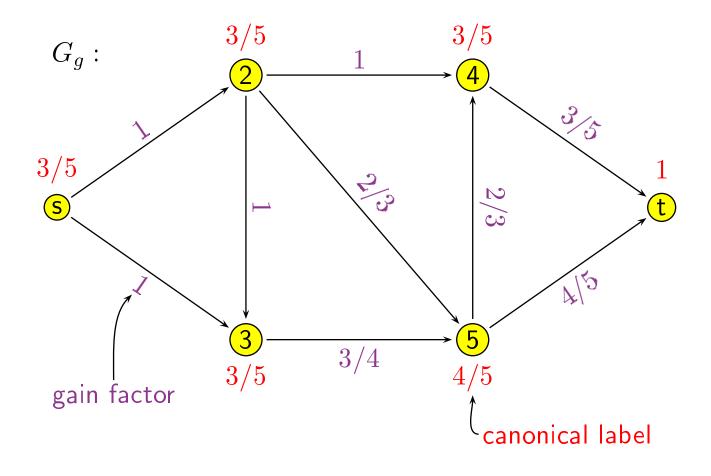
Original network: $G = (V, E, u, \pi)$ $\underbrace{ \begin{array}{c} \gamma = 0.5 \\ u = 100 \end{array}}_{u = 100} \underbrace{ \begin{array}{c} \gamma \\ \pounds \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\ \pounds \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\ \underbrace{ \begin{array}{c} \gamma \\ \vdots \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{u = 10} \underbrace{ \begin{array}{c} \gamma \\}_{u = 10} \underbrace{ \end{array}}_{$

Relabeled network: $G_{\pi} = (V, E, u_{\pi}, \gamma_{\pi})$



Canonical Labels

Canonical labels: $\pi(v) = \text{gain of most efficient}$ (highest-gain) residual v-t path

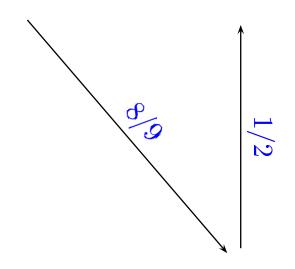


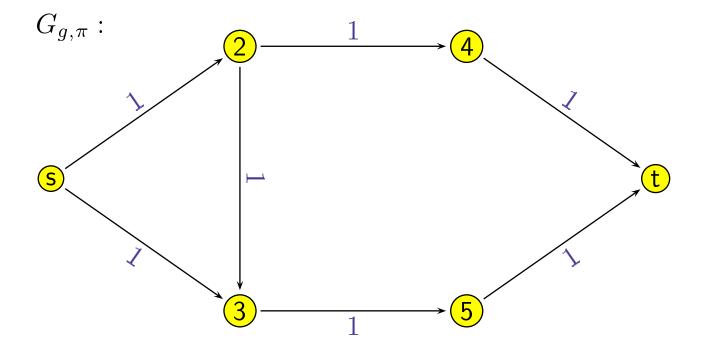
• Can compute if all gain factors ≤ 1 using cost function $c(v,w) = -\log\gamma(v,w)$

Canonical labels: $\pi(v) = \text{gain of most efficient}$ (highest-gain) residual v-t path

- After canonical relabeling,
 - \forall residual arcs (v, w): $\gamma_{\pi}(v, w) \leq 1$
 - \exists gain 1 relabeled residual *s*-*t* path

Canonically Relabeled Network





Truemper's Algorithm '77

Analog of Ford and Fulkerson's primal-dual min cost flow algorithm

- Maintains flow g and canonical labels π such that $G_{g,\pi}$ has only lossy arcs (gain factor ≤ 1)
- Augment flow simultaneously along all highest-gain (most efficient) augmenting paths, i.e., all unit gain s-t paths in G_{g,π}

repeat

 $\begin{array}{l} \pi \leftarrow \text{canonical labels} \\ f \leftarrow \max \text{ flow from } s \text{ to } t \text{ in } G_{g,\pi} \text{ using} \\ \text{ only } \gamma_{\pi} = 1 \text{ arcs} \\ g(v,w) \leftarrow g(v,w) + \pi(v)f(v,w) \end{array}$ until no augmenting paths

Correctness: as before

Truemper's Algorithm (cont.)

