
1

Chapter 13

Randomized
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Randomization

Algorithmic design patterns.
 Greedy.
 Divide-and-conquer.
 Dynamic programming.
 Network flow.
 Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm
for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.

in practice, access to a pseudo-random number generator

13.1 Contention Resolution

4

Contention Resolution in a Distributed System

Contention resolution. Given n processes P1, …, Pn, each competing for
access to a shared database. If two or more processes access the
database simultaneously, all processes are locked out. Devise protocol
to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.

5

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with
probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the
database at time t. Then 1/(e ⋅ n) ≤ Pr[S(i, t)] ≤ 1/(2n).

Pf. By independence, Pr[S(i, t)] = p (1-p)n-1.

 Setting p = 1/n, we have Pr[S(i, t)] = 1/n (1 - 1/n) n-1. ▪

Useful facts from calculus. As n increases from 2, the function:
 (1 - 1/n)n-1 converges monotonically from 1/4 up to 1/e
 (1 - 1/n)n-1 converges monotonically from 1/2 down to 1/e.

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2

6

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/e. After e⋅n(c ln n) rounds, the probability is at
most n-c.

Pf. Let F[i, t] = event that process i fails to access database in rounds
1 through t. By independence and previous claim, we have
Pr[F(i, t)] ≤ (1 - 1/(en)) t.

 Choose t = e ⋅ n:

 Choose t = e ⋅ n c ln n:

!

Pr[F(i, t)] " 1# 1
en()

en$ %
 " 1# 1

en()
en

 " 1
e

!

Pr[F(i, t)] " 1
e()

c ln n

 = n
#c

7

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e ⋅ n ln n
rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access
database in any of the rounds 1 through t.

 Choosing t = 2 en c ln n yields Pr[F[t]] ≤ n · n-2 = 1/n. ▪

 Union bound. Given events E1, …, En,

!

Pr E
i

i=1

n

U
"

$
%

& '
 (Pr[E

i
]

i=1

n

)

!

Pr F [t][] = Pr F [i, t]
i=1

n

U
"

$
%

& '
 (Pr[F [i, t]]

i=1

n

) (n 1* 1
en()

t

union bound previous slide

13.2 Global Minimum Cut

9

Global Minimum Cut

Global min cut. Given a connected, undirected graph G = (V, E) find a
cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of
related documents, network reliability, network design, circuit design,
TSP solvers.

Network flow solution.
 Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
 Pick some vertex s and compute min s-v cut separating s from each

other vertex v ∈ V.

False intuition. Global min-cut is harder than min s-t cut.

10

Contraction Algorithm

Contraction algorithm. [Karger 1995]
 Pick an edge e = (u, v) uniformly at random.
 Contract edge e.

– replace u and v by single new super-node w
– preserve edges, updating endpoints of u and v to w
– keep parallel edges, but delete self-loops

 Repeat until graph has just two nodes v1 and v2.
 Return the cut (all nodes that were contracted to form v1).

u v w⇒
contract u-v

a b c

e
f

ca b

f

d

11

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2/n2.

Pf. Consider a global min-cut (A*, B*) of G. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cut.

 In first step, algorithm contracts an edge in F* probability k / |E|.
 Every node has degree ≥ k since otherwise (A*, B*) would not be

min-cut. ⇒ |E| ≥ ½kn.
 Thus, algorithm contracts an edge in F* with probability ≤ 2/n.

A* B*

F*

12

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob ≥ 2/n2.

Pf. Consider a global min-cut (A*, B*) of G. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cut.

 Let G' be graph after j iterations. There are n' = n-j supernodes.
 Suppose no edge in F* has been contracted. The min-cut in G' is still k.
 Since value of min-cut is k, |E'| ≥ ½kn'.
 Thus, algorithm contracts an edge in F* with probability ≤ 2/n'.

 Let Ej = event that an edge in F* is not contracted in iteration j.

!

