Generalized Max Flows

Kevin Wayne
Cornell University

www.orie.cornell.edu/“wayne

advisor: Eva Tardos

Maximum Flow Problem

@ u = 100 @

D 2‘%]
N~ &,
| /%Q |
%
® N I ®
- -
2‘%] /XQQ
<0 v
@ u = 120 @
capacity

Max flow sent to ¢

e capacity constraints
e flow conservation constraints

@ uw = 100 @

Kevin Wayne 1

Generalized

%

1/2

’y :k/\
gain/loss factor

(generalized)

v=3/4
40 = = 30

Generalized Maximum Flow Problem

u = 100
@ @ ’S,

D 2‘%] %4
N~ Z,
1 /%Q |
2
@ o N\ o @
() ()
2‘%1 /XQQ
<0 v
@ u = 120 @
1/2

capacity 8 :L/\
gain/loss factor

Max flow sent to ¢

e capacity constraints
e flow conservation constraints (generalized)

v=3/4
uw = 100

40 = (V) (W) = 30

Kevin Wayne 1

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions
4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

main pa}rt of talk

Kevin Wayne

Applications

“generalized networks are coming to be
appreciated as rivaling or even surpassing pure
networks in their practical significance.”

- Glover and Klingman

Physical transformations:
leaky pipes, theft, evaporation, attrition, spoilage,
taxes, interest

Administrative transformations:
currency conversion, production vyields, energy
blending, machine scheduling

Kevin Wayne 3

Optimal Currency Conversion

Convert $1,000 to maximum number of French Francs
through sequence of currency conversions

e exchange rates

e |imits on trading capacity

exchange rate

u = 800

A_//capacity limit

Kevin Wayne 4

Scheduling Unrelated Parallel Machines

Assign jobs to machines to maximize total profit

e machines have speeds and capacities
e profit for completing each job requested

e can split jobs between machines

machine ¢ capacity O job 7 requests

O O
60 hrs 150 units
@ @ 10 units/hr @ $20/unit
O O

Machines

O job 7 profit
Jobs

vi; = production rate of
job 7 on machine ¢

Kevin Wayne 5

General Approach

Combinatorial approach (Ford and Fulkerson '50s)

e Exploit underlying network structure

e Superior algorithms for traditional network
problems
— shortest path
— max flow
— min cost flow
— matching
— minimum spanning tree

e Not so much known about combinatorial
algorithms for
— multicommodity flow
— generalized flow

Can also be solved by general purpose LP techniques

e simplex, ellipsoid, interior point

Kevin Wayne 6

Combinatorial Approach

Why generalized flows are harder:

e supply # demand
e no integrality theorem

e no max flow - min cut theorem

Can still use:

e linear programming duality

New bit-scaling technique:

e gain-scaling

Kevin Wayne

Problem History

Linear programming
Dantzig '62 network simplex
Onaga ’'66, Jewell '62 augmenting path

Goldberg, Plotkin, Tardos '88 Fat-Path, MCF

e first polynomial-time combinatorial algorithms
e developed combinatorial machinery

Goldfarb, Jin, Orlin 96

e best worst-case complexity - O*(m?log B)

m = # arcs O* = hides polylog(m) factors
n = # nodes B = biggest gain/capacity integer

Kevin Wayne 8

Approximate Problem History

Can find provably good flows faster than optimal flows

Approximate flows An e-optimal flow is a flow with
value at least (1 —¢) OPT

Cohen, Meggido '92

e strongly polynomial approximation algorithm
(# operations depends on size of network only)

Radzik '93a, '93b Fat-Path

e original Fat-Path is strongly polynomial
approximation algorithm

e Fat-Path variant

— O*(m*+mnloglog B) approximation algorithm
— complicated

Kevin Wayne 9

My Work

Gain-scaling technique provides:

thlili e (Cleanest and simplest polynomial-time algorithm
ta

== — variant of primal-dual method of Truemper '77

e First polynomial-time preflow-push algorithm for
generalized flows

— Goldberg-Tarjan preflow-push is most practical
traditional max flow algorithm

— practical implementation

e Fat-Path variant

— matches best running time for approximate flows
— much simpler than Radzik's variant

Kevin Wayne 10

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions
4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 11

Residual Network

Produces equivalent but potentially simpler problem

Original network: G = (V, E, u)

v=1/2
40 > (3) UZZOOO & > 20
g:

k_/ﬂow sent

u = capacity,y = gain

Residual network: G, = (V, E,, u,)

v=1/2
ug = 60

®
v =2

U, z2()/can undo transaction

Kevin Wayne 12

Augmenting Paths

Residual network G;:

S 8,77
Ny~ %D
| /<DQ |
%
- -
2‘%] B
<0 v
@ u = 120 @
v=1/2

Augmenting path: residual path from s to ¢

Send 1 unit from s to t along path P then
Y(P) =]].cp(e) arrive at ¢

Kevin Wayne 13

Generalized Augmenting Paths

optimality <= no augmenting paths ?