Complexity: After each max flow computation, the gain of most efficient augmenting path strictly decreases (optimal if no such paths)

max flow iterations $\leq \#$ distinct gains of paths in G

If gain factors are powers of 2:

- Gains of arcs are between $\frac{1}{B}$ and 1
- Gains of residual paths are between $\frac{1}{B^n}$ and 1
- At most $\log_2 B^n$ distinct gains of paths $\implies n \log_2 B \max$ flow iterations

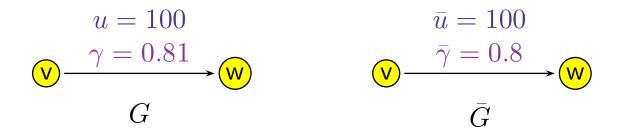
Organization of Talk

- 1. Applications
- 2. Previous work
- 3. Combinatorial structure and optimality conditions
- 4. Exponential-time augmenting path algorithm
- 5. Polynomial-time variant using gain-scaling

New Gain-Scaling Algorithm

Gain-scaling = rounding + recursion

- Applies if G has only lossy residual arcs (gain ≤ 1)
- Round gains down to powers of $b = (3/2)^{1/n}$



• Find optimal flow in rounded network G using Truemper's algorithm.

Complexity: $\log_b B^n = \mathcal{O}(n^2 \log B)$ max flows

New Gain-Scaling Algorithm

- Found optimal flow in rounded network \bar{G}
- Interpret flow in G

$$\bar{G}: \quad \circ \underbrace{\bar{\gamma} = 1}{\bar{g} = 100} \underbrace{\nabla}_{\bar{g} = 0.8} \underbrace{\bar{\gamma} = 0.8}{\bar{g} = 100} \underbrace{\nabla}_{\bar{g} = 100} \underbrace{\bar{g} = 50}_{\bar{g} = 30} \circ$$

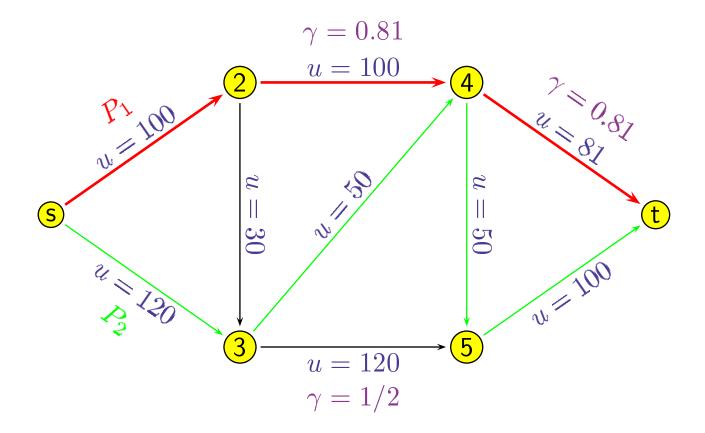
$$G: \qquad \circ \underbrace{\gamma = 1}_{g = 100} \lor \underbrace{\gamma = 0.81}_{g = 100} & \underbrace{\varphi = 50}_{g = 30} \circ \\ +1 & \underbrace{g = 30}_{g = 30} \circ \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

- \bullet Resulting flow in G
 - satisfies capacity constraints
 - is at least as good as flow in \bar{G}
 - may violate flow conservation constraints (but only in a good way!)

Rounded Network

Rounded network \overline{G} close to original network G: $\frac{2}{3} \operatorname{OPT}(G) \leq \operatorname{OPT}(\overline{G}) \leq \operatorname{OPT}(G)$ $\overline{\gamma} \leq \gamma$

