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Abstract. In the baseball elimination problem, there is a league consisting of n teams. At some
point during the season, team i has wi wins and gij games left to play against team j. A team is
eliminated if it cannot possibly finish the season in first place or tied for first place. The goal is to
determine exactly which teams are eliminated. The problem is not as easy as many sports writers
would have you believe, in part because the answer depends not only on the number of games won
and left to play but also on the schedule of remaining games. In the 1960’s, Schwartz showed how
to determine whether one particular team is eliminated using a maximum flow computation.

This paper indicates that the problem is not as difficult as many mathematicians would have you
believe. For each team i, let gi denote the number of games remaining. We prove that there exists a
value W ∗ such that team i is eliminated if and only if wi + gi < W ∗. Using this surprising fact, we
can determine all eliminated teams in time proportional to a single maximum flow computation in a
graph with n nodes; this improves upon the previous best known complexity bound by a factor of n.
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1. Introduction. In the baseball elimination problem, there is a league consist-
ing of n teams, which we denote by the set T . At some point during the season,
each team has played some number of games. Team i ∈ T has wi wins, gij remaining
games against team j ∈ T , and gi =

∑
j∈T gij total remaining games. Table 1.1 gives

the input data for a sample league. The goal of a team is to finish the season with the
most wins. We say that a team is eliminated if it cannot finish in first place (i.e., with
the most wins or tied for the most wins) for any possible outcome of the remaining
games. We assume there are no ties (i.e., each game has a winner and loser) and no
rain-outs (i.e., all remaining games are played). Without loss of generality, we assume
all of the remaining games are against other teams in the same league. This classical
problem was first popularized by Alan Hoffman in the 1960’s as a nice application of
optimization and network flow. The reader is referred to [2, 4] for textbook treatments
of the problem.

Schwartz [15] proposed a method to determine whether a single team is elimi-
nated using a maximum flow computation. Hoffman and Rivlin [11] generalized the
result of [15], providing a characterization of when a team is eliminated from finishing
in tth place. Robinson [14] gave a linear programming based model that finds the
maximum lead a team can have at the end of the season. Gusfield and Martel [10]
and McCormick [12] determined the elimination number, i.e., the minimum number
of remaining games a team must win in order to have any chance of finishing in first
place. Their methods use different extensions of the parametric maximum flow tech-
niques of Gallo, Grigoriadis, and Tarjan [5]. McCormick [12] also showed that it is
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Table 1.1

Team standings and remaining schedule.

team wins to play schedule
i wi gi Atl Phi NY Mon

Atlanta 83 8 – 1 6 1
Philadelphia 79 4 1 – 0 3
New York 78 7 6 0 – 1
Montreal 76 5 1 3 1 –

NP-complete to determine whether a team is eliminated from finishing the season
in tth place or better. Adler et al. [1] proposed an integer programming formula-
tion to determine which teams are eliminated from finishing the season in first place
or as a wildcard playoff team and corresponding elimination numbers. Their Web
site www.riot.ieor.berkeley.edu/˜ baseball maintains these statistics on-line for major
league baseball.

In this paper we introduce a new structural property for the baseball elimination
problem. Specifically, we order the teams according to their total number of wins
possible (current wins + remaining games). We show that if a team is eliminated,
then so are all teams below it in the ordering. For example, this implies that if two
teams have the same number of wins and remaining games, then they are either both
eliminated or both not eliminated, regardless of their remaining opponents. Using
our new ordering and binary search, we can find all eliminated teams with logn
maximum flow computations. Using the parametric maximum flow techniques of
Gallo, Grigoriadis, and Tarjan [5], we show how to determine all eliminated teams in
the same complexity as a single maximum flow computation. It is also straightforward
to determine all of the elimination numbers from our computation.

We note that the new structural property was independently proved by Adler et
al. [1] using linear programming techniques. They also describe how to compute all
eliminated teams by solving a single linear program. Our proof is based on flows and
cuts and, as a result, leads to a faster algorithm.

2. Preliminaries. In this section we review the necessary and sufficient condi-
tions for a team to be eliminated. Also, we show how to determine whether a single
team is eliminated using a maximum flow computation.

Let xij be a variable representing the number of games that team i ∈ T wins
among games remaining to be played against team j ∈ T . Team k is not eliminated
if there is some assignment of nonnegative integer values {xij : i, j ∈ T} such that

∀i, j ∈ T : xij + xji = gij = gji,(2.1)

∀j ∈ T : wk +
∑
j∈T

xkj ≥ wi +
∑
j∈T

xij .(2.2)

Equations (2.1) imply that all remaining games are played; inequalities (2.2) imply
that no team finishes the season with more wins than team k.

