
Generalized Max Flows

Kevin Wayne

Cornell University

www.orie.cornell.edu/~wayne

40 30v w

 = 3=4

advisor: �Eva Tardos

Generalized Maximum Flow Problem

s

2

3

4

5

t

capacity

gain/loss factor

u =
10
0

u =
120

u = 100

u
=
30

u = 120

 = 1=2

u
=
50

u
=
50

u =
100

 =
3=4

u =
10
0

Max
ow sent to t

� capacity constraints

�
ow conservation constraints (generalized)

40 30v wu = 100

 = 3=4

Kevin Wayne 1

Generalized Maximum Flow Problem

s

2

3

4

5

t

capacity

gain/loss factor

u =
10
0

u =
120

u = 100

u
=
30

u = 120

 = 1=2

u
=
50

u
=
50

u =
100

 =
3=4

u =
10
0

Max
ow sent to t

� capacity constraints

�
ow conservation constraints (generalized)

40 30v wu = 100

 = 3=4

Generalized Maximum Flow Problem

s

2

3

4

5

t

capacity

gain/loss factor

u =
10
0

u =
120

u = 100

u
=
30

u = 120

 = 1=2

u
=
50

u
=
50

u =
100

 =
3=4

u =
10
0

Max
ow sent to t

� capacity constraints

�
ow conservation constraints (generalized)

40 30v wu = 100

 = 3=4

Kevin Wayne 1

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling
6. Polynomial-time variant using gain-scaling| {z }

main part of talk

Kevin Wayne 2

Applications

\generalized networks are coming to be
appreciated as rivaling or even surpassing pure
networks in their practical signi�cance."

- Glover and Klingman

Physical transformations:
leaky pipes, theft, evaporation, attrition, spoilage,
taxes, interest

Administrative transformations:
currency conversion, production yields, energy
blending, machine scheduling

Kevin Wayne 3

Optimal Currency Conversion

Convert $1,000 to maximum number of French Francs
through sequence of currency conversions

� exchange rates

� limits on trading capacity

1,000 $ Y= F

DM

exchange rate

capacity limit

 = 125
 = 1=21

=
9=
5

u
=
40
0

=
10=3

=
68

=
1
=70

 = 5
u = 800

Kevin Wayne 4

Scheduling Unrelated Parallel Machines

Assign jobs to machines to maximize total pro�t

� machines have speeds and capacities

� pro�t for completing each job requested

� can split jobs between machines

s i j $

Machines

Jobs

machine i capacity job j requests

ij = production rate of
job j on machine i

job j pro�t

60 hrs 150 units
$20/unit10 units/hr

Kevin Wayne 5

General Approach

Combinatorial approach (Ford and Fulkerson '50s)

� Exploit underlying network structure

� Superior algorithms for traditional network
problems
{ shortest path
{ max
ow
{ min cost
ow
{ matching
{ minimum spanning tree

� Not so much known about combinatorial
algorithms for
{ multicommodity
ow
{ generalized
ow

Can also be solved by general purpose LP techniques

� simplex, ellipsoid, interior point

Kevin Wayne 6

Combinatorial Approach

Why generalized
ows are harder:

� supply 6= demand

� no integrality theorem

� no max
ow - min cut theorem

Can still use:

� linear programming duality

New bit-scaling technique:

� gain-scaling

Kevin Wayne 7

Problem History

Linear programming

Dantzig '62 network simplex

Onaga '66, Jewell '62 augmenting path

Goldberg, Plotkin, Tardos '88 Fat-Path, MCF

� �rst polynomial-time combinatorial algorithms

� developed combinatorial machinery

Goldfarb, Jin, Orlin '96

� best worst-case complexity - O�(m3 logB)

m = # arcs O� = hides polylog(m) factors
n = # nodes B = biggest gain/capacity integer

Kevin Wayne 8

Approximate Problem History

Can �nd provably good
ows faster than optimal
ows

Approximate
ows An �-optimal
ow is a
ow with
value at least (1� �) OPT

Cohen, Meggido '92

� strongly polynomial approximation algorithm
(# operations depends on size of network only)

Radzik '93a, '93b Fat-Path

� original Fat-Path is strongly polynomial
approximation algorithm

� Fat-Path variant

{ O�(m2+mn log logB) approximation algorithm
{ complicated

Kevin Wayne 9

My Work

Gain-scaling technique provides:

