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Abstract. We introduce a gain-scaling technique for the generalized
maximum ow problem. Using this technique, we present three simple
and intuitive polynomial-time combinatorial algorithms for the problem.
Truemper's augmenting path algorithm is one of the simplest combi-
natorial algorithms for the problem, but runs in exponential-time. Our
�rst algorithm is a polynomial-time variant of Truemper's algorithm.
Our second algorithm is an adaption of Goldberg and Tarjan's preow-
push algorithm. It is the �rst polynomial-time preow-push algorithm in
generalized networks. Our third algorithm is a variant of the Fat-Path
capacity-scaling algorithm. It is much simpler than Radzik's variant and
matches the best known complexity for the problem. We discuss practical
improvements in implementation.

1 Introduction

In this paper we present new algorithms for the generalized maximum ow prob-
lem, also known as the generalized circulation problem. In the traditional max-
imum ow problem, the objective is to send as much ow through a network
from one distinguished node called the source to another called the sink, subject
to capacity and ow conservation constraints. In generalized networks, a �xed
percentage of the ow is lost when it is sent along an arc. Speci�cally, each arc
(v;w) has an associated gain factor (v;w). When g(v;w) units of ow enter arc
(v;w) at node v then (v;w)g(v;w) arrive at w. The gains factors can represent
physical transformations due to evaporation, energy dissipation, breeding, theft,
or interest rates. They can also represent transformations from one commodity
to another as a result of manufacturing, blending, or currency exchange. They
may also represent arc failure probabilities. Many applications are described in
[1, 3, 5].

Since the generalized maximum ow problem is a special case of linear pro-
gramming, it can be solved using simplex, ellipsoid, or interior-point methods.
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Many general purpose linear programming algorithms can be tailored for the
problem. The network simplex method can handle generalized ows. Kapoor
and Vaidya [16] showed how to speed up interior-point methods on network
ow problems by exploiting the structured sparsity in the underlying constraint
matrix. Murray [18] and Kamath and Palmon [15] designed di�erent interior-
point algorithms for the problem. We note that these simplex and interior-point
methods can also solve the generalized minimum cost ow problem.

The �rst combinatorial algorithms for the generalized maximum ow prob-
lem were the augmenting path algorithms of Jewell [14] and Onaga [19] and
exponential-time variants. Truemper [22] observed that the problem is closely
related to the minimum cost ow problem, and that many of the early gen-
eralized maximum ow algorithms were, in fact, analogs of pseudo-polynomial
minimum cost ow algorithms. Goldberg, Plotkin and Tardos [7] designed the
�rst two combinatorial polynomial-time algorithms for the problem: Fat-Path
and MCF. The Fat-Path algorithm uses capacity-scaling and a subroutine that
cancels ow-generating cycles. The MCF algorithm performs minimum cost ow
computations. Radzik [20] modi�ed the Fat-Path algorithm, by canceling only
ow-generating cycle with su�ciently large gains. Goldfarb and Jin [12] modi�ed
the MCF algorithm by replacing the minimum cost ow subroutine with a sim-
pler computation. Goldfarb and Jin [11] also presented a dual simplex variant of
this algorithm. Recently, Goldfarb, Jin and Orlin [13] designed a new capacity-
scaling algorithm, motivated by the Fat-Path algorithm. Tseng and Bertsekas
[23] proposed an �-relaxation method for solving the more general generalized
minimum cost ow problem with separable convex costs. However, their running
time may be exponential in the input size.

Researchers have also developed algorithms for the approximate generalized
maximum ow problem. Here, the objective is to �nd a �-optimal ow, i.e., a ow
that generates excess at the sink that is within a (1 - �) factor of the optimum,
where � is an input parameter. Cohen and Megiddo [2] showed that the approx-
imate generalized maximum ow problem can be solved in strongly polynomial-
time. Their algorithm uses a subroutine which tests feasibility of a linear system
with two variables per inequality. Radzik [20] observed that the Fat-Path algo-
rithm can be used to compute approximates ow faster than optimal ows. His
Fat-Path variant, that cancels only ow-generating cycles with large gain, is the
fastest algorithm for computing approximate ows. Subsequently, Radzik [21]
gave a new strongly polynomial-time analysis for canceling all ow-generating
cycles, implying that the original Fat-Path algorithm computes an approximate
ow in strongly polynomial-time. For the linear programming algorithms, it is
not known how to improve the worst-case complexity of the exact algorithms to
�nd approximate ows.

