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Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling
6. Polynomial-time variant using gain-scaling| {z }

main part of talk
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Applications

\generalized networks are coming to be
appreciated as rivaling or even surpassing pure
networks in their practical signi�cance."

- Glover and Klingman

Physical transformations:
leaky pipes, theft, evaporation, attrition, spoilage,
taxes, interest

Administrative transformations:
currency conversion, production yields, energy
blending, machine scheduling
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Optimal Currency Conversion

Convert $1,000 to maximum number of French Francs
through sequence of currency conversions

� exchange rates

� limits on trading capacity

1,000 $ Y= F
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Scheduling Unrelated Parallel Machines

Assign jobs to machines to maximize total pro�t

� machines have speeds and capacities

� pro�t for completing each job requested

� can split jobs between machines

s i j $

Machines

Jobs

machine i capacity job j requests


ij = production rate of
job j on machine i

job j pro�t

60 hrs 150 units
$20/unit10 units/hr
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General Approach

Combinatorial approach (Ford and Fulkerson '50s)

� Exploit underlying network structure

� Superior algorithms for traditional network
problems
{ shortest path
{ max 
ow
{ min cost 
ow
{ matching
{ minimum spanning tree

� Not so much known about combinatorial
algorithms for
{ multicommodity 
ow
{ generalized 
ow

Can also be solved by general purpose LP techniques

� simplex, ellipsoid, interior point
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Combinatorial Approach

Why generalized 
ows are harder:

� supply 6= demand

� no integrality theorem

� no max 
ow - min cut theorem

Can still use:

� linear programming duality

New bit-scaling technique:

� gain-scaling
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Problem History

Linear programming

Dantzig '62 network simplex

Onaga '66, Jewell '62 augmenting path

Goldberg, Plotkin, Tardos '88 Fat-Path, MCF

� �rst polynomial-time combinatorial algorithms

� developed combinatorial machinery

Goldfarb, Jin, Orlin '96

� best worst-case complexity - O�(m3 logB)

m = # arcs O� = hides polylog(m) factors
n = # nodes B = biggest gain/capacity integer
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Approximate Problem History

Can �nd provably good 
ows faster than optimal 
ows

Approximate 
ows An �-optimal 
ow is a 
ow with
value at least (1� �) OPT

Cohen, Meggido '92

� strongly polynomial approximation algorithm
(# operations depends on size of network only)

Radzik '93a, '93b Fat-Path

� original Fat-Path is strongly polynomial
approximation algorithm

� Fat-Path variant

{ O�(m2+mn log logB) approximation algorithm
{ complicated
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My Work

Gain-scaling technique provides:

� Cleanest and simplest polynomial-time algorithm

{ variant of primal-dual method of Truemper '77
talk
this

� First polynomial-time pre
ow-push algorithm for
generalized 
ows

{ Goldberg-Tarjan pre
ow-push is most practical
traditional max 
ow algorithm

{ practical implementation

� Fat-Path variant

{ matches best running time for approximate 
ows

{ much simpler than Radzik's variant

Kevin Wayne 10



Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions

4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 11



Residual Network

Produces equivalent but potentially simpler problem

Original network: G = (V;E; u)

40 20$ $


ow sent
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g = 40
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 = gain

Residual network: Gg = (V;Eg; ug)

$ $

can undo transaction
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ug = 20
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Augmenting Paths

Residual network Gg:
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Generalized Augmenting Paths

optimality () no augmenting paths ? No.
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Optimality Conditions

For generalized max 
ow:

Theorem. [Onaga '66] generalized 
ow g optimal

i� no augmenting paths or GAPs in Gg.

