Chapter 11

Approximation
Algorithms

7 -

\C\ Algonthm Design

\

PEARSON Slides by Kevin Wayne.

N JON KLEINBERG - EVA TARDOS

Wesley All rights reserved.

11.1 Load Balancing

Addison Copyright @ 2005 Pearson-Addison Wesley.

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
« Solve problem in poly-time.
« Solve arbitrary instances of the problem.

p-approximation algorithm.
« Guaranteed to run in poly-time.
« Guaranteed to solve arbitrary instance of the problem
« Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

Load Balancing

Input. m identical machines; n jobs, job j has processing time 1;.
« Job j must run contiguously on one machine.
« A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL; = X 5 1;-

Def. The makespan is the maximum load on any machine L = max; L;.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
« Consider n jobs in some fixed order. E

« Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t,,t,,..,t)) {
for i =1 tom {
L,< 0 «— load on machine i

J(i) < ¢ < |jobsassigned fo machinei

}

for j =1 ton {
i = argmin, L, <«— machine i has smallest load
J(i) <« J(i) U {Jj} <« assign job jto machinei
L; < L; + tj <«— update load of machine i

}
return J(1), .., J(m)

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
« Let j be last job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load
before assignment is L;- t; = Li-t; < L, foralll<ks=m.

blue jobs scheduled before j

}

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
« First worst-case analysis of an approximation algorithm.
= Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* = L3 1.
Pf.
= The total processing time is Z;t;.
« One of m machines must do at least a 1/m fraction of total work. =

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
« Let j belast job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = Li-t; = L, foralll<ksm.
= Sum inequalities over all k and divide by m:

~
|

~

IA

1
i j ﬁEkLk
= 1
T oom Ek tk
Lemmal _—, < L*

Lemma 2

Load Balancing: List Scheduling Analysis

Q. Isour analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

m =10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

| |
T T

v

list scheduling makespan = 19

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t;,t,,..,t)) {
Sort jobs so that t; 2 t,2 .. 2 t,
for i =1 tom {
L;< 0 <«— load on machine i

J(i) « ¢ Jjobs assigned fo machine i

}

for j =1 ton {
i = argmin, L,
J(i) <« J(i) U {3} <« assigh job j to machine i
L < L; + ty

<«— machine i has smallest load

<«— update load of machine i

}
return J(1), .., J(m)

Load Balancing: List Scheduling Analysis

Q. Isour analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more thanm jobs, L* =2t
Pf.
« Consider first m+1 jobs ti, .., t,.;.
« Since the t;'s are in descending order, each takes at least t,,; time.
« There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

m+l-

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

L= (Li-t) + t; = 3L*
e —— —
< L* = jL*
Lemma 3

(by observation, can assume number of jobs > m)

v

Load Balancing: LPT Rule

N i 3/2 analysis tight? 11.2 Center Selection

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and
one job of length m.

Center Selection Problem Center Selection Problem
Input. Set of nsites s, .., s, and integer k> 0. Input. Set of nsites s, .., s, and integer k> 0.
Center selection problem. Select k centers C so that maximum Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized. distance from a site to nearest center is minimized.
k=4 Notation.

. dist(x, y) = distance between x and y.
. dist(s;, C) = min . . dist(s;, ¢) = distance from s; to closest center.

© « r(C) = max, dist(s;, C) = smallest covering radius.
7

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

. dist(x,x)=0 (identity)

. dist(x, y) = dist(y, x) (symmetry)

. dist(x, y) = dist(x, z) + dist(z, y) (triangle inequality)

@ center
m site

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

@ centfer
m site

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Greedy-Center-Selection(k, n, s;,s,,..,5;) {

cC=¢
repeat k times {
Select a site s; with maximum dist(s;, C)
Add s; to C t
} site farthest from any center
return C

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

L |
mn"n PY mg "
gl NN
=1 greedy center 1 LI
.-
@ center
k = 2 centers m site

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*)< 3 r(C).