We present a new rounding technique for generalized ows, which can be
viewed as a type of gain-scaling. Using this technique, we propose three simple
combinatorial algorithms for the generalized maximum ow problem. Our �rst
algorithm is a polynomial-time variant of Truemper's [22] algorithm. Truem-
per's algorithm is a very simple maximum ow based augmenting path algo-



rithm, analogous to Jewell's primal-dual algorithm for the minimum cost ow
problem. Truemper's algorithm may require exponential-time, but by apply-
ing our new gain-scaling technique, we develop a polynomial-time variant. Our
second algorithm is an adaption Goldberg and Tarjan's [10] preow-push algo-
rithm for the minimum cost ow problem. Using gain-scaling, we establish the
�rst polynomial-time preow-push algorithm for generalized ows. Our third
algorithm is a simple variant of the Fat-Path capacity-scaling algorithm. By
using gain-scaling, our Fat-Path variant improves the complexity of canceling
ow-generating cycles, and hence of the overall algorithm. In contrast, Radzik's
Fat-Path variant modi�es this subroutine, canceling only ow-generating cycles
with su�ciently large gain. Both Fat-Path variants have the same complexity,
but Radzik's variant and proof of correctness are quite complicated.

2 Preliminaries

2.1 Generalized Networks

Since some of our algorithms are iterative and recursive, it is convenient to solve a
seemingly more general version of the problem which allows for multiple sources.
An instance of the generalized maximum ow problem is a generalized network
G = (V;E; t; u; ; e), where V is an n-set of nodes, E is an m-set of directed
arcs, t 2 V is a distinguished node called the sink, u : E ! <�0 is a capacity
function,  : E ! <>0 is a gain function, and e : V ! <�0 is an initial excess
function. A residual arc is an arc with positive capacity. A lossy network is a
generalized network in which no residual arc has gain factor exceeding one. We
consider only simple directed paths and cycles. The gain of a path P is denoted
by (P ) =

Q
e2P (e). The gain of a cycle is de�ned similarly. A ow-generating

cycle is a cycle whose gain is more than one.
For notational convenience we assume that G has no parallel arcs. Our algo-

rithms easily extend to allow for parallel arcs and the running times we present
remain valid. Without loss of generality, we assume the network is symmetric and
the gain function is antisymmetric. That is, for each arc (v;w) 2 E there is an
arc (w; v) 2 E (possibly with zero capacity) and (w; v) = 1=(v;w). We assume
the capacities and initial excesses are given as integers between 1 and B, and
the gains are given as ratios of integers which are between 1 and B. To simplify
the running times we assume B � m, and use ~O(f) to denote f logO(1)m.

2.2 Generalized Flows

A generalized pseudoow is a function g : E ! < that satis�es the capacity
constraints g(v;w) � u(v;w) for all (v;w) 2 E and the antisymmetry constraints
g(v;w) = �(w; v)g(w; v) for all (v;w) 2 E. The residual excess of g at node v is
eg(v) = e(v)�P(v;w)2E g(v;w), i.e., the initial excess minus the the net ow out

of v. If eg(v) is positive (negative) we say that g has residual excess (de�cit) at
node v. A ow g is a pseudoow that has no residual de�cits; it may have residual



excesses. A proper ow is a ow which does not generate any additional residual
excess, except possibly at the sink. We note that a ow can be converted into a
proper ow, by removing ow on useless paths and cycles. For a ow g we denote
its value jgj = eg(t) to be the residual excess at the sink. Let OPT(G) denote the
maximum possible value of any ow in network G. A ow g is optimal in network
G if jgj = OPT(G) and �-optimal if jgj � (1 � �)OPT(G). The (approximate)
generalized maximum ow problem is to �nd a (�-) optimal ow. We sometimes
omit the adjective generalized when its meaning is clear from context.

2.3 Residual and Relabeled Networks

Let g be a generalized ow in network G = (V;E; s; u; ; e). With respect to the
ow g, the residual capacity function is de�ned by ug(v;w) = u(v;w)� g(v;w).
The residual network is Gg = (V;E; s; ug ; ; eg). Solving the problem in the
residual network is equivalent to solving it in the original network.

