Chapter 10
Extending the Limits of Tractability
Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.
10.1 Finding Small Vertex Covers
Vertex Cover

VERTEX COVER: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

$k = 4$

$S = \{3, 6, 7, 10\}$
Finding Small Vertex Covers

Q. What if \(k \) is small?

Brute force. \(O(k \, n^{k+1}) \).
- Try all \(C(n, k) = O(n^k) \) subsets of size \(k \).
- Takes \(O(k \, n) \) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on \(k \), e.g., to \(O(2^k \, k \, n) \).

Ex. \(n = 1,000, k = 10 \).
Brute. \(k \, n^{k+1} = 10^{34} \Rightarrow \) infeasible.
Better. \(2^k \, k \, n = 10^7 \Rightarrow \) feasible.

Remark. If \(k \) is a constant, algorithm is poly-time; if \(k \) is a small constant, then it's also practical.
Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size ≤ k iff at least one of G - {u} and G - {v} has a vertex cover of size ≤ k-1.

Pf. ⇒
- Suppose G has a vertex cover S of size ≤ k.
- S contains either u or v (or both). Assume it contains u.
- S - {u} is a vertex cover of G - {u}.

Pf. ⇐
- Suppose S is a vertex cover of G - {u} of size ≤ k-1.
- Then S ∪ {u} is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has ≤ k(n-1) edges.
Pf. Each vertex covers at most n-1 edges.
Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

```java
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains $\geq kn$ edges) return false

    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.
- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $O(kn)$ time.
Finding Small Vertex Covers: Recursion Tree

\[T(n, k) \leq \begin{cases}
 c & \text{if } k = 0 \\
 cn & \text{if } k = 1 \\
 2T(n, k-1) + ckn & \text{if } k > 1
\end{cases} \Rightarrow T(n, k) \leq 2^k cn \]
10.2 Solving NP-Hard Problems on Trees
Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)
- Consider a max cardinality independent set S.
- If $v \in S$, we're done.
 - If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum.
 - IF $u \in S$ and $v \notin S$, then $S \cup \{v\} - \{u\}$ is independent. □
Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S ← Ø
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes u and v, and all edges incident to them.
    }
    return S
}
```

Pf. Correctness follows from the previous key observation. □

Remark. Can implement in $O(n)$ time by considering nodes in postorder.
Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
- $OPT_{in}(u) = \max$ weight independent set of subtree rooted at u, containing u.
- $OPT_{out}(u) = \max$ weight independent set of subtree rooted at u, not containing u.

$$OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)$$

$$OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max \{OPT_{in}(v), OPT_{out}(v)\}$$

children(u) = \{ v, w, x \}
Weighted Independent Set on Trees: Dynamic Programming Algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in $O(n)$ time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node \( r \)
    foreach (node \( u \) of \( T \) in postorder) {
        if \( (u \) is a leaf) {
            \( M_{\text{in}}[u] = w_u \)
            \( M_{\text{out}}[u] = 0 \)
        }
        else {
            \( M_{\text{in}}[u] = w_u + \sum_{v \in \text{children}(u)} M_{\text{out}}[v] \)
            \( M_{\text{out}}[u] = \sum_{v \in \text{children}(u)} \max(M_{\text{in}}[v], M_{\text{out}}[v]) \)
        }
    }
    return \( \max(M_{\text{in}}[r], M_{\text{out}}[r]) \)
}
```

Pf. Takes $O(n)$ time since we visit nodes in postorder and examine each edge exactly once. □ can also find independent set itself (not just value)
Context

Independent set on trees. This structured special case is tractable because we can find a node that *breaks the communication* among the subproblems in different subtrees.

![Diagram of a tree with a node u breaking communication](image1)

Graphs of bounded tree width. Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.
10.3 Circular Arc Coloring
Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows \(m \) communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on \(n \) nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if \(k \) colors suffice in \(O(k^m) \) time by trying all \(k \)-colorings.

Goal. \(O(f(k)) \cdot \text{poly}(m, n) \) on rings.
Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^m)$ time by trying all k-colorings.

Goal. $O(f(k)) \cdot \text{poly}(m, n)$ on rings.
Review: Interval Coloring

Interval coloring. *Greedy algorithm finds coloring such that number of colors equals depth of schedule.*

Circular arc coloring.
- Weak duality: number of colors \geq depth.
- Strong duality does not hold.

