11.1 Load Balancing #### Approximation Algorithms - Q. Suppose I need to solve an NP-hard problem. What should I do? - A. Theory says you're unlikely to find a poly-time algorithm. #### Must sacrifice one of three desired features. - Solve problem to optimality. - Solve problem in poly-time. - Solve arbitrary instances of the problem. #### ρ -approximation algorithm. - Guaranteed to run in poly-time. - Guaranteed to solve arbitrary instance of the problem - Guaranteed to find solution within ratio ρ of true optimum. Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is! # Load Balancing Input. m identical machines; n jobs, job j has processing time t_j . - Job j must run contiguously on one machine. - A machine can process at most one job at a time. Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j\,\in\,J(i)}\, t_j.$ Def. The makespan is the maximum load on any machine $L = \max_i L_i$. Load balancing. Assign each job to a machine to minimize makespan. #### Load Balancing: List Scheduling ## List-scheduling algorithm. - Consider n jobs in some fixed order. - Assign job j to machine whose load is smallest so far. Implementation. O(n log m) using a priority queue. ### Load Balancing: List Scheduling Analysis Theorem. Greedy algorithm is a 2-approximation. Pf. Consider load L_i of bottleneck machine i. - Let j be last job scheduled on machine i. - When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$. #### Load Balancing: List Scheduling Analysis Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation. - First worst-case analysis of an approximation algorithm. - Need to compare resulting solution with optimal makespan L*. Lemma 1. The optimal makespan $L^* \ge \max_j t_j$. Pf. Some machine must process the most time-consuming job. • Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$. Pf - The total processing time is $\Sigma_i t_i$. - One of m machines must do at least a 1/m fraction of total work. • ### Load Balancing: List Scheduling Analysis Theorem. Greedy algorithm is a 2-approximation. Pf. Consider load L_i of bottleneck machine i. - Let j be last job scheduled on machine i. - When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$. - Sum inequalities over all k and divide by m: $$\begin{array}{rcl} L_i - \ t_j & \leq & \frac{1}{m} \sum_k L_k \\ & = & \frac{1}{m} \sum_k t_k \end{array}$$ Lemma 1 \longrightarrow $\leq L^*$ Now $$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*.$$ Lemma 2 ## Load Balancing: List Scheduling Analysis - Q. Is our analysis tight? - A. Essentially yes. Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m Load Balancing: LPT Rule Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm. ``` \begin{split} & \text{LPT-List-Scheduling} \, (\text{m}, \ \text{n}, \ \text{t}_1, \text{t}_2, \dots, \text{t}_n) \ \{ \\ & \text{Sort jobs so that } \ \text{t}_1 \geq \text{t}_2 \geq \dots \geq \text{t}_n \end{split} \begin{aligned} & \text{for i = 1 to m } \{ \\ & L_i \leftarrow 0 & \leftarrow \quad \text{load on machine i} \\ & J(i) \leftarrow \varphi & \leftarrow \quad \text{jobs assigned to machine i} \\ \} \end{aligned} \begin{aligned} & \text{for j = 1 to n } \{ \\ & i = \text{argmin}_k \ L_k & \leftarrow \quad \text{machine i has smallest load} \\ & J(i) \leftarrow J(i) \ U \ \{j\} & \leftarrow \quad \text{assign job j to machine i} \\ & L_i \leftarrow L_i + t_j & \leftarrow \quad \text{update load of machine i} \\ \} \\ & \text{return } J(1) \ , \ \dots, \ J(m) \end{aligned} ``` Load Balancing: List Scheduling Analysis - Q. Is our analysis tight? - A. Essentially yes. Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m Load Balancing: LPT Rule ${\color{blue} \textbf{Observation.}} \ \ \textbf{If at most m jobs, then list-scheduling is optimal.