For min cost max-
ow:

Theorem. [Negative Cost Cycle] 
ow f optimal i�

no augmenting paths or negative cost cycles in Gg.


ow-generating cycle () negative cost cycle
using cost function c(v; w) = � log 
(v; w)
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Onaga's Algorithm '66

Analog to successive shortest path algorithm for min
cost 
ows

� Assumes no arbitrage initially (i.e., no residual 
ow-
generating cycles)

� Repeatedly augment 
ow along some highest-gain
(most e�cient) augmenting path

� Can �nd with shortest path computation using costs
c(v; w) = � log 
(v; w)

Correctness: Does not create 
ow-generating cycles
if augmentations along highest gain path

Complexity: Very bad!
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Relabeled Network

Node labels (dual variables): �(v) � 0; �(t) = 1
Changes local units in which 
ow is measured

Example: Node v changed from dollars to pennies

�(v) = 100 = # new units per old unit

Original network: G = (V;E; u; �)

$ $

 = 0:5

u = 100

Relabeled network: G� = (V;E; u�; 
�)

relabeled gain

relabeled capacity

6c $

� = 0:005

u� = 10; 000
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Canonical Labels

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path
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� Can compute if all gain factors � 1 using cost
function c(v; w) = � log 
(v; w)
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Canonically Relabeled Network

Canonical labels: �(v) = gain of most e�cient
(highest-gain) residual v-t path
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Truemper's Algorithm '77

Analog of Ford and Fulkerson's primal-dual min cost

ow algorithm

� Maintains 
ow g and canonical labels � such that
Gg;� has only lossy arcs (gain factor � 1)

� Augment 
ow simultaneously along all highest-gain
(most e�cient) augmenting paths, i.e., all unit gain
s-t paths in Gg;�

repeat
�  canonical labels
f  max 
ow from s to t in Gg;� using

only 
� = 1 arcs
g(v; w) g(v; w) + �(v)f(v; w)

until no augmenting paths

Correctness: as before
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Truemper's Algorithm (cont.)

Complexity: After each max 
ow computation, the
gain of most e�cient augmenting path strictly
decreases (optimal if no such paths)

# max 
ow iterations � # distinct gains of paths in G

If gain factors are powers of 2:

� Gains of arcs are between 1
B and 1

� Gains of residual paths are between 1
Bn and 1

� At most log2B
n distinct gains of paths

=) n log2B max 
ow iterations
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New Gain-Scaling Algorithm

Gain-scaling = rounding + recursion

� Applies if G has only lossy residual arcs (gain � 1)

� Round gains down to powers of b = (3=2)1=n

v w v w

 = 0:81
u = 100

G

�
 = 0:8
�u = 100

�G

� Find optimal 
ow in rounded network �G using
Truemper's algorithm.

Complexity: logbB
n = O(n2 logB) max 
ows
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New Gain-Scaling Algorithm

� Found optimal 
ow in rounded network �G

� Interpret 
ow in G

�G : v w
�
 = 0:8

�g = 100

�g = 50

�g = 30

�
 = 1

�g = 100

G :

node excess

+1

v w

 = 0:81

g = 100

g = 50

g = 30


 = 1

g = 100

� Resulting 
ow in G

{ satis�es capacity constraints

{ is at least as good as 
ow in �G

{ may violate 
ow conservation constraints (but
only in a good way!)
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Rounded Network

Rounded network �G close to original network G:

2
3OPT(G) � OPT( �G) � OPT(G) �
 � 


Path 
ow formulation: xj = 
ow sent on path Pj
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Rounded Network

2
3OPT(G) � OPT( �G)

let x� be optimal path 
ow in G

=) x� feasible path 
ow in �G

x�j = 100

G : 65.61s 2 4 t

 = 1

u = 200


 = 0:81

u = 200


 = 0:81

u = 81

x�j = 100

�G : 64s 2 4 t
�
 = 1

�u = 200

�
 = 0:8

�u = 200

�
 = 0:8

�u = 81

�
(P )�

(P )

b
jP j
�

(P )

3=2
=) OPT( �G) �

2

3
OPT(G)

�
(e) � 
(e)
b b = (3=2)1=n

Kevin Wayne 27



Geometric Improvement

Idea: Compute 1=3-optimal 
ow. Recurse.