Consider Table 1.1 above. Montreal is eliminated since it can finish with at most
81 wins, but Atlanta already has 83 wins. This is the simplest reason for elimination.
However, there can be more complicated reasons. For example, Philadelphia is also
eliminated. It can finish the season with at most 83 wins. However, either Atlanta
will win more than 83 games, or it will lose all 6 of its remaining games against New
York, in which case New York will finish with at least 84 wins.
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For any subset of teams R ⊆ N , let w(R) =
∑
i∈R wi denote the total number of

games already won by teams in R and let g(R) =
∑
{i,j}⊆R gij denote the number of

games remaining to be played by teams both in R. We define a(R) = w(R)+g(R)
|R| and

note that a(R) gives a lower bound on the average number of games (including games
already won) that must be won by teams in R: the teams in R have already won
w(R) games, and some team in R must win each of the g(R) games played between
teams both in R.

Lemma 2.1. Let i ∈ T and R ⊆ T − {i}. If a(R) > wi + gi, then team i is
eliminated.

Proof. If team i wins all of its remaining games, then it will finish the season with
wi + gi wins. On average, the teams in R win at least a(R) > wi + gi games. Thus
(at least) one team in R will finish with more wins than team i.

In this case, we say thatR eliminates i, since it provides a certificate of elimination
for team i. Surprisingly, if a team is eliminated, there is always such a simple certificate
of elimination, as stated in Theorem 2.3. First, we review how to determine whether
or not a single team is eliminated. The following theorem is due to Schwartz [15].

Theorem 2.2. Using a single s-t minimum cut computation, we can determine
whether one particular team k is eliminated.

Proof. Clearly, the best possible scenario for team k is if it wins all of its remaining
games, in which case it will end up with W := wk +gk wins. If W < wi for any i ∈ T ,
then {i} trivially eliminates k.

Now, we check for more complicated reasons for elimination. We construct a
bipartite network in which feasible integral flows correspond to outcomes of the re-
maining schedule. The following network flow formulation is due to Schwartz [15]:
Gusfield and Martel [10] give an alternate construction. There are nodes correspond-
ing to teams and to remaining games. Intuitively, each unit of flow in the network
corresponds to a remaining game. As it flows through the network, it passes from a
game node, say, between teams i and j, then through one of the team nodes i or j,
classifying this game as being won by that team.

The flow network for the baseball elimination problem is shown in Figure 2.1.
Formally, let N := T − {k} denote the set of teams other than team k. Let P :=
{{i, j} ⊆ N : gij > 0} denote the set of pairs of teams (that don’t involve team k)
with remaining games to be played. Let V := P ∪N ∪ {s, t} denote the set of nodes
in the network. For each {i, j} ∈ P we include an arc (s, {i, j}) with capacity gij .
For each team i ∈ N we include an arc (i, t) with capacity W − wi. Finally, for each
{i, j} ∈ P we include arcs ({i, j}, i) and ({i, j}, j) with infinite capacity. The flow on
arc ({i, j}, i) represents the total number of remaining games in which i beats j. The
flow on arc (i, t) represents the total number of remaining games won by i.

It is easy to see that integral feasible flows of value g(N) in the resulting network
are in one-to-one correspondence with possible outcomes of the remaining games in
which team i is not eliminated, i.e., they satisfy (2.1) and (2.2). It follows that we can
determine whether i is eliminated with a single maximum integer flow (or minimum
s-t cut) computation in the above bipartite network.

The previous theorem says that we can determine whether any single team k is
eliminated using a maximum flow computation in an appropriate bipartite network.
In fact, if team k is eliminated, then the minimum s-t cut (in the same bipartite
network) indicates a subset of teams that eliminates k. The next theorem is due to
Hoffman and Rivlin [11]. We include its proof only for completeness.
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Fig. 2.1. Flow network for baseball elimination.

Theorem 2.3. Suppose team k ∈ T is eliminated. Then there exists R ⊆ T −{k}
that eliminates k. Moreover, we can find such a subset R with a single s-t minimum
cut computation.

Proof. Consider the maximum flow network described in Theorem 2.2. Let
S denote the source side of a minimum s-t cut and let R = N ∩ S denote the
team nodes on the source side of the cut. For example, for the four team league
considered above with k = Philadelphia, it turns out that the minimum cut is
S = {s, {Atl, NY},Atl, NY} andR = {Atl, NY}. We note thatR eliminates Philadel-
phia since a(R) = 167/2 > 83 = W = wk + gk.

In general, if team k is eliminated, we show that R = N ∩ S eliminates k. Since
k is eliminated, the maximum flow in the network is less than g(N). Hence, by the
max-flow min-cut theorem, the capacity of the minimum cut S is also less than g(N);
it is the sum of the capacities of some arcs leaving the source and some arcs entering
the sink: ∑

{i,j}∈P
gij = g(N) > cap(S)

=
∑

{i,j}∈P\S
gij +

∑
i∈R

(W − wi)

=
∑

{i,j}∈P\S
gij +W |R| − w(R).(2.3)

Let {i, j} ∈ P ∩S. Then i ∈ R and j ∈ R, since otherwise the cut would have infinite
capacity. Thus ∑

{i,j}∈P∩S
gij ≤

∑
{i,j}⊆R

gij = g(R).(2.4)

Combining (2.3) and (2.4) we obtain

W |R| − w(R) <
∑
{i,j}∈P

gij −
∑

{i,j}∈P\S
gij

=
∑

{i,j}∈P∩S
gij

≤ g(R).