Pr[E1 "E2 L" E
n#2] = Pr[E1] $ Pr[E2 | E1] $ L $ Pr[E

n#2 | E1" E2L" E
n#3]

% 1# 2
n

() 1# 2
n#1() L 1# 2

4() 1# 2
3()

= n#2

n() n#3

n#1() L 2
4() 1

3()
= 2

n(n#1)

% 2

n
2

13

Contraction Algorithm

Amplification. To amplify the probability of success, run the
contraction algorithm many times.

Claim. If we repeat the contraction algorithm n2 ln n times with
independent random choices, the probability of failing to find the
global min-cut is at most 1/n2.

Pf. By independence, the probability of failure is at most

!

1"
2

n
2

$
%

&

'
(
n

2
lnn

= 1"
2

n
2

$
%

&

'
(

1

2
n

2)

*
+
+

,

-
.
.

2lnn

/ e
"1()

2lnn

=
1

n
2

(1 - 1/x)x ≤ 1/e

14

Global Min Cut: Context

Remark. Overall running time is slow since we perform Θ(n2 log n)
iterations and each takes Ω(m) time.

Improvement. [Karger-Stein 1996] O(n2 log3n).
 Early iterations are less risky than later ones: probability of

contracting an edge in min cut hits 50% when n / √ 2 nodes remain.
 Run contraction algorithm until n / √ 2 nodes remain.
 Run contraction algorithm twice on resulting graph, and return best of

two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3n).
faster than best known max flow algorithm or
deterministic global min cut algorithm

13.3 Linearity of Expectation

16

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]
is defined by:

Waiting for a first success. Coin is heads with probability p and tails
with probability 1-p. How many independent flips X until first heads?

!

E[X] = j Pr[X = j]
j=0

"

#

!

E[X] = j " Pr[X = j]
j=0

#

$ = j (1% p) j%1 p
j=0

#

$ =
p

1% p
j (1% p) j

j=0

#

$ =
p

1% p
"
1% p

p
2

=
1

p

j-1 tails 1 head

17

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf.

Linearity of expectation. Given two random variables X and Y defined
over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

!

E[X] = j " Pr[X = j]
j=0

#

$ = j " Pr[X = j]
j=0

1

$ = Pr[X =1]

not necessarily independent

18

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing. No psychic abilities; can't even remember
what's been turned over already. Guess a card from full deck
uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. (surprisingly effortless using linearity of expectation)

 Let Xi = 1 if ith prediction is correct and 0 otherwise.
 Let X = number of correct guesses = X1 + … + Xn.
 E[Xi] = Pr[Xi = 1] = 1/n.
 E[X] = E[X1] + … + E[Xn] = 1/n + … + 1/n = 1. ▪

linearity of expectation

19

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is Θ(log n).
Pf.

 Let Xi = 1 if ith prediction is correct and 0 otherwise.
 Let X = number of correct guesses = X1 + … + Xn.
 E[Xi] = Pr[Xi = 1] = 1 / (n - i - 1).
 E[X] = E[X1] + … + E[Xn] = 1/n + … + 1/2 + 1/1 = H(n). ▪

ln(n+1) < H(n) < 1 + ln nlinearity of expectation

20

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to
contain each coupon, how many boxes before you have ≥ 1 coupon of
each type?

Claim. The expected number of steps is Θ(n log n).
Pf.

 Phase j = time between j and j+1 distinct coupons.
 Let Xj = number of steps you spend in phase j.
 Let X = number of steps in total = X0 + X1 + … + Xn-1.

!

E[X] = E[X j]
j=0

n"1

=
n

n" jj=0

n"1

= n
1

ii=1

n

= nH (n)

prob of success = (n-j)/n
⇒ expected waiting time = n/(n-j)

13.4 MAX 3-SAT

22

Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that
satisfies as many clauses as possible.

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability ½,
independently for each variable.

!

C
1

= x
2
" x

3
" x

4

C
2

= x
2
" x

3
" x

4

C
3

= x
1
" x

2
" x

4

C
4

= x
1
" x

2
" x

3

C
5

= x
1
" x

2
" x

4

exactly 3 distinct literals per clause

23

Claim. Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable

 Let Z = weight of clauses satisfied by assignment Zj.

!

E[Z] = E[Z j
j=1

k

"]

= Pr[clause Cj is satisfied
j=1

k

"]

= 7
8
k

Maximum 3-Satisfiability: Analysis

!