Our algorithms use the technique of relabeling, which was originally intro-
duced by Glover and Klingman [4]. A labeling function is a function � : V ! <>0

such that �(t) = 1. The relabeled network is G� = (V;E; t; u�; �; e�), where the
relabeled capacity, relabeled gain and relabeled initial excess functions are de-
�ned by: u�(v;w) = u(v;w)=�(v), �(v;w) = (v;w)�(v)=�(w), and e�(v) =
e(v)=�(v). The relabeled network provides an equivalent instance of the gen-
eralized maximum ow problem. Intuitively, node label �(v) changes the local
units in which ow is measured at node v; it is the number of old units per
new unit. The inverses of the node labels correspond to the linear programming
dual variables, for the primal problem with decision variables g(v;w). With re-
spect to a ow g and labels � we de�ne the the relabeled residual network by
Gg;� = (V;E; t; ug;�; �; eg;�), where the relabeled residual capacity and relabeled
residual excess functions are de�ned by ug;�(v;w) = (u(v;w)�g(v;w))=�(v) and
eg;�(v) = eg(v)=�(v). We de�ne the canonical label of a node v in network G to
be the inverse of the highest gain residual path from v to the sink. If G has no
residual ow-generating cycles, then we can compute the canonical labels using
a single shortest path computation with costs c(v;w) = � log (v;w).

2.4 Optimality Conditions

An augmenting path is a residual path from a node with residual excess to the
sink. A generalized augmenting path (GAP) is a residual ow-generating cycle,
together with a (possibly trivial) residual path from a node on this cycle to the
sink. By sending ow along augmenting paths or GAPs we increase the net ow
into the sink. The following theorem of Onaga [19] says that the nonexistence of
augmenting paths and GAPs implies that the ow is optimal.

Theorem 1. A ow g is optimal in network G if and only if there are no aug-
menting paths or GAPs in Gg.



2.5 Finding a Good Starting Flow

Our approximation algorithms require a rough estimate of the optimum value in
a network. Radzik [20] proposed a ~O(m2) time greedy augmentation algorithm
that �nds a ow that is within a factor n of the optimum. His greedy algorithm
repeatedly sends ow along highest-gain augmenting paths, but does not use
arcs in \backward" direction. Using this algorithm, we can determine an initial
parameter �0 which satis�es OPT(G) � �0 � nOPT(G).

2.6 Canceling Flow-Generating Cycles

Subroutine CancelCycles converts a generalized ow g into another general-
ized ow g0 whose residual network contains no ow-generating cycles. In the
process, the net ow into every node, including the sink, can only be increased. It
also �nds node labels � so that Gg0;� is a lossy network. This subroutine is used
by all of our algorithms. CancelCycles was designed by Goldberg, Plotkin,
and Tardos and is described in detail in [7]. It is an adaptation of Goldberg and
Tarjan's [9] cancel-and-tighten algorithm for the minimum cost ow problem
using costs c(v;w) = � logb (v;w) for any base b > 1. Note that negative cost
cycles correspond to ow-generating cycles. In Section 7 we discuss practical
implementation issues.

Theorem 2. Let b > 1. If all of the costs are integral and at least �C, then
CancelCycles runs in ~O(mn logC) time.

In generalized ows, the costs will typically not be integral. In this case, the next
theorem is useful.

Theorem 3. If the gains are given as ratios of integers between 1 and B, then
CancelCycles requires ~O(mn2 logB) time.

Radzik [21] showed that CancelCycles runs in strongly polynomial-time. We
have a variant that limits the relabeling increases, allowing a simpler proof of
the strongly polynomial running time.

2.7 Nearly Optimal Flows

The following lemma derived from [7] says that if a ow is �-optimal for su�-
ciently small �, then we can e�ciently convert it into an optimal ow. It is used
to provide termination of our exact algorithms. The conversion procedure in-
volves one call to CancelCycles and a single (nongeneralized) maximum ow
computation.

Lemma 1. Given a B�4m-optimal ow, we can compute an optimal ow in
~O(mn2 logB) time.



3 Gain-Scaling

In this section we present a rounding and scaling framework. Together, these
ideas provide a technique which can be viewed as a type of gain-scaling. By
rounding the gains, we can improve the complexity of many generalized ow
computations (e.g., canceling ow-generating cycles above). However, our ap-
proximation from rounding creates error. Using an iterative or recursive ap-
proach, we can gradually re�ne our approximation, until we obtain the desired
level of precision.

