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ABSTRACT: We introduce a spectral bound for D-optimal design prob-
lems, based on singular values. We compare the spectral bound to a bound
based on Hadamard's inequality which was introduced by Welch. In par-
ticular, we demonstrate that (i) in general, neither bound dominates the
other, (ii) the spectral bound is superior in a general situation of highly
replicated designs, and (iii) the spectral bound is superior when a very
accurate bound is required in situations of singularity.
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1 Introduction.

We consider the linear model

yi = xti� + ei (i 2 N );

where each m � 1 vector xi is a potential design point with associated
response yi, the ei are i.i.d. with E[ei] = 0 and V [ei] = �2, � is an m � 1
vector of parameters to be estimated, and N is an n-set of indices. When
desired, a constant term in the linear model can be incorporated by setting
a particular coordinate of each xi to equal one. We assume that there are
m linearly independent design points amongst the n points. We consider
the situation where we are given an f-subset F of N , and an integer s
with f < s < n, and we are to choose an s-set S satisfying F � S � N .
We incorporate upper bounds on the number of times a design point can
be replicated by explicitly including multiple copies of such points in the
design matrix. Let X(S) be the s � m design matrix with rows xti, i 2 S,
and let D(S) := Xt(S)X(S). Our criterion, which we seek to maximize, is
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the determinant of D(S). That is, we wish to solve

max
�
det(D(S)) : F � S � N; jSj = s

	
:

This is the so-called \jXtXj" or \D-optimality" criterion, which has been
studied extensively. Methods to search for D-optimal designs have been
suggested by Dykstra (1971), Fedorov (1972), Wynn (1970, 1972), Mitchell
(1974a,b). The papers by St. John and Draper (1975) and by Cook and
Nachtsheim (1980) survey the state of the art up through the late 1970's,
while Atkinson and Donev (1988), Dodge et al. (1988), and Yonchev (1988)
discuss more recent progress. Welch (1982) proposed the �rst general al-
gorithm for �nding a provably D-optimal design. His method is based on a
general framework of combinatorial optimization called branch-and-bound.
To implement the framework Welch used lower bounds obtained by an ex-
change method, and two upper bounds that he proposed. One is based on
Hadamard's inequality, and the other is based upon an iterative method
for generating an optimal \continuous design".

In Section 2, we establish a spectral upper bound on det(D(S)), based on the
singular values of a matrix.We also discuss a variant of theHadamard bound
of Welch. We demonstrate that (i) neither bound always dominates the
other, (ii) the spectral bound dominates the Hadamard bound in situations
where highly replicated designs are sought, and (iii) the spectral bound
dominates the Hadamard bound when very precise bounds are required for
the case in which D(F ) is singular.

A complete branch-and-bound algorithmusing these bounds and associated
computational results appears in Ko, Lee and Wayne (1994).

2 Upper Bounds.

Initially, we make the simplifying assumption that X(F ) has full column
rank. This implies that the symmetric matrix D(F ) = Xt(F )X(F ) is in-
vertible, and, moreover, that it is positive de�nite. Let L(F ) be the (unique)
Cholesky factor of D(F ). That is, the invertible matrix that has all entries
equal to 0 above the main diagonal and satis�es D(F ) = L(F )Lt(F ) (see
Golub and Van Loan (1983), pg. 88, for example). Let �i(F ) denote the
Euclidean norm of xti � L�t(F ), for i 2 N n F . Let � be a bijection from
f1; 2; :::; n� fg to N n F , such that ��(i)(F ) � ��(j)(F ) whenever i � j.

For a matrix A, let �i(A) denote the i
th greatest singular value of A. (The

nonzero singular values of a matrix A are precisely the square roots of the
nonzero eigenvalues of AtA; see Golub and Van Loan, pg. 285, for exam-
ple). Let �i(F ) denote the i

th greatest number among the minfn � f;mg
singular values of X(N n F ) � L�t(F ), for 1 � i � minfn � f;mg, and let
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�i(F ) := 0, for minfn� f;mg < i � n� f . We de�ne the Hadamard bound

H(F; s) := det(D(F ))

s�fY
i=1

�
1 + �2�(i)(F )

�
;

and the spectral bound

S(F; s) := det(D(F ))

s�fY
i=1

�
1 + �2i (F )

�
:

Proposition 1

maxfdet(D(S)) : F � S � N; jSj = sg � minfH(F; s);S(F; s)g :

Proof: For a real symmetric matrix B, let �i(B) denote the ith greatest
eigenvalue of B. First, we note that D(S) = D(F ) +D(S n F ). Hence

det(D(S)) = det
�
D(F ) +D(S n F )�

= det(D(F )) � det�Is�f +X(S n F ) �D�1(F ) �Xt(S n F )�

= det(D(F ))

s�fY
i=1

�i

�
Is�f +X(S n F ) �D�1(F ) �Xt(S n F )