Z j =
1 if clause Cj is satisfied

0 otherwise.

"

$

linearity of expectation

24

Corollary. For any instance of 3-SAT, there exists a truth assignment
that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. ▪

Probabilistic method. We showed the existence of a non-obvious
property of 3-SAT by showing that a random construction produces it
with positive probability!

The Probabilistic Method

25

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies ≥ 7k/8
clauses is at least 1/(8k).

Pf. Let pj be probability that exactly j clauses are satisfied; let p be
probability that ≥ 7k/8 clauses are satisfied.

Rearranging terms yields p ≥ 1 / (8k). ▪
!

7
8
k = E[Z] = j pj

j"0

#

= j pj + j pj
j"7k /8

#
j<7k /8

#

$ (7k
8
% 1

8
) pj + k pj

j"7k /8

#
j<7k /8

#

$ (7
8
k % 1

8
) & 1 + k p

26

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies ≥ 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at
least 1/(8k). By the waiting-time bound, the expected number of trials
to find the satisfying assignment is at most 8k. ▪

27

Maximum Satisfiability

Extensions.
 Allow one, two, or more literals per clause.
 Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-
approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a
7/8-approximation algorithm for version of MAX-3SAT where each
clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ-approximation algorithm
for MAX-3SAT (and hence MAX-SAT) for any ρ > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

28

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find
correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run
in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method to convert the other way.

stop algorithm after a certain point

29

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in
poly-time.

One-sided error.
 If the correct answer is no, always return no.
 If the correct answer is yes, return yes with probability ≥ ½.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. P ⊆ ZPP ⊆ RP ⊆ NP.

Fundamental open questions. To what extent does randomization help?
Does P = ZPP? Does ZPP = RP? Does RP = NP?

Can decrease probability of false negative
to 2-100 by 100 independent repetitions

running time can be unbounded, but
on average it is fast

13.6 Universal Hashing

31

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset
S ⊆ U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
 Create(): Initialize a dictionary with S = φ.
 Insert(u): Add element u ∈ U to S.
 Delete(u): Delete u from S, if u is currently in S.
 Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of
size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

32

Hashing

Hash function. h : U → { 0, 1, …, n-1 }.

Hashing. Create an array H of size n. When processing element u,
access array element H[h(u)].

Collision. When h(u) = h(v) but u ≠ v.
 A collision is expected after Θ(√n) random insertions. This

phenomenon is known as the "birthday paradox."
 Separate chaining: H[i] stores linked list of elements u with h(u) = i.

jocularly seriously

browsing

H[1]

H[2]

H[n]

suburban untravelledH[3] considerating

null

33

Ad Hoc Hash Function

Ad hoc hash function.

Deterministic hashing. If |U| ≥ n2, then for any fixed hash function h,
there is a subset S ⊆ U of n elements that all hash to same slot. Thus,
Θ(n) time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?

int h(String s, int n) {
 int hash = 0;
 for (int i = 0; i < s.length(); i++)
 hash = (31 * hash) + s[i];
 return hash % n;
} hash function ala Java string library

34

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
 Obvious situations: aircraft control, nuclear reactors.
 Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]
 Bro server: send carefully chosen packets to DOS the server, using

less bandwidth than a dial-up modem
 Perl 5.8.0: insert carefully chosen strings into associative array.
 Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your ad hoc hash function
(e.g., by reading Java API) and causes a big pile-up in
a single slot that grinds performance to a halt

35

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n
hash slots.

 Running time depends on length of chains.
 Average length of chain = α = m / n.
 Choose n ≈ m ⇒ on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash
function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

36

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
 For any pair of elements u, v ∈ U,
 Can select random h efficiently.
 Can compute h(u) efficiently.

Ex. U = { a, b, c, d, e, f }, n = 2.

!