3.1 Rounding Down the Gains

In our algorithms we round down the gains so that they are all integer powers
of a base b = (1 + �)1=n. Our rounding scheme applies in lossy networks, i.e.,
networks in which no residual arc has a gain factor above one. This implies that
the network has no residual ow-generating cycles. We round the gain of each
residual arc down to �(v;w) = b��c(v;w) where �c(v;w) = �blogb (v;w)c, main-
taining antisymmetry by setting �(w; v) = 1=�(v;w). Note that if both (v;w)
and (w; v) are residual arcs, then each has unit gain, ensuring that � is well-
de�ned. Let H denote the resulting rounded network. H is also a lossy network,
sharing the same capacity function with G. Let h be a ow in network H. The
interpretation of ow h as a ow in network G is de�ned by: g(v;w) = h(v;w)
if g(v;w) � 0 and g(v;w) = �(w; v)h(w; v) if g(v;w) < 0. Flow interpretation
in lossy networks may create additional excesses, but no de�cits. We show that
approximate ows in the rounded network induce approximate ows in the orig-
inal network. First we show that the rounded network is close to the original
network.

Theorem 4. Let G be a lossy network and let H be the rounded network con-
structed as above. If 0 < � < 1 then (1 � �)OPT(G) � OPT(H) � OPT(G).

Proof. Clearly OPT(H) � OPT(G) since we only decrease the gain factors of
residual arcs. To prove the other inequality, we consider the path formulation
of the maximum ow problem in lossy networks. We include a variable xj for
each path Pj , representing the amount of ow sent along the path. Let x� be an
optimal path ow in G. Then x� is also a feasible path ow in H. From path Pj ,
(Pj)x�j units of ow arrive at the sink in network G, while only �(Pj)x�j arrive
in network H. The theorem then follows, since for each path Pj ,

�(Pj) � (Pj)

bjP j � (Pj)

1 + �
� (Pj)(1� �):

Corollary 1. Let G be a lossy network and let H be the rounded network con-
structed as above. If 0 < � < 1 then the interpretation of a �0-optimal ow in H
is a � + �0-optimal ow in G.



Proof. Let h be a �0-optimal ow in H. Let g be the interpretation of ow h in
G. Then we have

jgj � jhj � (1� �0)OPT(H) � (1� �)(1� �0)OPT(G) � (1� � � �0)OPT(G):

3.2 Error-Scaling and Recursion

In this section we describe an error-scaling technique which can be used to speed
up computations for generalized ow problems. Radzik [20] proposed a recur-
sive version of error-scaling to improve the complexity of his Fat-Path variant
when �nding nearly optimal and optimal ows. We use the technique in a sim-
ilar manner to speed up our Fat-Path variant. We also use the idea to convert
constant-factor approximation algorithms into fully polynomial-time approxima-
tion schemes.

Suppose we have a subroutine which �nds a 1=2-optimal ow. Using error-
scaling, we can determine a �-optimal ow in networkG by calling this subroutine
log2(1=�) times. To accomplish this we �rst �nd a 1=2-optimal ow g in network
G. Then we �nd a 1=2-optimal ow h in the residual network Gg. Now g + h is
a 1=4-optimal ow in network G, since each call to the subroutine captures at
least half of the remaining ow. In general, we can �nd a �-optimal ow with
log2(1=�) calls to the subroutine.

The following lemma of Radzik [20] is a recursive version of error-scaling.
It says that we can compute an �-optimal ow by combining two appropriatep
�-optimal ows.

Lemma 2. Let g be a
p
�-optimal ow in network G. Let h be a

p
�-optimal

ow in network Gg. Then the ow g + h is �-optimal in G.

4 Truemper's Algorithm

Truemper's maximum ow based augmenting path algorithm is one of the sim-
plest algorithms for the generalized maximum ow problem. We apply our gain-
scaling techniques to Truemper's algorithm, producing perhaps the cleanest and
simplest polynomial-time algorithms for the problem. In this section we �rst
review Truemper's [22] algorithm. Our �rst variant runs Truemper's algorithm
in a rounded network. It computes a �-optimal ow in polynomial-time, for
any constant � > 0. However, it requires exponential-time to compute optimal
ows, since we would need � to be very small. By incorporating error-scaling, we
show that a simple variant of Truemper's algorithm computes an optimal ow
in polynomial-time.