�

= det(D(F ))

s�fY
i=1

�
�i

�
Is�f

�
+

�i

�
X(S n F ) �D�1(F ) �Xt(S n F )

��

= det(D(F ))

s�fY
i=1

�
1 + �i

�
X(S n F ) �D�1(F ) �Xt(S n F )

��

� det(D(F ))

s�fY
i=1

�
1 + �i

�
X(N n F ) �D�1(F ) �Xt(N n F )

��

= det(D(F ))

s�fY
i=1

�
1 + �2i

�
X(N n F ) � L�t(F )

��

= S(F; s) :
thus establishing the spectral bound. We note that the inequality above
follows from the interlacing property of singular values (see Golub and Van
Loan, pg. 286, for example).
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Additionally, we note that diagonal entry indexed by i of

Is�f +X(S n F ) �D�1(F ) �Xt(S n F )

is 1 + �2i . Now, since

Is�f +X(S n F ) �D�1(F ) �Xt(S n F )

is symmetric and positive de�nite, its determinant is no more than the
product of its diagonal elements (see Horn and Johnson (1985), pg. 477,
for example), thus establishing the Hadamard bound.

The bound based on Hadamard's inequality inWelch has a slightly di�erent
form than ours, since in our setup we incorporate upper bounds on the
number of times a design point can be replicated by explicitly including
multiple copies of such points in the design matrix. Since Welch allows
arbitrary replication of all design points, his bound is:

det(D(F ))
�
1 + �2�(1)(F )

�s�f
:

As the following example indicates, neither the Hadamard bound H nor
the spectral bound S always dominates the other:

Example 1 Nondominance. Let

X =

0
BBB@

1 �1
0 1
1 1
1 0
1 �1

1
CCCA ;

and take F = f1; 2g, and N = f1; 2; 3; 4;5g. We calculate

D(F ) =

�
1 �1
�1 2

�
; det(D(F )) = 1 ;

L(F ) =

�
1 0
�1 1

�
; L�t(F ) =

�
1 1
0 1

�
;

X(N n F ) �L�t(F ) =
0
@ 1 2
1 1
1 0

1
A :

We have

�2(F ) = (4 +
p
10; 4�

p
10; 0) � (7:1623; 0:8377;0) ;
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and
�2(F ) = (5; 2; 1) :

For s = 4, the spectral bound is sharper: We have S(F; s) = 15 and
H(F; s) = 18, while the D-optimal design has S = f1; 2; 3; 5g, with det(D(S))
= 11. On the other hand, for s = 3, the Hadamard bound is sharper: In
this case, we have S(F; s) = 5 +

p
10 � 8:1623 and H(F; s) = 6, while the

D-optimal design has S = f1; 2; 3g, with det(D(S)) = 6.

In the next example, we investigate how the bounds perform when we allow
replication and require many design points to be selected.

Example 2 Heavily Replicated Designs. Let F := f0; 1; 2; :::; f � 1g. Fix
a set of f m-vectors ~xi, i 2 F . We may assume that f~xi : i 2 Fg
contains m linearly independent points. Let k be a positive integer, let N :=
f0; 1; 2; :::; (k + 1)f � 1g, and let xi := ~xi(mod f), for i 2 N . Let s =
sk := f + k. Our problem, then, is to choose f + k design points from
f~xi : i 2 Fg, allowing arbitrary nonzero replication, so as to produce a D-
optimal design. We note that for any such problem, det(D(Sk)) will behave
like a polynomial in k of degree m, where Sk indicates the dependence of a
D-optimal set of indices on k. In this situation we have,

H(F; sk) = det(D(F )) � (1 + ~�2�(1)(F ))
k ;

where ~��(1)(F ) := maxi2F fk~xti �L�t(F )k2g. Thus, in the present situation,
the Hadamard bound grows exponentially in k. On the other hand,

S(F; sk) = det(D(F ))
mY
i=1

�
1 + k � ~�2i (F )

�
;

where ~�i(F ) denotes the ith greatest singular value of X(F ) � L�t(F ). We
note that in this case, the spectral bound increases as a polynomial in k of
degree m.

Therefore, the spectral bound is within a constant factor of the D-optimal
value, while the Hadamard bound is not within a subexponential factor.

To handle the case in which D(F ) is singular, we perturb the problem. Let
D�(S) = D(S) + (�=n)D(N ). Let ��2 denote the average variance of the

least squares estimators of the responses ŷi := xti�̂, over all i 2 N , where

�̂ := D�1(N )Xty. That is,

��2 =
�2

n

X
i2N

xtiD
�1(N )xi :
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Proposition 2 (Mitchell)

lim
�!0

�
det(D�(S)) � det(D(S))

��
det(D(S))

�
= ��2 :

Thus, we can choose some small� (Mitchell suggests .005;Welch uses .001),
and change our criteria to that of maximizing det(D�(S)), where

D�(S) := D(S) + (�=n)D(N ) :

Then the relative error related to using det(D�(S)) rather than det(D(S))
will be approximately ���2. We can view what we are doing as augmenting
the design space by the n points

p
(�=n)xi (i 2 N ), and forcing them into

the solution.