� Cleanest and simplest polynomial-time algorithm

{ variant of primal-dual method of Truemper '77
talk
this

� First polynomial-time pre
ow-push algorithm for
generalized
ows

{ Goldberg-Tarjan pre
ow-push is most practical
traditional max
ow algorithm

{ practical implementation

� Fat-Path variant

{ matches best running time for approximate
ows

{ much simpler than Radzik's variant

Kevin Wayne 10

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 11

Residual Network

Produces equivalent but potentially simpler problem

Original network: G = (V;E; u)

40 20$ $

ow sent

u = 100

 = 1=2

g = 40

u = capacity;
 = gain

Residual network: Gg = (V;Eg; ug)

$ $

can undo transaction

ug = 60

 = 1=2

 = 2
ug = 20

Kevin Wayne 12

Augmenting Paths

Residual network Gg:

s

2

3

4

5

t

u =
10
0

u =
120

u = 100

u
=
30

u = 120

 = 1=2

u
=
50

u
=
50

u =
100

 =
3=4

u =
10
0

Augmenting path: residual path from s to t

Send 1 unit from s to t along path P then

(P) =

Q
e2P
(e) arrive at t

Kevin Wayne 13

Generalized Augmenting Paths

optimality () no augmenting paths ? No.

Gg:

s

2

3

4

5

t

u =
10
0

u =
120

u = 100

u
=
30

u = 60

 = 2

u
=
50

u
=
50

u =
75

 =
4=3

u =
40

u =
60

Flow-generating cycle: cycle � with
(�) > 1
arbitrage opportunity

GAP: Residual
ow-generating cycle + path to t

Kevin Wayne 14

Generalized Augmenting Paths

optimality () no augmenting paths ? No.

Gg:

s

2

3

4

5

t

u =
10
0

u =
120

u = 100

u
=
30

u = 60

 = 2

u
=
50

u
=
50

u =
75

 =
4=3

u =
40

u =
60

Flow-generating cycle: cycle � with
(�) > 1
arbitrage

GAP: Residual
ow-generating cycle + path to t

Generalized Augmenting Paths

optimality () no augmenting paths ? No.

Gg:

s

2

3

4

5

t

u =
10
0

u =
120

u = 100

u
=
30

u = 60

 = 2

u
=
50

u
=
50

u =
75

 =
4=3

u =
40

u =
60

Flow-generating cycle: cycle � with
(�) > 1
arbitrage

GAP: Residual
ow-generating cycle + path to t

Kevin Wayne 14

Optimality Conditions

For generalized max
ow:

Theorem. [Onaga '66] generalized
ow g optimal

i� no augmenting paths or GAPs in Gg.

For min cost max-
ow:

Theorem. [Negative Cost Cycle]
ow f optimal i�

no augmenting paths or negative cost cycles in Gg.

ow-generating cycle () negative cost cycle
using cost function c(v; w) = � log
(v; w)

Kevin Wayne 15

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 16

Onaga's Algorithm '66

Analog to successive shortest path algorithm for min
cost
ows

� Assumes no arbitrage initially (i.e., no residual
ow-
generating cycles)

� Repeatedly augment
ow along some highest-gain
(most e�cient) augmenting path

� Can �nd with shortest path computation using costs
c(v; w) = � log
(v; w)

Correctness: Does not create
ow-generating cycles
if augmentations along highest gain path

Complexity: Very bad!

Kevin Wayne 17

Relabeled Network

Node labels (dual variables): �(v) � 0; �(t) = 1
Changes local units in which
ow is measured

Example: Node v changed from dollars to pennies

�(v) = 100 = # new units per old unit

Original network: G = (V;E; u; �)

$ $

 = 0:5

u = 100

Relabeled network: G� = (V;E; u�;
�)

relabeled gain

relabeled capacity

6c $

� = 0:005

u� = 10; 000

Kevin Wayne 18

Canonical Labels

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path

3=5

3=5

3=5

3=5

4=5

1

s

2

3

4

5

t

canonical label

gain factor

Gg :

1

1

1

1

3=4

2=3
2=3

3=5

4=
5

� Can compute if all gain factors � 1 using cost
function c(v; w) = � log
(v; w)

Kevin Wayne 19

Canonically Relabeled Network

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path

s

2

3

4

5

t

relabeled gain factor

Gg;� :