}$ Pf. Each job put on its own machine. • Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$. - Consider first m+1 jobs t_1 , ..., t_{m+1} . - \blacksquare Since the t_i 's are in descending order, each takes at least t_{m+1} time. - There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. Theorem. LPT rule is a 3/2 approximation algorithm. Pf. Same basic approach as for list scheduling. #### Load Balancing: LPT Rule Q. Is our 3/2 analysis tight? A. No. Theorem. [Graham, 1969] LPT rule is a 4/3-approximation. Pf. More sophisticated analysis of same algorithm. Q. Is Graham's 4/3 analysis tight? A. Essentially yes. Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and one job of length m. #### Center Selection Problem Input. Set of n sites $s_1, ..., s_n$ and integer k > 0. Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized. # 11.2 Center Selection #### Center Selection Problem Input. Set of n sites s_1 , ..., s_n and integer k > 0. Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized. #### Notation. 13 - dist(x, y) = distance between x and y. - dist(s_i , C) = min $_{c \in C}$ dist(s_i , c) = distance from s_i to closest center. - $r(C) = \max_i dist(s_i, C) = smallest covering radius.$ Goal. Find set of centers C that minimizes r(C), subject to |C| = k. ### Distance function properties. ■ dist(x, x) = 0 (identity) ■ dist(x, y) = dist(y, x) (symmetry) ■ $dist(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality) #### Center Selection Example Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance. Remark: search can be infinite! Center Selection: Greedy Algorithm Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center. ``` Greedy-Center-Selection(k, n, s₁,s₂,...,s_n) { C = \(\phi \) repeat k times { Select a site s_i with maximum dist(s_i, C) Add s_i to C } site farthest from any center return C } ``` Observation. Upon termination all centers in \mathcal{C} are pairwise at least $r(\mathcal{C})$ apart. Pf. By construction of algorithm. ### Greedy Algorithm: A False Start Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible. Remark: arbitrarily bad! 17 # Center Selection: Analysis of Greedy Algorithm Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$. - $_{\bullet}$ For each site $c_{_{i}}$ in C, consider ball of radius $\frac{1}{2}$ r(C) around it. - Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* . - Consider any site s and its closest center c_i^* in C^* . - dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i*) + dist(c_i*, c_i) \leq 2r(C*). - Thus $r(C) \le 2r(C^*)$. $\bigwedge_{\Delta \text{-inequality}} \bigvee_{s \in r(C^*) \text{ since } c_i^* \text{ is closest center}}$ #### Center Selection Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$. Theorem. Greedy algorithm is a 2-approximation for center selection problem. Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere. e.g., points in the plane Question. Is there hope of a 3/2-approximation? 4/3? Theorem. Unless P = NP, there no ρ -approximation for center-selection problem for any ρ < 2. # Weighted Vertex Cover Weighted vertex cover. Given a graph ${\it G}$ with vertex weights, find a vertex cover of minimum weight. weight = 9 # 11.4 The Pricing Method: Vertex Cover # Pricing Method Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price $p_e \ge 0$ to use vertex i and j. Fairness. Edges incident to vertex i should pay $\leq w_i$ in total. for each vertex $$i: \sum_{e=(i,j)} p_e \le w_i$$ Lemma. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$. Pf. $$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S)$$ each edge e covered by at least one node in S ### Pricing Method Pricing method. Set prices and find vertex cover simultaneously. # Pricing Method: Analysis Theorem. Pricing method is a 2-approximation. Pf. - Algorithm terminates since at least one new node becomes tight after each iteration of while loop. - Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate. - Let S^* be optimal vertex cover. We show $w(S) \le 2w(S^*)$. $$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$ all nodes in S are tight $$5 \subseteq V,$$ prices ≥ 0 each edge counted twice fairness lemma ### Pricing Method Figure 11.8 # 11.6 LP Rounding: Vertex Cover ## Weighted Vertex Cover Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S. Weighted Vertex Cover: IP Formulation Weighted vertex cover. Integer programming formulation. (ILP) min $$\sum_{i \in V} w_i x_i$$ s.t. $x_i + x_j \ge 1$ $(i,j) \in E$ $$x_i \in \{0,1\} \quad i \in V$$ Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_i = 1\}$ is a min weight vertex cover. #### Weighted Vertex Cover: IP Formulation Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S. #### Integer programming formulation. • Model inclusion of each vertex i using a 0/1 variable x_i . $$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$ Vertex covers in 1-1 correspondence with 0/1 assignments: $S = \{i \in V : x_i = 1\}$ - Objective function: maximize Σ_i w_i x_i . - Must take either i or j: $x_i + x_j \ge 1$. #### Integer Programming INTEGER-PROGRAMMING. Given integers \mathbf{a}_{ij} and \mathbf{b}_i , find integers \mathbf{x}_j that satisfy: $$\begin{array}{rcl} \max & c^t x \\ \text{s. t.} & Ax \ge b \\ & x & \text{integral} \end{array}$$ $$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$ $$x_{j} \geq 0 \qquad 1 \leq j \leq n$$ $$x_{j} \qquad \text{integral} \quad 1 \leq j \leq n$$ Observation. Vertex cover formulation proves that integer programming is NP-hard search problem. even if all coefficients are 0/1 and at most two variables per inequality ## Linear Programming Linear programming. Max/min linear objective function subject to linear inequalities. • Input: integers c_j , b_i , a_{ij} . • Output: real numbers xi. (P) max $$c^t x$$ s.t. $Ax \ge b$ $x \ge 0$ $$\begin{array}{lll} \text{(P)} & \max & \sum\limits_{j=1}^{n} c_{j} x_{j} \\ & \text{s. t.} & \sum\limits_{j=1}^{n} a_{ij} x_{j} & \geq & b_{i} & 1 \leq i \leq m \\ & & x_{j} & \geq & 0 & 1 \leq j \leq n \end{array}$$ Linear. No x^2 , xy, arccos(x), x(1-x), etc. Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time. Weighted Vertex Cover: LP Relaxation Weighted vertex cover. Linear programming formulation. (LP) min $$\sum_{i \in V} w_i x_i$$ s.t. $x_i + x_j \ge 1$ $(i,j) \in E$ $$x_i \ge 0 \quad i \in V$$ Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints. Note. LP is not equivalent to vertex cover. Q. How can solving LP help us find a small vertex cover? A. Solve LP and round fractional values. #### LP Feasible Region #### LP geometry in 2D. ### Weighted Vertex Cover Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight. Pf. [S is a vertex cover] - Consider an edge $(i, j) \in E$. - Since $x^*_i + x^*_j \ge 1$, either $x^*_i \ge \frac{1}{2}$ or $x^*_j \ge \frac{1}{2} \implies (i, j)$ covered. Pf. [S has desired cost] • Let S* be optimal vertex cover. Then ## Weighted Vertex Cover Theorem. 2-approximation algorithm for weighted vertex cover. Theorem. [Dinur-Safra 2001] If P \neq NP, then no ρ -approximation for ρ < 1.3607, even with unit weights. Open research problem. Close the gap. 37 ### Generalized Load Balancing Input. Set of m machines M; set of n jobs J. - \blacksquare Job j must run contiguously on an authorized machine in $M_i\subseteq M.$ - Job j has processing time ti. - Each machine can process at most one job at a time. Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j\,\in\,J(i)}\, t_j.$ Def. The makespan is the maximum load on any machine = $\max_i L_i$. Generalized load balancing. Assign each job to an authorized machine to minimize makespan. # * 11.7 Load Balancing Reloaded Generalized Load Balancing: Integer Linear Program and Relaxation ILP formulation. x_{ij} = time machine i spends processing job j. $$(IP) \ \text{min} \quad L$$ $$\text{s.t.} \quad \sum_{i} x_{ij} = t_{j} \quad \text{for all } j \in J$$ $$\sum_{i} x_{ij} \leq L \quad \text{for all } i \in M$$ $$x_{ij} \in \{0, t_{j}\} \quad \text{for all } j \in J \text{ and } i \in M_{j}$$ $$x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_{j}$$ #### LP relaxation. $$(LP) \ \, \text{min} \quad L$$ $$\text{s. t.