For the sake of precision, let L�(F )Lt�(F ) be the Cholesky factorization of
D�(F ). Let �i(F; �) denote the ith greatest number among the minfn �
f;mg singular values of X(N n F ) � L�t� (F ), for 1 � i � minfn � f;mg,
and let �i(F; �) := 0, for minfn� f;mg < i � n� f . We de�ne the spectral
bound for the perturbed problem as

S�(F; s) := det(D�(F ))

s�fY
i=1

�
1 + �2i (F; �)

�
:

Similarly, let �i(F; �) denote the Euclidean norm of xti � L�t� (F ), for i 2
N n F . Let � be a bijection from f1; 2; :::; n � fg to N n F , such that
��(i)(F; �) � ��(j)(F; �) whenever i � j. We de�ne the Hadamard bound
for the perturbed problem as

H�(F; s) := det(D�(F ))

s�fY
i=1

�
1 + �2�(i)(F; �)

�
;

In the following example, we study how the bounds may perform when we
require a high degree of precision (� near 0) in the singular case.

Example 3 Precise Bounds in the Singular Case. Let

X =

0
B@

1 1
�1 1
1 0
0 1

1
CA ;

and take F = f1g, N = f1; 2; 3; 4g and s = 3. We have

D�(F ) =

�
1 + 3�=4 1

1 1 + 3�=4

�
;
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which has determinant 3�(8 + 3�)=16. We have

�2(F; �) =

�
4

�
;

4

8 + 3�
; 0

�
;

and

�2(F; �) =

�
8

3�
;

16 + 12�

24�+ 9�2
;

16 + 12�

24�+ 9�2

�
:

It follows that

S�(F; s) = 9(4 + �)2

16
! 9 (as �! 0):

On the other hand,

H�(F; s) = 7+
8

3�
+

15�

4
+

9�2

16
!1 (as �! 0):

We note that S = f1; 2; 3g is D-optimal, with det(D(S)) = 6.

Next, we will demonstrate that the behavior of the spectral bound in Ex-
ample 3 is not an anomaly. That is, we will establish that the spectral
bound always converges as � vanishes. For a matrix A, let �(A) denote the
rank of A.

Lemma 1 There exist constants ai, for m� �(D(F )) � i � m, such that

det
�
D�(N )

�
=

mX
i=m��(D(F ))

ai�
i :

Proof.

det
�
D�(N )

�
= det

��
n
D(N )

�
� det

�
I +

n

�
X(F ) �D�1(N ) �Xt(F )

�

= �m det
� 1
n
D(N )

�
�

�(D(F ))Y
i=1

�
1 +

1

�
�i
�
nX(F ) �D�1(N ) �Xt(F )

��
;

with the upper limit on the index of the product being justi�ed by noting
that

�
�
nX(F ) �D�1(N ) �Xt(F )

� � �
�
D(F )

�
:

Now

�(D(F ))Y
i=1

�
1 +

1

�
�i
�
nX(F ) �D�1(N ) �Xt(F )

��
=

�(D(F ))X
i=0

ci

� 1

�i

�
;

for some ci, 0 � i � �
�
D(F )

�
. The result follows.
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Lemma 2 There exist constants bj, for 0 � j � m � �(D(F )), such that

s�fY
i=1

�
1 + �2i (F; �)

� �
m��(D(F ))X

j=0

bj

� 1

�j

�
:

Proof. We have

�2i (F; �) � �1(X(N n F )) � �1(Xt(N n F )) � �i
��
D(F ) +

�

n
D(N )

��1�
:

Now,

�i

��
D (F ) + �

n
D(N )

��1�

= ��1m�i+1

�
D(F ) +

�

n
D(N )

�

� 1

�m�i+1
�
D(F )

�
+ � � �m

�
1
n
D(N )

� :

Hence,

�2i (F; �) �
c

�m�i+1
�
D(F )

�
+ b�

;

for some constants c and b. Now,

�m�i+1
�
D(F )

��= 0; for 1 � i � m � �(D(F ));
> 0; for m � �(D(F )) < i � m.

Therefore, there exists a constant C, such that

s�fY
i=1

�
1 + �2i (F; �)

� � C �
�
1 +

c

b�

�m��(D(F ))

:

The result follows.

Combining Lemmata 1 and 2, we immediately have the following result.

Proposition 3

lim
�!0

S�(F; s) <1:

We can glean from the proofs of Lemmata 1 and 2 a recipe for constructing
an upper bound on the limit of Proposition 3. It would be interesting to
�nd an e�cient method for calculating the limit exactly.
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