Pr
h"H

h(u) = h(v)[] # 1/n

chosen uniformly at random

a b c d e f
0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

H = {h1, h2}
Pr h ∈ H [h(a) = h(b)] = 1/2
Pr h ∈ H [h(a) = h(c)] = 1
Pr h ∈ H [h(a) = h(d)] = 0
. . .

a b c d e f

0 0 1 0 1 1
1 0 0 1 1 0

h3(x)
h4(x)

H = {h1, h2 , h3 , h4}
Pr h ∈ H [h(a) = h(b)] = 1/2
Pr h ∈ H [h(a) = h(c)] = 1/2
Pr h ∈ H [h(a) = h(d)] = 1/2
Pr h ∈ H [h(a) = h(e)] = 1/2
Pr h ∈ H [h(a) = h(f)] = 0
. . .

0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

not universal

universal

37

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h ∈ H be chosen uniformly at random from H; and let
u ∈ U. For any subset S ⊆ U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s ∈ S, define indicator random variable Xs = 1 if
h(s) = h(u) and 0 otherwise. Let X be a random variable counting the
total number of collisions with u.

!

E
h"H [X] = E[X

s
]

s"S# = E[X
s
]

s"S# = Pr[X
s

=1]
s"S# $ 1

ns"S # = | S | 1
n

 $ 1

linearity of expectation Xs is a 0-1 random variable universal
(assumes u ∉ S)

38

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus. Choose a prime number p ≈ n.

Integer encoding. Identify each element u ∈ U with a base-p integer
of r digits: x = (x1, x2, …, xr).

Hash function. Let A = set of all r-digit, base-p integers. For each
a = (a1, a2, …, ar) where 0 ≤ ai < p, define

Hash function family. H = { ha : a ∈ A }.

!

ha(x) = ai xi
i=1

r

"

$
%

&

'
(mod p

no need for randomness here

39

Designing a Universal Class of Hash Functions

Theorem. H = { ha : a ∈ A } is a universal class of hash functions.

Pf. Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of
U. We need to show that Pr[ha(x) = ha(y)] ≤ 1/n.

 Since x ≠ y, there exists an integer j such that xj ≠ yj.
 We have ha(x) = ha(y) iff

 Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i ≠ j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i ≠ j.

 Since p is prime, aj z = m mod p has at most one solution among p
possibilities.

 Thus Pr[ha(x) = ha(y)] = 1/p ≤ 1/n. ▪

!

a j (y j " x j)

z

1 2 4 3 4
 = ai (xi " yi)

i# j

$

m

1 2 4 4 3 4 4

 mod p

see lemma on next slide

40

Number Theory Facts

Fact. Let p be prime, and let z ≠ 0 mod p. Then αz = m mod p has at most
one solution 0 ≤ α < p.

Pf.
 Suppose α and β are two different solutions.
 Then (α - β)z = 0 mod p; hence (α - β)z is divisible by p.
 Since z ≠ 0 mod p, we know that z is not divisible by p;

it follows that (α - β) is divisible by p.
 This implies α = β. ▪

Bonus fact. Can replace "at most one" with "exactly one" in above fact.
Pf idea. Euclid's algorithm.

13.9 Chernoff Bounds

42

Chernoff Bounds (above mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables. Let
X = X1 + … + Xn. Then for any µ ≥ E[X] and for any δ > 0, we have

Pf. We apply a number of simple transformations.
 For any t > 0,

 Now

µ

!

!

!
µ! "

#

$
%
&

'

+
<+>

+1)1(
])1(Pr[

e
X

sum of independent 0-1 random variables
is tightly centered on the mean

!

Pr[X > (1+")µ] = Pr e
t X > et(1+")µ[] # e

$t(1+")µ
%E[e

tX
]

f(x) = etX is monotone in x Markov's inequality: Pr[X > a] ≤ E[X] / a

!

E[e
tX
] = E[e

t X
ii

"
] = E[e

t X
i]

i
#

definition of X independence

43

Chernoff Bounds (above mean)

Pf. (cont)
 Let pi = Pr[Xi = 1]. Then,

 Combining everything:

 Finally, choose t = ln(1 + δ). ▪
!

Pr[X > (1+")µ] # e
$t(1+")µ

E[e
t Xi]

i% # e
$t(1+")µ

e
pi (e

t$1)
i% # e

$t(1+")µ
e

µ(et$1)

)1(0)1(1)1(][
!