« For each site c; in C, consider ball of radius 3 r(C) around it.

« Exactly one ¢;* in each ball; let ¢, be the site paired with ¢*.

« Consider any site s and its closest center ¢* in C*.

« dist(s, C) = dist(s, ¢) = dist(s, ¢*) + dist(c*, ¢) = 2r(C*).

. Thusr(C) = 2r(C*). = \

A-inequality < r(C*) since ¢* is closest center

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*). 11 4 The Pr'iCing MeThOd: VCPTCX Cover.

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still

within a factor of 2 of best solution that is allowed to place centers
anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

21

Weighted Vertex Cover Pricing Method
Weighted vertex cover. Given a graph 6 with vertex weights, find a Pricing method. Each edge must be covered by some vertex.
vertex cover of minimum weight. Edge e = (i, j) pays price p, = O to use vertex i and j.

Fairness. Edges incident to vertex i should pay = w; in total.

foreach vertexi: Y p, =w,
e=(1,))

Lemma. For any vertex cover S and any fair prices p,: Y, p, = wW(S).

Pf. -
Spo= 3 Ipos Jw o= wS)
weight=2+2+4 weight = 9 ek t €5 e=lt)) t ies
each edge e covered by sum fairness inequalities

at least one node in S for each node in S

23

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E
> Pe=

W
P. = 0

1

e=(i, /) i

while (dedge i-j such that neither i nor j are tight)
select such an edge e
increase p, as much as possible until i or j tight

}

S < set of all tight nodes
return S

25

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

« Let S =set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

» Let S* be optimal vertex cover. We show w(S) < 2w(S*).

w(S) = Ewl‘ = E Epe = E Epe = ZEPe = 2w(S*). =

€S €S e=(i,j) i€V e=(i,j) ¢€EE
f f t f

all nodes in S are tight scv, each edge counted twice fairness lemma
prices = 0

27

Pricing Method

b: tight c d
(@) (b)
a: tight a: tight

price of edge a-b °
3 1
vertex weight
b: tight c d b: tight c d: tight
(c) (d)
Figure 11.8

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

10 (A 9
16 (8 10
6 H) 9
23 33
7 J) 32

total weight = 55

29

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min E w; X;
i€V
s.t. X +x; = 1 (i,)HEE
e {01} ieV

X

Observation. If x* is optimal solution to (ILP), then S={i€V: x*, =1}
is a min weight vertex cover.

31

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph 6 = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

Integer programming formulation.
« Model inclusion of each vertex i using a 0/1 variable x;.

0 if vertex i is not in vertex cover
! 1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ievVix=1}

« Objective function: maximize = w; X;.

» Must take eitherior j: x;+x; =1

Integer Programming

INTEGER-PROGRAMMING. Given integers a;; and b;, find integers x; that
satisfy:

n

max c¢'x da;x; = b lsi=sm
j=1
s.t. Ax = b X = 0 lsjsn
X integral . .
s integral 1< j=<n

J

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

even if all coefficients are 0/1 and
at most two variables per inequality

Linear Programming LP Feasible Region

Linear programming. Max/min linear objective function subject to LP geometry in 2D.
linear inequalities.
« Input: integers ¢, b;, a;;. X =0
« Output: real numbers x.. The region satisfying the inequalities
J . x120,x20
P) max c. X, 6 X1+ 2x,26
() El i 2x1+ X, 26