A natural and intuitive algorithm for the maximum ow problem in lossy net-
works is to repeatedly send ow from excess nodes to the sink along highest-gain
(most-e�cient) augmenting paths. Onaga observed that if the input network has
no residual ow-generating cycles, then the algorithm maintains this property.
Thus, we can �nd a highest-gain augmenting path using a single shortest path
computation with costs c(v;w) = � log (v;w). By maintaining canonical labels,



we can ensure that all relabeled gains are at most one, and a Dijkstra shortest
path computation su�ces. Unit gain paths in the canonically relabeled network
correspond to highest gain paths in the original network. This is essentially
Onaga's [19] algorithm. If the algorithm terminates, then the resulting ow is
optimal by Theorem 1. However, this algorithm may not terminate in �nite time
if the capacities are irrational. Truemper's algorithm [22] uses a (nongeneralized)
maximum ow computation to simultaneously augment ow along all highest-
gain augmenting paths. It is the generalized ow analog of Jewell's primal-dual
minimum cost ow algorithm.

Theorem 5. In Truemper's algorithm, the number of maximum ow computa-
tions is bounded by n plus the number of di�erent gains of paths in the original
network.

Proof. After each maximum ow computation, �(v) strictly increases for each
excess node v 6= t.

4.1 Rounded Truemper (RT)

Algorithm RT computes a �-optimal ow by running Truemper's algorithm in
a rounded network. The input to Algorithm RT is a lossy network G and an
error parameter �. Algorithm RT �rst rounds the gains to integer powers of
b = (1 + �)1=n, as described in Section 3.1. Let H denote the rounded network.
Then RT computes an optimal ow inH using Truemper's algorithm. Finally the
algorithm interprets the ow in the original network. Algorithm RT is described
in Figure 1.

Input: lossy network G, error parameter 0 < � < 1
Output: �-optimal ow g
Set base b = (1 + �)1=n and round gains in G to powers of b
Let H be resulting network
Initialize h 0
while 9 augmenting path in Hh do

� canonical labels in Hh

f  max ow from excess nodes to the sink in Hh;� using only gain one relabeled
residual arcs

h(v; w) h(v; w) + f(v;w)�(v)
end while

g  interpretation of ow h in G

Figure 1: RT(G; �)

The gain of a path in network G is between B�n and Bn. Thus, after round-
ing to powers of b, there are at most 1 + logb B

2n = O(n2��1 logB) di�erent
gains of paths in H. Using Goldberg and Tarjan's [8] preow-push algorithm,
each (nongeneralized) maximum ow computation takes ~O(mn) time. Thus, by



Theorem 5, RT �nds an optimal ow in H in ~O(mn3��1 logB) time. The fol-
lowing theorem follows using Corollary 1.

Theorem 6. Algorithm RT computes a �-optimal ow in a lossy network in
~O(mn3��1 logB) time.

4.2 Iterative Rounded Truemper (IRT)

RT does not compute an optimal ow in polynomial-time, since the precision
required to apply Lemma 1 is roughly � = B�m. In Algorithm IRT, we apply
error-scaling, as described in Section 3.2. IRT iteratively calls RT with error
parameter 1=2 and the current residual network. Since RT sends ow along
highest-gain paths in the rounded network, not in the original network, it cre-
ates residual ow-generating cycles. So, before calling RT in the next iteration,
we must �rst cancel all residual ow-generating cycles with subroutineCancel-
Cycles, because the input to RT is a lossy network. Intuitively, this can be
interpreted as rerouting ow from its current paths to highest-gain paths, but
not all of the rerouted ow reaches the sink.

Theorem 7. Algorithm IRT computes a �-optimal ow in ~O(mn3 logB log ��1)
time. It computes an optimal ow in ~O(m2n3 log2B) time.

In the full paper we prove that Algorithm IRT actually �nds an optimal ow in
~O(m2n3 logB +m2n2 log2B) time.

5 Preow-Push

In this section we adapt Goldberg and Tarjan's [10] preow-push algorithm to
the generalized maximum ow problem. This is the �rst polynomial-time preow
push algorithm for generalized network ows. Tseng and Bertsekas [23] designed
a preow push-like algorithm for the generalized minimum cost ow problem,
but it may require more than Bn iterations. Using our rounding technique, we
present a preow-push algorithm that computes a �-optimal ow in polynomial-
time for any constant � > 0. Then by incorporating error-scaling, we show how
to �nd an optimal ow in polynomial-time.