Path flow formulation: $x_j =$ flow sent on path P_j



Rounded Network

 $\frac{2}{3} \operatorname{OPT}(G) \leq \operatorname{OPT}(\overline{G})$ let x^* be optimal path flow in G $\implies x^*$ feasible path flow in \overline{G}

$$x_{j}^{*} = 100$$

$$G: \qquad \overbrace{o}^{\gamma} = 1 \qquad (2 \qquad \gamma = 0.81 \qquad 4 \qquad \gamma = 0.81 \qquad t \qquad) \qquad 65.61$$

$$x_{j}^{*} = 100$$

$$\overline{G}: \qquad \overbrace{o}^{\overline{\gamma}} = 1 \qquad (2 \qquad \overline{\gamma} = 0.8 \qquad 4 \qquad \overline{\gamma} = 0.8 \qquad t \qquad) \qquad 64$$

$$\overline{q}(P) \ge \frac{\gamma(P)}{b^{|P|}} \ge \frac{\gamma(P)}{3/2} \implies \operatorname{OPT}(\overline{G}) \ge \frac{2}{3} \operatorname{OPT}(G)$$

$$\overline{q}(e) \ge \frac{\gamma(e)}{b} \qquad b = (3/2)^{1/n}$$

Geometric Improvement

Idea: Compute 1/3-optimal flow. Recurse.

Initialize $g \leftarrow 0$ **repeat** $g' \leftarrow 1/3$ -optimal flow in G_g $g \leftarrow g + g'$ **until** g is ϵ -optimal

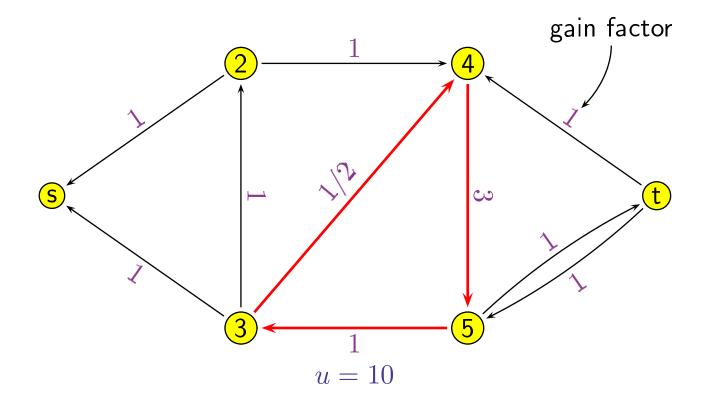
Analysis: Each iteration captures at least 2/3 of remaining flow, so flow is ϵ -optimal in $\log(1/\epsilon)$ iterations

Our Result. The algorithm computes an ϵ -optimal flow in $\mathcal{O}^*(mn^3 \log B) \log(1/\epsilon)$ time.

Canceling Flow-Generating Cycles

Truemper's algorithm only works if no gain factor > 1

Can we relabel to eliminate gainy arcs? Yes \iff no residual flow-generating cycles



Cancel flow-generating cycles, creating only excess

Canceling Flow-Generating Cycles

- **Goal:** Cancel (saturate) **all** flow-generating cycles, creating only excesses, so that network can be relabeled as a lossy network
- **Goldberg, Tarjan '88** mean cycle canceling For min cost flows, repeatedly cancel residual cycle with most negative mean cost

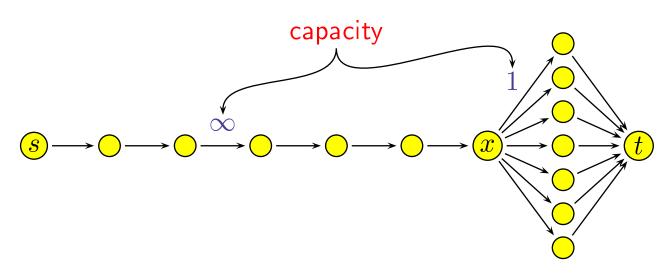
GPT '88 generalized flow analog

- Using cost function $c(v, w) = -\log \gamma(v, w)$, flow-generating cycle \iff negative cost cycle
- Repeatedly cancel residual flow-generating cycle with maximum geometric-mean gain
- $\mathcal{O}^*(mn^2 \log B)$ running time