(P) max c'x
s.t. Ax =
x =

n
b s. t. Zaljxj = b l=i=m
0 xX; = 0 l=sj=n

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time. A %0
X, +2X,= 6
Weighted Vertex Cover: LP Relaxation Weighted Vertex Cover
Weighted vertex cover. Linear programming formulation. Theorem. If x* is optimal solution to (LP), thenS={i€eV :x*, = %}isa

vertex cover whose weight is at most twice the min possible weight.
LP) mi X
(i) it iEEVW’ & Pf. [S is a vertex cover]
s.tox +X; > 1 (,)EE «» Consider an edge (i, j) € E.
%, = 0 i€V . Since x*;+ x*; = 1, either x*;= 3 or x*; =% = (i,]) covered.
Pf. [S has desired cost]
Observation. Optimal value of (LP) is < optimal value of (ILP). «» Let S* be optimal vertex cover. Then
Pf. LP has fewer constraints. i
Swoz Iwx = L 3w

ieSs* ies ies

(NS
[N
—

Note. LP is not equivalent to vertex cover.

LP is a relaxation x* = %

Q. How can solving LP help us find a small vertex cover? z
A. Solve LP and round fractional values.

35

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3607, even with unit weights.
b\

10V5 -21

Open research problem. Close the gap.

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
» Job j must run contiguously on an authorized machine in M; C M.
» Job j has processing time t;.
« Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine iisL, = Ziein 1)

Def. The makespan is the maximum load on any machine = max; L.

Generalized load balancing. Assign each job to an authorized machine
to minimize makespan.

*11.7 Load Balancing Reloaded

37

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x; = fime machine i spends processing job .

(IP) min L
s.t. Xx; =t forall jEJ
2x; = L forallie M
J
X € {0,¢;} foralljEJandiEM,;
X = 0 foralleJandi%Mj
LP relaxation.
(LP) min L
s.t. Yx; = t; forallj€J
Yx; = L forallieM
J
x; = 0 foralljEJandiE€EM,
x; = 0 foralljEJandiE M,

39 40

Generalized Load Balancing: Lower Bounds Generalized Load Balancing: Structure of LP Solution

Lemma 1. Let L be the optimal value to the LP. Then, the optimal Lemma 3. Let x be solution to LP. Let 6(x) be the graph with an edge
makespan L* = L. from machine i to job j if x;; > 0. Then 6(x) is acyclic.
Pf. LP has fewer constraints than IP formulation.

Pf def d can transform x into another LP solution where
. (ererre) 6(x) is acyclic if LP solver doesn't return such an x

Lemma 2. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

Xij > 0]
6(x) acyclic O job 6(x) cyclic
[] machine
Generalized Load Balancing: Rounding Generalized Load Balancing: Analysis
Rounded solution. Find LP solution x where 6(x) is a forest. Root Lemma 5. If job jis aleaf node and machine i = parent(j), then x;; = t;.
forest 6(x) at some arbitrary machine node r. Pf. Sinceiis aleaf, x;; = O for all j = parent(i). LP constraint

« If job jis a leaf node, assign j to its parent machine i. guarantees X; x;; = ;. =
« If job jis not aleaf node, assign j to one of its children.
Lemma 6. At most one non-leaf job is assighed to a machine.
Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. The only possible non-leaf job assigned to machine i is parent(i). =
Pf. If job jis assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

H H

Each internal job node is) ¢ . "Each internal job node is W
assigned to an arbitrary child. | assigned to an arbitrary child

s O/Q%\O OO ¢
(O Jjob (O Job
[] machine ﬁj) - [[] machine ﬁ) 5 \

to its parent.

43 44

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
« Let J(i) be the jobs assigned to machine i.
« By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP Lemma 1 (LP is a relaxation)
Ezj = Exl-j < Exl.j < L < L*
JEJWM JEJWM JEJ T
Jj is aleaf Jjis aleaf
optimal value of LP
Lemma 2
- parent(i) loarenty = L™

« Thus, the overall load L, < 2L*. =

45

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let 6(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution (x’,
L) such that G6(x') is acyclic.

Pf. Let C be a cycle in 6(x).
. Augmen‘r ﬂOW a|on9 the cycle C. ~— flow conservation maintained
« At least one edge from C is removed (and hone are added).
« Repeat until 6(x') is acyclic.