```
 max depth = 2
 min colors = 3
```
(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring. Given a set of n arcs with depth \(d \leq k \), can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes \(v_1 \) and \(v_n \). The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.
Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v_0.
- At each node v_i, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1}.
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

![Diagram of circular arc coloring]
Circular Arc Coloring: Running Time

Running time. $O(k! \cdot n)$.
- n phases of the algorithm.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_i, so there are at most $k!$ colorings to consider.

Remark. This algorithm is practical for small values of k (say $k = 10$) even if the number of nodes n (or paths) is large.
Extra Slides
Vertex Cover in Bipartite Graphs
Vertex cover. Given an undirected graph \(G = (V, E) \), a vertex cover is a subset of vertices \(S \subseteq V \) such that for each edge \((u, v) \in E\), either \(u \in S \) or \(v \in S \) or both.

\[
S = \{3, 4, 5, 1', 2'\} \quad |S| = 5
\]
Vertex Cover

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq |S|$.

Pf. Each vertex can cover at most one edge in any matching.
König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

\[S^* = \{3, 1', 2', 5'\} \]
\[|S^*| = 4 \]

\[M^* = 1-1', 2-2', 3-3', 5-5' \]
\[|M^*| = 4 \]
König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.
- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
- Define $L_A = L \cap A, L_B = L \cap B, R_A = R \cap A, R_B = R \cap B$.

Claim 1. $S = L_B \cup R_A$ is a vertex cover.
- consider $(u, v) \in E$
- $u \in L_A, v \in R_B$ impossible since infinite capacity
- thus, either $u \in L_B$ or $v \in R_A$ or both

Claim 2. $|S| = |M|$.
- max-flow min-cut theorem $\Rightarrow |M| = \text{cap}(A, B)$
- only edges of form (s, u) or (v, t) contribute to $\text{cap}(A, B)$
- $|M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|$. \[\square\]
Register Allocation
Register Allocation

Register. One of k of high-speed memory locations in computer's CPU. say 32

Register allocator. Part of an optimizing compiler that controls which variables are saved in the registers as compiled program executes.

Interference graph. Nodes are "live ranges." Edge u-v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin, 1982] Can solve register allocation problem iff interference graph is k-colorable.

Spilling. If graph is not k-colorable (or we can't find a k-coloring), we "spill" certain variables to main memory and swap back as needed.

typically infrequently used variables that are not in inner loops
A Useful Property

Remark. Register allocation problem is NP-hard.

Key fact. If a node \(v \) in graph \(G \) has fewer than \(k \) neighbors, \(G \) is \(k \)-colorable iff \(G - \{ v \} \) is \(k \)-colorable.

Pf. Delete node \(v \) from \(G \) and color \(G - \{ v \} \).
 - If \(G - \{ v \} \) is not \(k \)-colorable, then neither is \(G \).
 - If \(G - \{ v \} \) is \(k \)-colorable, then there is at least one remaining color left for \(v \).

\[\text{delete } v \text{ and all incident edges} \]

\[k = 2 \]
\[G \text{ is } 2\text{-colorable even though all nodes have degree } 2 \]
Chaitin's Algorithm

\begin{algorithm}
\textbf{Vertex-Color}(G, k) \{
 \textbf{while} (G is not empty) \{
 Pick a node \(v \) with fewer than \(k \) neighbors
 \textbf{Push} \(v \) on stack
 \textbf{Delete} \(v \) and all its incident edges
 \}
 \textbf{while} (stack is not empty) \{
 \textbf{Pop} next node \(v \) from the stack
 \textbf{Assign} \(v \) a color different from its neighboring nodes which have already been colored
 \}
\}
\end{algorithm}
Chaitin's Algorithm

Theorem. [Kempe 1879, Chaitin 1982] Chaitin's algorithm produces a \(k \)-coloring of any graph with max degree \(k-1 \).

Pf. Follows from key fact since each node has fewer than \(k \) neighbors.

Remark. If algorithm never encounters a graph where all nodes have degree \(\geq k \), then it produces a \(k \)-coloring.

Practice. Chaitin's algorithm (and variants) are extremely effective and widely used in real compilers for register allocation.