"!+=!+=
t

ii ept
ii

t
i

Xt
eepepepeE

for any α ≥ 0, 1+α ≤ e α

previous slide inequality above ∑i pi = E[X] ≤ µ

44

Chernoff Bounds (below mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables. Let
X = X1 + … + Xn. Then for any µ ≤ E[X] and for any 0 < δ < 1, we have

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider δ < 1.

2/2

])1(Pr[µ!µ! "<"< eX

13.10 Load Balancing

46

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment
that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most m/n jobs.

Decentralized controller. Assign jobs to processors uniformly at
random. How likely is it that some processor is assigned "too many"
jobs?

47

Load Balancing

Analysis.
 Let Xi = number of jobs assigned to processor i.
 Let Yij = 1 if job j assigned to processor i, and 0 otherwise.
 We have E[Yij] = 1/n
 Thus, Xi = ∑ j Yi j, and µ = E[Xi] = 1.
 Applying Chernoff bounds with δ = c - 1 yields

 Let γ(n) be number x such that xx = n, and choose c = e γ(n).

 Union bound ⇒ with probability ≥ 1 - 1/n no processor receives
more than e γ(n) = Θ(logn / log log n) jobs.

c

c

i

c

e
cX

1

]Pr[
!

<>

2

)(2)(1 1

)(

1

)(

1
]Pr[

nnnc

e

c

e
cX

nnec

c

c

i
=!

"

#
$
%

&
<!

"

#
$
%

&
=!

"

#
$
%

&
<<>

' ((

((

Fact: this bound is asymptotically tight: with high
probability, some processor receives Θ(logn / log log n)

48

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n ln n. Then on average,
each of the n processors handles µ = 16 ln n jobs. With high probability
every processor will have between half and twice the average load.

Pf.
 Let Xi , Yij be as before.
 Applying Chernoff bounds with δ = 1 yields

 Union bound ⇒ every processor has load between half and twice
the average with probability ≥ 1 - 2/n. ▪

2

lnln16
11

4
]2Pr[

ne

e
X

nnn

i
=!

"

#
$
%

&
<!

"

#
$
%

&
<> µ

!

Pr[X
i

< 1
2
µ] < e

"1
2

1
2()
2
(16n lnn)

=
1

n
2

Extra Slides 13.5 Randomized Divide-and-Conquer

51

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

RandomizedQuicksort(S) {
 if |S| = 0 return

 choose a splitter ai ∈ S uniformly at random
 foreach (a ∈ S) {
 if (a < ai) put a in S-

 else if (a > ai) put a in S+

 }
 RandomizedQuicksort(S-)
 output ai
 RandomizedQuicksort(S+)
}

O(log n) extra space

52

Quicksort

Running time.
 [Best case.] Select the median element as the splitter: quicksort

makes Θ(n log n) comparisons.
 [Worst case.] Select the smallest element as the splitter:

quicksort makes Θ(n2) comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of
the elements and smaller than 25% of the elements, then quicksort
makes Θ(n log n) comparisons.

Notation. Label elements so that x1 < x2 < … < xn.

53

x7 x6 x12 x3 x8 x7 x1 x15 x10 x16 x14 x9x17x11 x13 x5x4

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14

first splitter, chosen uniformly at random

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

S- S+

54

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.
 x2 and x7 are compared if their lca = x2 or x7.
 x2 and x7 are not compared if their lca = x3 or x4 or x5 or x6.

Claim. Pr[xi and xj are compared] = 2 / |j - i + 1|.

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14

55

Theorem. Expected # of comparisons is O(n log n).
Pf.

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65N.

Ex. If n = 1 million, the probability that randomized quicksort takes
less than 4n ln n comparisons is at least 99.94%.

 Chebyshev's inequality. Pr[|X - µ| ≥ kδ] ≤ 1 / k2.

Quicksort: Expected Number of Comparisons

!

2

j " i +1
 = 2

1

jj=2

i

#
i=1

n

#
1 $ i < j $ n

$ 2n
1

jj=1

n

% 2n
1

x
dx

x=1

n

& = 2n lnn

probability that i and j are compared