5.1 Rounded Preow-Push (RPP)

Algorithm RPP is a generalized ow analog of Goldberg and Tarjan's preow
push algorithm for the minimum cost ow problem. Conceptually, RPP runs
the minimum cost ow algorithm with costs c(v;w) = � log (v;w) and error
parameter � = 1

n log b where b = (1 + �)1=n. This leads to the following natural
de�nitions and algorithm. An admissible arc is a residual arc with relabeled gain
above one. The admissible graph is the graph induced by admissible arcs. An
active node is a node with positive residual excess and a residual path to the
sink. We note that if no such residual path exists and an optimal solution sends



ow through this node, then that ow does not reach the sink. So we can safely
disregard this useless residual excess. (Periodically RPP determines which nodes
have residual paths to the sink.) Algorithm RPP maintains a ow h and node
labels �. The algorithm repeatedly selects an active node v. If there is an ad-
missible arc (v;w) emanating from node v, IPP pushes � = minfeh(v); uh(v;w)g
units of ow from node v to w. If � = uh(v;w) the push is called saturating;
otherwise it is nonsaturating. If there is no such admissible arc, RPP increases
the label of node v by a factor of 2� = b1=n; this corresponding to an additive
potential increase for minimum cost ows. This process is referred to as a relabel
operation. Relabeling node v can create new admissible arcs emanating from v.
To ensure that we do not create residual ow-generating cycles, we only increase
the label by a relatively small amount.

The input to Algorithm RPP is a lossy network G and error parameter �.
Before applying the preow-push method, IPP rounds the gains to powers of
b = (1+ �)1=n, as described in Section 3.1. The method above is then applied to
the rounded network H. Algorithm RPP is described in Figure 2.

We note that our algorithm maintains a pseudoow with excesses, but no
de�cits. In contrast, the Goldberg-Tarjan algorithm allows both excesses and
de�cits. Also their algorithm scales �. We currently do not see how to improve
the worst-case complexity by a direct scaling of �.

Input: lossy network G, error parameter 0 < � < 1
Output: �-optimal ow g
Set base b = (1 + �)1=n and round gains in network G to powers of b.
Let H be resulting network
Initialize h 0; � 1
while 9 active node v do

if 9 admissible arc (v;w) then
Push � = minfeh(v); uh(v; w)g units of ow from v to w and update h fpushg

else

�(v) b1=n�(v) frelabelg
end if

end while

g  interpretation of ow h in G

Figure 2: RPP(G; �)

The bottleneck computation is performing nonsaturating pushes, just as for
computing minimum cost ows with the preow-push method. By carefully
choosing the order to examine active nodes (e.g., the wave implementation),
we can reduce the number of nonsaturating pushes. A dual approach is to use
more clever data structures to reduce the amortized time per nonsaturating
push. Using a version of dynamic trees specialized for generalized networks [6],
we obtain the following theorem.



Theorem 8. Algorithm RPP computes a �-optimal ow in ~O(mn3��1 logB)
time.

5.2 Iterative Rounded Preow-Push (IRPP)

RPP does not compute an optimal ow in polynomial time, since the precision
required is roughly � = B�m. Like Algorithm IRT, Algorithm IRPP adds error-
scaling, resulting in the following theorem.

Theorem 9. IRPP computes a �-optimal ow in ~O(mn3 logB log ��1) time. It
computes an optimal ow in ~O(m2n3 log2B) time.

6 Rounded Fat Path

In this section we present a simple variant of Goldberg, Plotkin, and Tardos' [7]
Fat-Path algorithm which has the same complexity as Radzik's [20] Fat-Path
variant. Our algorithm is intuitive and its proof of correctness is much simpler
than Radzik's. The Fat-Path algorithm can be viewed as an analog of Orlin's
capacity scaling algorithm for the minimum cost ow problem. The original Fat-
Path algorithm computes a �-optimal ow in ~O(mn2 logB log ��1) time, while
Radzik's and our variants require only ~O(m(m+ n log logB) log ��1) time.

The bottleneck computation in the original Fat-Path algorithm is cancel-
ing residual ow-generating cycles. Radzik's variant reduces the bottleneck by
canceling only residual ow-generating cycles with big gains. The remaining
ow-generating cycles are removed by decreasing the gain factors. Analyzing the
precision of the resulting solution is technically complicated. Instead, our vari-
ant rounds down the gains to integer powers of a base b, which depends on the
precision of the solution desired. Our rounding is done in a lossy network, which
makes the quality of the resulting solution easy to analyze. Subsequent calls to
CancelCycles are performed in a rounded network, improving the complexity.