Initialize g  0
repeat
g0  1=3-optimal 
ow in Gg

g  g + g0

until g is �-optimal

Analysis: Each iteration captures at least 2=3 of
remaining 
ow, so 
ow is �-optimal in log(1=�)
iterations

Our Result. The algorithm computes an �-optimal


ow in O�(mn3 logB) log(1=�) time.
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Canceling Flow-Generating Cycles

Truemper's algorithm only works if no gain factor > 1

Can we relabel to eliminate gainy arcs?
Yes () no residual 
ow-generating cycles
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Cancel 
ow-generating cycles, creating only excess
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Canceling Flow-Generating Cycles

Goal: Cancel (saturate) all 
ow-generating cycles,
creating only excesses, so that network can be
relabeled as a lossy network

Goldberg, Tarjan '88 mean cycle canceling
For min cost 
ows, repeatedly cancel residual cycle
with most negative mean cost

GPT '88 generalized 
ow analog

� Using cost function c(v; w) = � log 
(v; w),

ow-generating cycle () negative cost cycle

� Repeatedly cancel residual 
ow-generating cycle
with maximum geometric-mean gain

� O�(mn2 logB) running time

Our improved version in rounded networks

� O�(mn log logB) running time
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Pre
ow-Push

s x t

capacity

1

1

Goldberg, Tarjan '86 pre
ow-push

� Best algorithm in practice and theory for
traditional max 
ows

� Each augmentation along an arc instead of whole
path (only uses local information)

Our Result. There exists a pre
ow-push algorithm

for the generalized max 
ow problem that computes a

�-optimal 
ow in O�(mn3 logB) log(1=�) time.

� practical implementation
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Fat-Path

s t

1

2

u = 100 u = 110

u = 115 u = 105

u
=
1

Goldberg, Plotkin, and Tardos '88
augment 
ow along \Fat-Paths"

Bottleneck canceling 
ow-generating cycles

� GPT - O�(mn2 logB)

� O�(mn log logB) in our rounded networks

Theorem. [Radzik '93] Fat-Path variant computes
an �-optimal 
ow inO�(m2+mn log logB) log(1=�).

� cancel only highest gain 
ow-generating cycles

� very complicated

[Our Result.] Much simpler version, same complexity.
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Ideas Needed to Improve Fat-Path

� Faster cycle-canceling

� More careful rounding

� Divide and conquer
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Closing Remarks

Conclusions

� New gain-scaling technique

{ new intuitive combinatorial algorithms
{ matches best theoretical complexity
{ promising practical performance

Open Problems

� improve complexity

� faster implementation (no arbitrage assumption)

� generalized multicommodity 
ows

� generalized min cost 
ows
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Linear Program

generalized maximum 
ow problem

max
e; g

e(t)

X
w2V

g(v; w)�
X
w2V


(w; v)g(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(t) v = t

0 � g(v; w) � u(v; w)

minimum cost 
ow problem

min
f

X
(v;w)2E

c(v; w)f(v; w)

X
w2V

f(v; w)�
X
w2V

f(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(s) v = t

0 � f(v; w) � u(v; w)
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Linear Program

generalized maximum 
ow problem

max
e; g

e(t)

X
w2V

g(v; w)�
X
w2V


(w; v)g(w; v) =

8><
>:
e(s) v = s

0 v 6= s; t

�e(t) v = t

0 � g(v; w) � u(v; w)

LP Dual

min
�

X
(v;w)2E

c�(v; w)u(v; w)

c�(v; w) = maxf0;��(v) + 
(v; w)�(w)g

0 = �(s) � �(v) � �(t) = 1
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Optimality Conditions

for generalized max 
ow:

Theorem. [complementary slackness] generalized 
ow

g optimal i� 9 node labels �(v) � 0, �(s) = 0, and
�(t) = 1 such that

8 (v; w) 2 Eg : �(v)� 
(v; w)�(w) � 0:

�(v) = market price for commodity at node v
complementary slack () no pro�table residual arcs

for min cost 
ow:

Theorem. [complementary slackness] 
ow f optimal

i� 9 node labels p(v), p(t) = 0 s.t.

8 (v; w) 2 Eg : c(v; w) + p(v)� p(w) � 0:
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