Our improved version in rounded networks

• $\mathcal{O}^*(mn\log\log B)$ running time

Preflow-Push

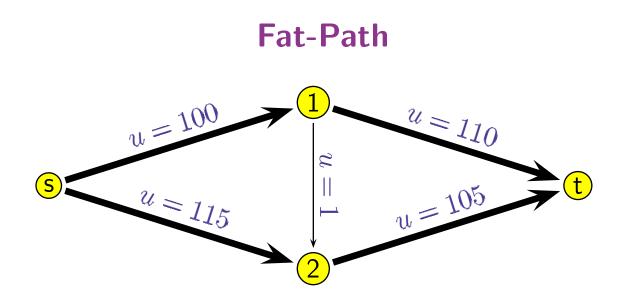


Goldberg, Tarjan '86 preflow-push

- Best algorithm in practice and theory for traditional max flows
- Each augmentation along an arc instead of whole path (only uses local information)

Our Result. There exists a preflow-push algorithm for the generalized max flow problem that computes a ϵ -optimal flow in $\mathcal{O}^*(mn^3 \log B) \log(1/\epsilon)$ time.

• practical implementation



Goldberg, Plotkin, and Tardos '88 augment flow along "Fat-Paths"

Bottleneck canceling flow-generating cycles

- GPT $\mathcal{O}^*(mn^2 \log B)$
- $\mathcal{O}^*(mn\log\log B)$ in our rounded networks

Theorem. [Radzik '93] Fat-Path variant computes an ϵ -optimal flow in $\mathcal{O}^*(m^2 + mn \log \log B) \log(1/\epsilon)$.

- cancel only highest gain flow-generating cycles
- very complicated

[Our Result.] Much simpler version, same complexity.

Ideas Needed to Improve Fat-Path

- Faster cycle-canceling
- More careful rounding
- Divide and conquer

Closing Remarks

Conclusions

- New gain-scaling technique
 - new intuitive combinatorial algorithms
 - matches best theoretical complexity
 - promising practical performance

Open Problems

- improve complexity
- faster implementation (no arbitrage assumption)
- generalized multicommodity flows
- generalized min cost flows

Linear Program

generalized maximum flow problem

$$\max_{e, g} e(t)$$

$$\sum_{w \in V} g(v, w) - \sum_{w \in V} \gamma(w, v)g(w, v) = \begin{cases} e(s) & v = s \\ 0 & v \neq s, t \\ -e(t) & v = t \end{cases}$$

$$0 \le g(v, w) \le u(v, w)$$

minimum cost flow problem

$$\begin{split} \min_{f} \sum_{(v,w)\in E} c(v,w)f(v,w) \\ \sum_{w\in V} f(v,w) - \sum_{w\in V} f(w,v) &= \begin{cases} e(s) & v=s \\ 0 & v\neq s,t \\ -e(s) & v=t \end{cases} \\ 0 \leq f(v,w) \leq u(v,w) \end{split}$$

Linear Program

generalized maximum flow problem

$$\max_{e, g} e(t)$$

$$\sum_{w \in V} g(v, w) - \sum_{w \in V} \gamma(w, v)g(w, v) = \begin{cases} e(s) & v = s \\ 0 & v \neq s, t \\ -e(t) & v = t \end{cases}$$

$$0 \le g(v, w) \le u(v, w)$$

LP Dual

$$\min_{\pi} \sum_{(v,w)\in E} c_{\pi}(v,w)u(v,w)$$
$$c_{\pi}(v,w) = \max\{0, -\pi(v) + \gamma(v,w)\pi(w)\}$$
$$0 = \pi(s) \le \pi(v) \le \pi(t) = 1$$

Optimality Conditions

for generalized max flow:

Theorem. [complementary slackness] generalized flow g optimal iff \exists node labels $\pi(v) \ge 0$, $\pi(s) = 0$, and $\pi(t) = 1$ such that

 $\forall (v,w) \in E_g: \quad \pi(v) - \gamma(v,w)\pi(w) \ge 0.$

 $\pi(v) = market price for commodity at node v complementary slack \iff no profitable residual arcs$

for min cost flow:

Theorem. [complementary slackness] flow f optimal iff \exists node labels p(v), p(t) = 0 s.t.

 $\forall (v,w) \in E_g: \quad c(v,w) + p(v) - p(w) \ge 0.$