In other words, R eliminates team k.
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3. Problem structure. We now provide a new structural property for the base-
ball elimination problem. We use the total order i � j to indicate wi + gi ≤ wj + gj .
The following theorem indicates that if a team is eliminated, then so are all lower
ordered teams.

Theorem 3.1. Suppose team k ∈ T is eliminated. If i � k, then team i is also
eliminated.

Proof. Since k is eliminated, by Theorem 2.3 there exists R ⊆ T − {k} that
eliminates k. That is

a(R) > wk + gk ≥ wi + gi.

If i /∈ R, then R also eliminates i. Now suppose i ∈ R. Clearly R 6= {i}. Then, R\{i}
eliminates i since

a(R \ {j}) =
g(R− {i}) + w(R − {i})

|R| − 1

≥ g(R)− gi + w(R)− wi
|R| − 1

>
g(R) + w(R) − a(R)

|R| − 1
= a(R)
> wi + gi.

The following corollary was also derived independently by Adler et al. [1] using
linear programming techniques instead of flows of cuts.

Corollary 3.2. There exists a team i∗ ∈ T such that all teams i � i∗ are
eliminated and all teams i � i∗ are not eliminated.

Proof. Choose i∗ to be the eliminated team with the largest value of wi+
gi.

Corollary 3.3. There exists a single subset of teams R∗ ⊆ T that eliminates
every eliminated team.

Proof. Choose R∗ to be a nonempty subset of teams that maximizes a(R). First
we observe that if team k is eliminated, then k /∈ R∗. This follows from our choice
of R∗ because the proof of Theorem 3.1 would then imply a(R∗ − {k}) > a(R∗).
By Theorem 2.3, if team k is eliminated, then there exists a subset R such that
a(R) > wk + gk. Now a(R∗) ≥ a(R) and k /∈ R∗, so R∗ also eliminates k.

4. Determining all eliminated teams. In this section we show how to find
all eliminated teams efficiently. It suffices to find the i∗ guaranteed by Corollary 3.2.
We can order the n teams according to their wi + gi values and use binary search to
find i∗. This requires logn minimum cut computations.

Now, we give an even faster method to find all eliminated teams. It suffices to
find the R∗ guaranteed by Corollary 3.3. We introduce an artificial team 0 which has
no remaining games and a variable number of wins W . Let R∗ be a nonempty subset
that maximizes a(R) and let W ∗ = a(R∗). Note that team 0 is eliminated if and only
if W < W ∗. Also the elimination number for team i is easily seen to be dW ∗e − wi.

Now, we show how to find W ∗ and R∗ efficiently. We construct a bipartite
maximum flow network as in Figure 2.1, but now k = 0 and N = T . Also for each
i ∈ N , the capacity of arc (i, t) is W − wi, where W is a parameter. Note that
all of the “parametric arcs” enter the sink and are increasing linear functions of the
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parameter W . Therefore, we are in a position to apply the parametric maximum
flow technique of Gallo, Grigoriadis, and Tarjan [5] which computes all minimum cut
values parametrically in terms of W in the same complexity as a single preflow-push
maximum flow computation. Thus, we can compute W ∗ efficiently. The team nodes
on the source side of the minimum cut gives R∗. The following theorem summarizes
this discussion.

Theorem 4.1. Let G = (V,E) be an undirected graph with arc weights gij
and node weights wi. We can find a nonempty subset of nodes R that maximizes
a(R) := g(R)+w(R)

|R| using a single monotone parametric maximum flow computation.
If the undirected network G has n nodes and m arcs, then the bipartite net-

work we construct has O(m) nodes and O(m) arcs. However, the smaller side
of the bipartition has only n1 = O(n) nodes. For a network with n nodes and
m arcs, the Goldberg–Tarjan [9] preflow-push algorithm solves the maximum flow
problem in O(mn log(m/n2)) time, and the Goldberg–Rao [8] algorithm requires
O(min(n2/3,m1/2)m log(n2/m) logU) time if the capacities are integers between 1
and U . In our problem U ≤ maxi∈T (wi + gi). Using the bipartite maximum flow
techniques of Ahuja et al. [3] and Goldberg [7], the running times remain valid for
bipartite networks when the number of nodes n is replaced by the number of nodes
on the smaller side of the bipartition n1.

Corollary 4.2. All eliminated teams can be determined in time proportional to
one preflow-push maximum flow computation in a network with n nodes.

The problem considered in Theorem 4.1 generalizes the maximum density sub-
graph problem considered by Goldberg [6]. In the maximum density subgraph prob-
lem, the goal is to find a subset of nodes that maximizes the ratio of the number of
internal arcs to the number of nodes. This is the special case of our problem when the
arc weights are uniform and the node weights are zero. Picard and Queyranne [13]
and Gallo, Grigoriadis, and Tarjan [5] considered a different generalization of the
maximum density subgraph problem that maximizes g(R)/w(R).
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