. = 100
Gy: @) ONEER

0 ="
&

Kevin Wayne 14

No.

Flow-generating cycle: cycle I' with y(T") > 1
arbitrage

GAP: Residual flow-generating cycle + path to ¢

Generalized Augmenting Paths

optimality <= no augmenting paths ? No.

. = 100
Gy @) @, .

N
_ N
4\Y
LY
2
©, N
S
&
AN
V4 2

Flow-generating cycle: cycle I' with y(T") > 1
arbitrage

GAP: Residual flow-generating cycle + path to ¢

Kevin Wayne 14

Optimality Conditions

For generalized max flow:

Theorem. [Onaga '66] generalized flow g optimal
iff no augmenting paths or GAPs in G ;.

For min cost max-flow:

Theorem. [Negative Cost Cycle] flow f optimal iff
no augmenting paths or negative cost cycles in G ;.

flow-generating cycle <= negative cost cycle
using cost function c(v,w) = —log (v, w)

Kevin Wayne 15

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions
4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 16

Onaga’s Algorithm '66

Analog to successive shortest path algorithm for min
cost flows

e Assumes no arbitrage initially (i.e., no residual flow-
generating cycles)

e Repeatedly augment flow along some highest-gain
(most efficient) augmenting path

e Can find with shortest path computation using costs
C<U7 ’LU) - log 7(7]7 ’LU)

Correctness: Does not create flow-generating cycles
if augmentations along highest gain path

Complexity: Very bad!

Kevin Wayne 17

Relabeled Network

Node labels (dual variables): 7w(v) > 0,7(t) =1
Changes local units in which flow is measured

Example: Node v changed from dollars to pennies

mw(v) = 100 = # new units per old unit

Original network: G = (V, E, u,)

v =0.5
uw = 100 @

Relabeled network: G, = (V, E, trx, Vx)

relabeled gain

v = 0.005
@ u,r = 10,000 @
A\ relabeled capacity

Kevin Wayne 18

Canonical Labels

Canonical labels: 7(v) = gain of most efficient
(highest-gain) residual v-t path

3/5 3/5
Gy
@ 1 @
\ 25
3/5 2 . 1
® - 7 = ®
V4 %\%
® ®
gain f[ctor 3/5 v 1%5

canonical label

e Can compute if all gain factors < 1 using cost
function ¢(v, w) = —log (v, w)

Kevin Wayne 19

Canonical labels: 7(v) = gain of most efficient
(highest-gain) residual v-t path

(

relabeled gain factor

e After canonical relabeling,

— VY residual arcs (v, w): v (v,w) <1

— d gain 1 relabeled residual s-t path

Kevin Wayne 20

Canonically Relabeled Network

o
/1

Truemper’s Algorithm '77

Analog of Ford and Fulkerson’s primal-dual min cost
flow algorithm

e Maintains flow g and canonical labels m such that
(4.~ has only lossy arcs (gain factor < 1)

e Augment flow simultaneously along all highest-gain
(most efficient) augmenting paths, i.e., all unit gain
s-t paths in G »

repeat
m <— canonical labels
J < max flow from s to ¢ in G4 » using
only v, =1 arcs
9(v,w) g(v, w) + 7(v) (v, W)
until no augmenting paths

Correctness: as before

Kevin Wayne 21

Truemper’s Algorithm (cont.)

Complexity: After each max flow computation, the
gain of most efficient augmenting path strictly
decreases (optimal if no such paths)

max flow iterations < # distinct gains of paths in G

If gain factors are powers of 2:

e Gains of arcs are between % and 1

e Gains of residual paths are between % and 1

e At most log, B" distinct gains of paths
—> nlog, B max flow iterations

Kevin Wayne 22

Organization of Talk

1. Applications

2. Previous work

3. Combinatorial structure and optimality conditions
4. Exponential-time augmenting path algorithm

5. Polynomial-time variant using gain-scaling

Kevin Wayne 23

New Gain-Scaling Algorithm

Gain-scaling = rounding + recursion

e Applies if G has only lossy residual arcs (gain < 1)

e Round gains down to powers of b = (3/2)1/”

u = 100 i = 100
~ = 0.81 5 =0.8
O W) © W)
G G

e Find optimal flow in rounded network G using
Truemper'’s algorithm.

Complexity: log, B" = O(n?log B) max flows

Kevin Wayne 24

New Gain-Scaling Algorithm

e Found optimal flow in rounded network G

e Interpret flow in GG

\ node excess

e Resulting flow in G
— satisfies capacity constraints
— is at least as good as flow in G
— may violate flow conservation constraints (but

only in a good way!)