We �rst review the FatAugmentations subroutine which �nds augmenting
paths with su�ciently large capacity. Then we present Algorithm RFP, which
runs the Fat-Path algorithm in a rounded network. It computes approximately
optimal and optimal ows in polynomial-time. We then present a recursive ver-
sion of RFP, which improves the complexity when computing nearly optimal and
optimal ows.

6.1 Fat Augmentations

The FatAugmentations subroutine was originally developed by Goldberg,
Plotkin, and Tardos for their Fat-Path algorithm and is described in detail in [7].
The input is a lossy network and fatness parameter �. The subroutine repeatedly
augments ow along highest-gain �-fat paths, i.e. highest-gain augmenting paths
among paths that have enough residual capacity to increase the excess at the sink
by �, given su�cient excess at the �rst node of the path. This process is repeated



until no �-fat paths remain. There are at most n + OPT(G)=� augmentations.
By maintaining appropriate labels �, an augmentation takes ~O(m) time, using
an algorithm based on Dijkstra's shortest path algorithm. Upon termination,
the �nal ow has value at least OPT(G)�m�.

6.2 Rounded Fat Path (RFP)

Algorithm RFP runs the original Fat-Path algorithm in a rounded network.
The idea of the original Fat-Path algorithm is to call FatAugmentations and
augment ow along �-fat paths, until no such paths remain. At this point � is
decreased by a factor of 2 and a new phase begins. However, since FatAugmen-
tations selects only paths with large capacity, it does not necessarily send ow
on overall highest-gain paths. This creates residual ow-generating cycles which
must be canceled so that we can e�ciently compute �=2-fat paths in the next
phase.

The input to Algorithm RFP is a lossy network and an error parameter �.
First, RFP rounds down the gains as described in Section 3.1. It maintains a
ow h in the rounded network H and an upper bound � on the excess dis-
crepancy, i.e., the di�erence between the value of the current ow jhj and the
optimum OPT(H). The scaling parameter� is initialized using Radzik's greedy
augmentation algorithm, as described in Section 2.5. In each phase, � is de-
creased by a factor of 2. To achieve this reduction, Algorithm RFP cancels all
residual ow-generating cycles in Hh, using the CancelCycles subroutine. By
Theorem 2 this requires ~O(mn logC) time where C is the biggest cost. Recall
c(v;w) = �blogb (v;w)c so C � 1 + logbB = O(n��1 logB). Then subroutine
FatAugmentations is called with fatness parameter � = �=(2m). After this
call, the excess discrepancy is at most m� = �=2, and � is decreased accord-
ingly. Since each �-fat augmentation either empties the residual excess of a node
or increases the ow value by at least �, there are at most n + �=� = n + 2m
augmentations per �-phase, which requires a total of ~O(m2) time. Algorithm
RFP is given in Figure 3.

Theorem 10. Algorithm RFP computes a 2�-optimal ow in a lossy network
in ~O((m2 +mn log(��1 logB)) log ��1) time.

Proof. To bound the running time, we note that there are at most log2(n=�)
phases. FatAugmentations requires ~O(m2) time per phase, and CancelCy-
cles requires ~O(mn logC) time, where we bound C = O(n��1 logB) as above.
The algorithm terminates when � � �OPT(H). At this point h is �-optimal in
network H, since we maintain � � OPT(H)� jhj. The quality of the resulting
solution then follows using Theorem 4.

6.3 Recursive Rounded Fat-Path (RRFP)

Algorithm RFP computes a �-optimal ow in ~O(m2 +mn log logB) time when
� > 0 is inversely polynomial in m. However it may require more time to



Input: lossy network G, error parameter 0 < � < 1
Output: 2�-optimal ow g
Set base b = (1 + �)1=n and round gains in network G to powers of b
Let H be resulting network
Initialize � �0 and h 0 fOPT(H) � �0 � nOPT(H)g
repeat

(h0; �) CancelCycles(Hh)
h h+ h0

h0  FatAugmentations(Hh; �;�=(2m)) fOPT(Hh)� jh
0j � �=2g

h h+ h0

� �=2
until � � �OPT(H)
g  interpretation of h in network G

Figure 3: RFP(G; �)

compute optimal ows than the original Fat-Path algorithm. By using the re-
cursive scheme from Section 3.2, we can compute nearly optimal and optimal
ows faster than the original Fat-Path algorithm. In each recursive call, we
reround the network. We cancel ow-generating cycles in an already (partially)
rounded network. The bene�t is roughly to decrease the average value of C from
O(n��1 logB) to O(n logB).