1

1

1

1

1

8=9
1
=2

1

1

� After canonical relabeling,

{ 8 residual arcs (v; w) :
�(v; w) � 1

{ 9 gain 1 relabeled residual s-t path

Kevin Wayne 20

Canonically Relabeled Network

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path

s

2

3

4

5

t

relabeled gain factor

Gg;� :

1

1

1

1

1

8=9
1
=2

1

1

� After canonical relabeling,

{ 8 residual arcs (v; w) :
�(v; w) � 1

{ 9 gain 1 relabeled residual s-t path

Canonically Relabeled Network

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path

s

2

3

4

5

t

relabeled gain factor

Gg;� :

1

1

1

1

1

8=9
1
=2

1

1

� After canonical relabeling,

{ 8 residual arcs (v; w) :
�(v; w) � 1

{ 9 gain 1 relabeled residual s-t path

Canonically Relabeled Network

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path

s

2

3

4

5

t

relabeled gain factor

Gg;� :

1

1

1

1

1

1

1

� After canonical relabeling,

{ 8 residual arcs (v; w) :
�(v; w) � 1

{ 9 gain 1 relabeled residual s-t path

Truemper's Algorithm '77

Analog of Ford and Fulkerson's primal-dual min cost

ow algorithm

� Maintains
ow g and canonical labels � such that
Gg;� has only lossy arcs (gain factor � 1)

� Augment
ow simultaneously along all highest-gain
(most e�cient) augmenting paths, i.e., all unit gain
s-t paths in Gg;�

repeat
� canonical labels
f max
ow from s to t in Gg;� using

only
� = 1 arcs
g(v; w) g(v; w) + �(v)f(v; w)

until no augmenting paths

Correctness: as before

Kevin Wayne 21

Truemper's Algorithm (cont.)

Complexity: After each max
ow computation, the
gain of most e�cient augmenting path strictly
decreases (optimal if no such paths)

max
ow iterations � # distinct gains of paths in G

If gain factors are powers of 2:

� Gains of arcs are between 1
B and 1

� Gains of residual paths are between 1
Bn and 1

� At most log2B
n distinct gains of paths

=) n log2B max
ow iterations

Kevin Wayne 22

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 23

New Gain-Scaling Algorithm

Gain-scaling = rounding + recursion

� Applies if G has only lossy residual arcs (gain � 1)

� Round gains down to powers of b = (3=2)1=n

v w v w

 = 0:81
u = 100

G

�
 = 0:8
�u = 100

�G

� Find optimal
ow in rounded network �G using
Truemper's algorithm.

Complexity: logbB
n = O(n2 logB) max
ows

Kevin Wayne 24

New Gain-Scaling Algorithm

� Found optimal
ow in rounded network �G

� Interpret
ow in G

�G : v w
�
 = 0:8

�g = 100

�g = 50

�g = 30

�
 = 1

�g = 100

G :

node excess

+1

v w

 = 0:81

g = 100

g = 50

g = 30

 = 1

g = 100

� Resulting
ow in G

{ satis�es capacity constraints

{ is at least as good as
ow in �G

{ may violate
ow conservation constraints (but
only in a good way!)

Kevin Wayne 25

Rounded Network

Rounded network �G close to original network G:

2
3OPT(G) � OPT(�G) � OPT(G) �
 �

Path
ow formulation: xj =
ow sent on path Pj

s

2

3

4

5

t

u =
10
0P1

u =
120P

2

u = 100

 = 0:81

u
=
30

u = 120

 = 1=2

u
=
50

u
=
50

u =
81

 =
0:81

u =
10
0

Kevin Wayne 26

Rounded Network

2
3OPT(G) � OPT(�G)

let x� be optimal path
ow in G

=) x� feasible path
ow in �G

x�j = 100

G : 65.61s 2 4 t

 = 1

u = 200

 = 0:81

u = 200

 = 0:81

u = 81

x�j = 100

�G : 64s 2 4 t
�
 = 1

�u = 200

�
 = 0:8

�u = 200

�
 = 0:8

�u = 81

�
(P)�

(P)

b
jP j
�

(P)

3=2
=) OPT(�G) �

2

3
OPT(G)

�
(e) �
(e)
b b = (3=2)1=n

Kevin Wayne 27

Geometric Improvement

Idea: Compute 1=3-optimal
ow. Recurse.