} \quad \sum_{i} x_{ij} = t_{j} \quad \text{for all } j \in J$$ $$\sum_{i} x_{ij} \leq L \quad \text{for all } i \in M$$ $$x_{ij} \geq 0 \quad \text{for all } j \in J \text{ and } i \in M_{j}$$ $$x_{ij} = 0 \quad \text{for all } j \in J \text{ and } i \notin M_{j}$$ #### Generalized Load Balancing: Lower Bounds Lemma 1. Let L be the optimal value to the LP. Then, the optimal makespan $L^* \ge L$. Pf. LP has fewer constraints than IP formulation. Lemma 2. The optimal makespan $L^* \ge \max_i t_i$. Pf. Some machine must process the most time-consuming job. • ### Generalized Load Balancing: Rounding Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r. - \blacksquare If job j is a leaf node, assign j to its parent machine i. - If job j is not a leaf node, assign j to one of its children. Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines. #### Generalized Load Balancing: Structure of LP Solution Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ii} > 0$. Then G(x) is acyclic. Pf. (deferred) can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x Generalized Load Balancing: Analysis Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf. Since i is a leaf, $x_{ij} = 0$ for all $j \neq parent(i)$. LP constraint guarantees $\Sigma_i x_{ij} = t_j$. Lemma 6. At most one non-leaf job is assigned to a machine. Pf. The only possible non-leaf job assigned to machine i is parent(i). ## Generalized Load Balancing: Analysis Theorem. Rounded solution is a 2-approximation. Pf. - Let J(i) be the jobs assigned to machine i. - By Lemma 6, the load L; on machine i has two components: ■ Thus, the overall load $L_i \le 2L^*$. ■ ### Generalized Load Balancing: Structure of Solution Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic. Pf. Let C be a cycle in G(x). - Augment flow along the cycle C. ← flow conservation maintained - At least one edge from C is removed (and none are added). - Repeat until G(x') is acyclic. 47 #### Generalized Load Balancing: Flow Formulation #### Flow formulation of LP. Observation. Solution to feasible flow problem with value L are in one-to-one correspondence with LP solutions of value L. #### Conclusions Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables. Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L^* . Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990] - Job j takes t_{ij} time if processed on machine i. - 2-approximation algorithm via LP rounding. - No 3/2-approximation algorithm unless P = NP. 40 # 11.8 Knapsack Problem ### Knapsack Problem #### Knapsack problem. - Given n objects and a "knapsack." - Item i has value $v_i > 0$ and weighs $w_i > 0$. ← we'll assume $w_i \le W$ - Knapsack can carry weight up to W. - Goal: fill knapsack so as to maximize total value. Ex: { 3, 4 } has value 40. W = 11 | Item | Value | Weight | |------|-------|--------| | 1 | 1 | 1 | | 2 | 6 | 2 | | 3 | 18 | 5 | | 4 | 22 | 6 | | 5 | 28 | 7 | #### Polynomial Time Approximation Scheme PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$. - Load balancing. [Hochbaum-Shmoys 1987] - Euclidean TSP. [Arora 1996] Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time. This section. PTAS for knapsack problem via rounding and scaling. #### Knapsack is NP-Complete KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that: $$\sum_{i \in S} w_i \leq W$$ $$\sum_{i \in S} v_i \geq V$$ SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer U, is there a subset $S\subseteq X$ whose elements sum to exactly U? Claim. SUBSET-SUM $\leq P$ KNAPSACK. Pf. Given instance $(u_1, ..., u_n, U)$ of SUBSET-SUM, create KNAPSACK instance: $$v_i = w_i = u_i$$ $\sum_{i \in S} u_i \le U$ $V = W = U$ $\sum_{i \in S} u_i \ge U$ Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w. - Case 1: OPT does not select item i. - OPT selects best of 1, ..., i-1 using up to weight limit w - Case 2: OPT selects item i. - new weight limit = w wi - OPT selects best of 1, ..., i-1 using up to weight limit w wi $$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$ Running time. O(n W). - W = weight limit. - Not polynomial in input size! ### Knapsack: FPTAS ### Intuition for approximation algorithm. - Round all values up to lie in smaller range. - Run dynamic programming algorithm on rounded instance. - Return optimal items in rounded instance. | Item | Value | Weight | |------|------------|--------| | 1 | 934,221 | 1 | | 2 | 5,956,342 | 2 | | 3 | 17,810,013 | 5 | | 4 | 21,217,800 | 6 | | 5 | 27.343.199 | 7 | Item W = 11 W = 11 7 Weight 1 original instance rounded instance Value Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v. - Case 1: OPT does not select item i. - OPT selects best of 1, ..., i-1 that achieves exactly value v - Case 2: OPT selects item i. - consumes weight wi, new value needed = v vi - OPT selects best of 1, ..., i-1 that achieves exactly value v $$OPT(i,v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i-1,v) & \text{if } v_i > v \\ \min \left\{ OPT(i-1,v), \ w_i + OPT(i-1,v-v_i) \right\} & \text{otherwise} \end{cases}$$ Running time. $O(n V^*) = O(n^2 v_{max})$. - V^* = optimal value = maximum v such that $OPT(n, v) \le W$. - Not polynomial in input size! #### Knapsack: FPTAS Knapsack FPTAS. Round up all values: $\bar{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta$, $\hat{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix}$ - v_{max} = largest value in original instance - $-\epsilon$ = precision parameter - $-\theta$ = scaling factor = $\varepsilon v_{max} / n$ Observation. Optimal solution to problems with $\overline{\nu}$ or $\hat{\nu}$ are equivalent. Intuition. $\overline{\mathcal{V}}$ close to v so optimal solution using $\overline{\mathcal{V}}$ is nearly optimal; $\hat{\mathcal{V}}$ small and integral so dynamic programming algorithm is fast. Running time. $O(n^3 / \epsilon)$. • Dynamic program II running time is $O(n^2 \, \hat{v}_{\text{max}})$, where $$\hat{v}_{\text{max}} = \left[\frac{v_{\text{max}}}{\theta} \right] = \left[\frac{n}{\varepsilon} \right]$$ ### Knapsack: FPTAS Knapsack FPTAS. Round up all values: $\overline{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta$ Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in S}v_i \geq \sum_{i\in S^*}v_i$ Pf. Let S* be any feasible solution satisfying weight constraint. $$\begin{split} \sum_{i \in S^*} v_i & \leq \sum_{i \in S^*} \overline{v}_i \\ & \leq \sum_{i \in S} \overline{v}_i \\ & \leq \sum_{i \in S} (v_i + \theta) \\ & \leq \sum_{i \in S} (v_i + \theta) \\ & \leq \sum_{i \in S} v_i + n\theta \\ & \leq (1 + \epsilon) \sum_{i \in S} v_i \end{split} \qquad \begin{aligned} & \text{always round up} \\ & \text{solve rounded instance optimally} \\ & \text{never round up by more than } \theta \\ & \leq \sum_{i \in S} v_i + n\theta \\ & \leq (1 + \epsilon) \sum_{i \in S} v_i \end{aligned}$$ 57 ### Load Balancing on 2 Machines Claim. Load balancing is hard even if only 2 machines. Pf. NUMBER-PARTITIONING \leq_{P} LOAD-BALANCE. NP-complete by Exercise 8.26 # Extra Slides # Center Selection: Hardness of Approximation Theorem. Unless P = NP, there is no ρ -approximation algorithm for metric k-center problem for any ρ < 2. Pf. We show how we could use a (2 - ϵ) approximation algorithm for k-center to solve DOMINATING-SET in poly-time. - Let G = (V, E), k be an instance of DOMINATING-SET. \leftarrow see Exercise 8.29 - Construct instance G' of k-center with sites V and distances - $d(u, v) = 2 \text{ if } (u, v) \in E$ - d(u, v) = 1 if $(u, v) \notin E$ - Note that G' satisfies the triangle inequality. - Claim: G has dominating set of size k iff there exists k centers C^* with $r(C^*) = 1$. - Thus, if G has a dominating set of size k, a (2ε) -approximation algorithm on G' must find a solution C* with $r(C^*) = 1$ since it cannot use any edge of distance 2.