Theorem 11. Algorithm RRFP computes a �-optimal ow in a lossy network in
~O(m(m+ n log logB) log ��1) time. If the network has residual ow-generating
cycles, then an extra ~O(mn2 logB) preprocessing time is required. Algorithm
RRFP computes an optimal ow in ~O(m2(m+ n log logB) logB) time.

7 Practical Cycle-Canceling

We implemented a version of the preow-push algorithm, described in Section 5,
in C++ using Mehlhorn and N�aher's [17] Library of E�cient Data types and
Algorithms (LEDA). We observed that as much as 90% of the time was spent
canceling ow-generating cycles. We focused our attention on reducing this bot-
tleneck.

Recall, CancelCycles is an adaption of Goldberg and Tarjan's cancel-and-
tighten algorithm using costs c(v;w) = � log (v;w). Negative cost cycles cor-
respond to ow-generating cycles. The underlying idea of the Goldberg-Tarjan
algorithm is to cancel the most negative mean cost cycle until no negative cost
cycles remain. To improve e�ciency, the actual cancel-and-tighten algorithm
only approximates this strategy. It maintains a ow g and node potentials (cor-
responding to node labels) � that satisfy �-complementary slackness. That is,
c�(v;w) = c(v;w)��(v)+�(w) � �� for all residual arcs (v;w). The subroutine
makes progress by reducing the value of �, using the following two computations
which comprise a phase: (i) canceling residual cycles in the subgraph induced by
negative reduced cost arcs and (ii) updating node potentials so that �nding new



negative cost (ow-generating) cycles is e�cient. The cancel-and-tighten algo-
rithm uses the following two types of potential updates. Loose updating uses a
computationally inexpensive topological sort, but may only decrease � by a fac-
tor of (1� 1=n) per phase. Tight updating reduces � by the maximum possible
amount, but involves computing the value of the minimum mean cost cycle ��,
which is relatively expensive.

We observed that the quality of the potential updates was the most impor-
tant factor in the overall performance of CancelCycles. So, we focused our
attention on limiting the number of iterations by better node potential updates.
Using only loose updates, we observed that CancelCycles required a large
number of phases. By using tight updates, we observed a signi�cant reduction in
the number of phases, but each phase is quite expensive. The goal is to a reach
a middle ground. We introduce a medium updating technique which is much
cheaper than tight updating, yet more e�ective than loose updating; it reduces
the overall running time of the cycle canceling computation. Our implementation
uses a combination of loose, medium, and tight potential updates.

Tight updating requires ~O(mn) time in the worst case, using either a dynamic
programming or binary search method. We incorporated several heuristics to
improve the actual performance. These heuristics are described in the full paper.
However, we observed that tight relabeling was still quite expensive.

We introduce a medium potential updating which is a middle ground between
loose and tight updating. In medium updating, we �nd a value �0 which is close
to ��, without spending the time to �nd the actual minimum mean cost cycle.
In our algorithm, we only need to estimate �� in networks where the subgraph
induced by negative cost arcs is acyclic. To do this e�ciently, we imagine that
the in addition to the original arcs, a zero cost link exists between every pair
of nodes. We can e�ciently �nd a minimum mean cost cycle in this modi�ed
network by computing a minimummean cost path in the acyclic network induced
by only negative cost arcs, without explicitly considering the imaginary zero cost
arcs. Let �0 denote the value of the minimum mean cost cycle in the modi�ed
network. Clearly �0 � ��, and it is not hard to see that �0 � (1 � 1=n)�. We
can binary search for �0 using a shortest path computation in acyclic graphs.
This requires only O(m) time per iteration. If we were to determine �0 exactly,
in ~O(n logB) iterations the search interval would be su�ciently small. If the
gains in the network are rounded to powers of b = (1 + �)1=n then ~O(logC)
iterations su�ce, where C = O(n��1 logB). In our implementation we use an
approximation to �0.
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