Initialize g 0
repeat
g0 1=3-optimal
ow in Gg

g g + g0

until g is �-optimal

Analysis: Each iteration captures at least 2=3 of
remaining
ow, so
ow is �-optimal in log(1=�)
iterations

Our Result. The algorithm computes an �-optimal

ow in O�(mn3 logB) log(1=�) time.

Kevin Wayne 28

Canceling Flow-Generating Cycles

Truemper's algorithm only works if no gain factor > 1

Can we relabel to eliminate gainy arcs?
Yes () no residual
ow-generating cycles

s

2

3

4

5

t

gain factor

1

1

1

1

1
u = 10

1=
2 3

1

1

1

Cancel
ow-generating cycles, creating only excess

Kevin Wayne 29

Canceling Flow-Generating Cycles

Goal: Cancel (saturate) all
ow-generating cycles,
creating only excesses, so that network can be
relabeled as a lossy network

Goldberg, Tarjan '88 mean cycle canceling
For min cost
ows, repeatedly cancel residual cycle
with most negative mean cost

GPT '88 generalized
ow analog

� Using cost function c(v; w) = � log
(v; w),

ow-generating cycle () negative cost cycle

� Repeatedly cancel residual
ow-generating cycle
with maximum geometric-mean gain

� O�(mn2 logB) running time

Our improved version in rounded networks

� O�(mn log logB) running time

Kevin Wayne 30

Pre
ow-Push

s x t

capacity

1

1

Goldberg, Tarjan '86 pre
ow-push

� Best algorithm in practice and theory for
traditional max
ows

� Each augmentation along an arc instead of whole
path (only uses local information)

Our Result. There exists a pre
ow-push algorithm

for the generalized max
ow problem that computes a

�-optimal
ow in O�(mn3 logB) log(1=�) time.

� practical implementation

Kevin Wayne 31

Fat-Path

s t

1

2

u = 100 u = 110

u = 115 u = 105

u
=
1

Goldberg, Plotkin, and Tardos '88
augment
ow along \Fat-Paths"

Bottleneck canceling
ow-generating cycles

� GPT - O�(mn2 logB)

� O�(mn log logB) in our rounded networks

Theorem. [Radzik '93] Fat-Path variant computes
an �-optimal
ow inO�(m2+mn log logB) log(1=�).

� cancel only highest gain
ow-generating cycles

� very complicated

[Our Result.] Much simpler version, same complexity.

Kevin Wayne 32

Ideas Needed to Improve Fat-Path

� Faster cycle-canceling

� More careful rounding

� Divide and conquer

Kevin Wayne 33

Closing Remarks

Conclusions

� New gain-scaling technique

{ new intuitive combinatorial algorithms
{ matches best theoretical complexity
{ promising practical performance

Open Problems

� improve complexity

� faster implementation (no arbitrage assumption)

� generalized multicommodity
ows

� generalized min cost
ows

Kevin Wayne 34

Linear Program

generalized maximum
ow problem

max
e; g

e(t)

X
w2V

g(v; w)�
X
w2V

(w; v)g(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(t) v = t

0 � g(v; w) � u(v; w)

minimum cost
ow problem

min
f

X
(v;w)2E

c(v; w)f(v; w)

X
w2V

f(v; w)�
X
w2V

f(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(s) v = t

0 � f(v; w) � u(v; w)

Kevin Wayne

Linear Program

generalized maximum
ow problem

max
e; g

e(t)

X
w2V

g(v; w)�
X
w2V

(w; v)g(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(t) v = t

0 � g(v; w) � u(v; w)

LP Dual

min
�

X
(v;w)2E

c�(v; w)u(v; w)

c�(v; w) = maxf0;��(v) +
(v; w)�(w)g

0 = �(s) � �(v) � �(t) = 1

Kevin Wayne

Optimality Conditions

for generalized max
ow:

Theorem. [complementary slackness] generalized
ow

g optimal i� 9 node labels �(v) � 0, �(s) = 0, and
�(t) = 1 such that

8 (v; w) 2 Eg : �(v)�
(v; w)�(w) � 0:

�(v) = market price for commodity at node v
complementary slack () no pro�table residual arcs

for min cost
ow:

Theorem. [complementary slackness]
ow f optimal

i� 9 node labels p(v), p(t) = 0 s.t.

8 (v; w) 2 Eg : c(v; w) + p(v)� p(w) � 0:

Kevin Wayne