3(}3 3(}3
6 ; 6
2 3
4 XK, > 4+ OK, >
1 5 5
4 (4 4@“%

augment along C
6(x) | 6(x)
47

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Exij = l’J for all] eJ Supply = ¢;

1

>x; = L forallieM

i

X, = 0 foralljEJandiEM; Demand = 3 4
j = 0 foralljEJandi &M,

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

46

Conclusions

Running fime. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
. Job j takes t;; time if processed on machine i.
« 2-approximation algorithm via LP rounding.
» No 3/2-approximation algorithm unless P = NP.

48

11.8 Knapsack Problem

Knapsack Problem

Knapsack problem.

« Given n objects and a "knapsack."

. Itemihas value v; > 0 and weighs w;> 0. «— we'llassumew, < W
« Knapsack can carry weight up to W.

« Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1 1
2 6 2
LA 3 18 5
4 22 6
5 28 7

51

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant € > 0.
« Load balancing. [Hochbaum-Shmoys 1987]
« Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

50

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, honnegative weights w,, nonnegative
values v;, a weight limit W, and a target value V, is there a subset S C X
such that:

E w, = W

i€S

Evi > V

€S

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S C X whose elements sum to exactly U?

Claim. SUBSET-SUM = , KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:

V.=w, =U, S ou; U
i€s
V=W=U S u;

ies

A

[\

52

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
« Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 using up to weight limit w
« Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if i=0
OPT(i,w)=4 OPT(i-1,w) if w;>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

Running ftime. O(n W).
« W = weight limit.
» Not polynomial in input sizel

Knapsack: FPTAS

Intuition for approximation algorithm.
« Round all values up to lie in smaller range.
= Run dynamic programming algorithm on rounded instance.
« Refurn optimal items in rounded instance.

1 934,221 1 1 1 1

2 5,956,342 2 2 6 2

3 17,810,013 5) 3 18 5

4 21,217,800 6 4 22 6

5 27,343,199 7 5 28 7
w=11 W= 11

original instance rounded instance

53

55

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0
9 if i=0,v>0
OPT(i,v)= . .
OPT(i-1,v) if vi>v

min{ OPT(i-1,v), w;+ OPT(i-1,v-v;) } otherwise

V¥ = Vo

I
Running time. O(n V*) = O(n2 v,).
« V* = optimal value = maximum v such that OPT(n, v) = W.
« Not polynomial in input sizel

54

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: \7,-=[V’W 0, ¥ =[’
- Vnax = largest value in original instance
- & = precision parameter
-8 = scaling factor=e v, /n

Observation. Optimal solution o problems with V or V are equivalent.

Intuition. V close to v so optimal solution using Vis nearly optimal;
¥ small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ¢).
. Dynamic program II running time is O(n*

P = [%1 =[H

where

max) ’

56

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, = [%l 0

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution then (1+&)> v, = Y v,
i€ES i€ S*

Pf. Let S* be any feasible solution satisfying weight constraint.

= always round up
Svio= 3V
i€ §* i€ s*
_ solve rounded instance optimall
= Y P Y
ies
< E (v;+ 0) never round up by more than 6
ies
<= Sv,+ nb ISl <n
i€S DP alg can take v,
= (l+¢) E Vi N0 = €Vige Vimax S Zies Vi

i€S

57

Load Balancing on 2 Machines
Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING < , LOAD-BALANCE.

NP-complete by Exercise 8.26

e f g
o _/
length of job f

machine 1 a d f
yes

machine 2 b c e g

v

O
—

Time

59

Extra Slides

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - &) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
« Let G =(V, E), k beaninstance of DOMINATING-SET. «— see Exercise 8.29
« Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (u,v)EE
-d(u,v)=1if (u,v)¢E
» Note that 6' satisfies the triangle inequality.
« Claim: G has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
« Thus, if 6 has a dominating set of size k, a (2 - &)-approximation
algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

60