Kevin Wayne 25

Rounded Network

Rounded network G close to original network G-

20PT(G) < OPT(G) < OPT(G) N <~

Path flow formulation: x; = flow sent on path P;

v = 0.81
@ u = 100)@ 5
D \9'&1
Y 4
| /%Q |
%
® N I ®
- ()
?(\j x@g
L0 v

@ u = 120 @

v=1/2

Kevin Wayne 26

Rounded Network

2OPT(G) < OPT(G)
let £* be optimal path flow in G

— z* feasible path flow in G

F(e) > 1l b= (3/2)""

N

27

Kevin Wayne

Geometric Improvement

Idea: Compute 1/3-optimal flow. Recurse.

Initialize g < 0

repeat
g' < 1/3-optimal flow in G,
g<gtyg

until g is e-optimal

Analysis: Each iteration captures at least 2/3 of
remaining flow, so flow is e-optimal in log(1/e)
iterations

Our Result. The algorithm computes an e-optimal
flow in O*(mn?log B)log(1/€) time.

Kevin Wayne 28

Canceling Flow-Generating Cycles

Truemper's algorithm only works if no gain factor > 1

Can we relabel to eliminate gainy arcs?
Yes <= no residual flow-generating cycles

gain factor

Cancel flow-generating cycles, creating only excess

Kevin Wayne 29

Canceling Flow-Generating Cycles

Goal: Cancel (saturate) all flow-generating cycles,
creating only excesses, so that network can be
relabeled as a lossy network

Goldberg, Tarjan '88 mean cycle canceling
For min cost flows, repeatedly cancel residual cycle
with most negative mean cost

GPT ’'88 generalized flow analog

e Using cost function ¢(v,w) = —log~(v,w),
flow-generating cycle <= negative cost cycle

e Repeatedly cancel residual flow-generating cycle
with maximum geometric-mean gain

o O*(mn?log B) running time

Our improved version in rounded networks

e O*(mnloglog B) running time

Kevin Wayne 30

Preflow-Push

capacity

A\

O ~
@ooooo@o/@

N/

e Best algorithm in practice and theory for
traditional max flows

.0

00

Goldberg, Tarjan '86 preflow-push

e Each augmentation along an arc instead of whole
path (only uses local information)

Our Result. There exists a preflow-push algorithm
for the generalized max flow problem that computes a
e-optimal flow in O*(mn?log B)log(1/€) time.

e practical implementation

Kevin Wayne 31

Fat-Path

00 @ U =
uéX M
® i ®
|
~ /5 - 11,4&06

Goldberg, Plotkin, and Tardos '88
augment flow along “Fat-Paths”

Bottleneck canceling flow-generating cycles
e GPT - O*(mn?log B)
e O*(mnloglog B) in our rounded networks

Theorem. [Radzik '93] Fat-Path variant computes
an e-optimal flow in O*(m?+mn log log B) log(1/e).

e cancel only highest gain flow-generating cycles
e very complicated

[Our Result.] Much simpler version, same complexity.

Kevin Wayne 32

Ideas Needed to Improve Fat-Path

e Faster cycle-canceling
e More careful rounding

e Divide and conquer

Kevin Wayne

33

Closing Remarks

Conclusions

e New gain-scaling technique

— new intuitive combinatorial algorithms
— matches best theoretical complexity
— promising practical performance

Open Problems

e improve complexity
e faster implementation (no arbitrage assumption)
e generalized multicommodity flows

e generalized min cost flows

Kevin Wayne

34

Linear Program

generalized maximum flow problem

max e(t)
Z g(’U,’w) o Z y(w,v)g(w,v)

0 <g(v,w) < u(v,w)

minimum cost flow problem

m}n Z c(v,w) f(v,w)

(v,w)EE

Zf(vvw)_ Zf(w7v> =9

(e(s) wv=s
= 40 v #£ st
_—e(t) v=t
(6(8) V=235
0 v #£ s,t
L —e(s) v=t

weV weV
0 < flv,w) < u(v,w)

Kevin Wayne

Linear Program

generalized maximum flow problem

Igl’agxe(t)
Z g(v,w) — Z Y(w,v)g(w,v) = J
weV weV

0 <g(v,w) < u(v,w)

Kevin Wayne

Optimality Conditions

for generalized max flow:

Theorem. [complementary slackness] generalized flow
g optimal iff 3 node labels w(v) > 0, w(s) =0, and
m(t) = 1 such that

V(v,w) e Ey: m(v) —v(v,w)m(w) > 0.

w(v) = market price for commodity at node wv
complementary slack <= no profitable residual arcs

for min cost flow:

Theorem. [complementary slackness] flow f optimal
iff 3 node labels p(v), p(t) =0 s.t.

V(v,w) € BEy: c(v,w) + p(v) — p(w) > 0.

Kevin Wayne

