Geography Game

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue. Does Alice have a forced win?

Ex. Budapest → Tokyo → Ottawa → Ankara → Amsterdam → Moscow → Washington → Nairobi → ...

Geography on graphs. Given a directed graph $G = (V, E)$ and a start node s, two players alternate turns by following, if possible, an edge out of the current node to an unvisited node. Can first player guarantee to make the last legal move?

Remark. Some problems (especially involving 2-player games and AI) defy classification according to P, EXPTIME, NP, and NP-complete.

9.1 PSPACE

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. $P \subseteq PSPACE$.

poly-time algorithm can consume only polynomial space
Binary counter. Count from 0 to \(2^n - 1\) in binary.

Algorithm. Use \(n\) bit odometer.

Claim. 3-SAT is in PSPACE.

Pf.

- Enumerate all \(2^n\) possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem. \(NP \subseteq PSPACE\).

Pf. Consider arbitrary problem \(Y\) in \(NP\).

- Since \(Y \leq 3\text{-SAT}\), there exists algorithm that solves \(Y\) in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement black box in poly-space.

Quantified Satisfiability

QSAT. Let \(\Phi(x_1, \ldots, x_n)\) be a Boolean CNF formula. Is the following propositional formula true?

\[
\exists x_1 \, \forall x_2 \, \exists x_3 \, \forall x_4 \, \ldots \, \forall x_{n-1} \, \exists x_n \, \Phi(x_1, \ldots, x_n)
\]

Assume \(n\) is odd

Intuition. Amy picks truth value for \(x_1\), then Bob for \(x_2\), then Amy for \(x_3\), and so on. Can Amy satisfy \(\Phi\) no matter what Bob does?

Ex. \((x_1 \lor x_2) \land (x_2 \lor \neg x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3)\)

Yes. Amy sets \(x_1\) true; Bob sets \(x_2\); Amy sets \(x_3\) to be same as \(x_2\).

Ex. \((x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)\)

No. If Amy sets \(x_1\) false; Bob sets \(x_2\) false; Amy sets \(x_3\) false; if Amy sets \(x_1\) true; Bob sets \(x_2\) true; Amy loses.

QSAT is in PSPACE

Theorem. QSAT \(\in PSPACE\).

Pf. Recursively try all possibilities.

- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.
9.4 Planning Problem

Conditions. Set \(C = \{ C_1, \ldots, C_n \} \).

Initial configuration. Subset \(c_0 \subseteq C \) of conditions initially satisfied.

Goal configuration. Subset \(c^* \subseteq C \) of conditions we seek to satisfy.

Operators. Set \(O = \{ O_1, \ldots, O_k \} \).
- To invoke operator \(O_i \), must satisfy certain prereq conditions.
- After invoking \(O_i \), certain conditions become true, and certain conditions become false.

Planning Problem. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.
- 15-puzzle.
- Rubik’s cube.
- Logistical operations to move people, equipment, and materials.

Planning Problem: 8-Puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. \(C_{ij} \), \(1 \leq i, j \leq 9 \). \(\leftarrow \) \(C_{ij} \) means tile \(i \) is in square \(j \)

Initial state. \(c_0 = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99} \} \)

Goal state. \(c^* = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99} \} \)

Operators.
- Precondition to apply \(O_i = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99} \} \).
- After invoking \(O_i \), conditions \(C_{77} \) and \(C_{99} \) become true.
- After invoking \(O_i \), conditions \(C_{77} \) and \(C_{99} \) become false.

Solution. No solution to 8-puzzle or 15-puzzle!
8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).

![8-Puzzle State Transition]

3 inversions: 1-3, 2-3, 7-8

5 inversions: 1-3, 2-3, 7-8, 5-8, 5-6

3 inversions: 1-3, 2-3, 7-8

1 inversion: 7-8

Planning Problem: Binary Counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Conditions. $C_1, ..., C_n$. C_i corresponds to bit $i = 1$

Initial state. $C_0 = \phi$. All 0s

Goal state. $c^* = \{C_1, ..., C_n\}$. All 1s

Operators. $O_1, ..., O_n$.

- To invoke operator O_i, must satisfy $C_1, ..., C_{i-1}$.
- After invoking O_i, condition C_i becomes true.
- After invoking O_i, conditions $C_1, ..., C_{i-1}$ become false.

Solution. $\{\} \Rightarrow \{C_1\} \Rightarrow \{C_2\} \Rightarrow \{C_1, C_2\} \Rightarrow \{C_3\} \Rightarrow \{C_3, C_1\} \Rightarrow ...$

Observation. Any solution requires at least $2^n - 1$ steps.

Planning Problem: In Exponential Space

Configuration graph G.
- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c'' if one of the operators can convert from c' to c''.

PLANNING. Is there a path from c_0 to c^* in configuration graph?

Claim. PLANNING is in EXPTIME.

Pf. Run BFS to find path from c_0 to c^* in configuration graph.

Note. Configuration graph can have 2^n nodes, and shortest path can be of length $= 2^n - 1$.

Planning Problem: In Polynomial Space

Theorem. PLANNING is in PSPACE.

Pf.
- Suppose there is a path from c_1 to c_2 of length L.
- Path from c_1 to midpoint and from c_2 to midpoint are each $\leq L/2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion $= \log_2 L$.

```java
boolean hasPath(c1, c2, L) {
    if (L > 1) return correct answer
    enumerate using binary counter

    foreach configuration c' {
        boolean x = hasPath(c1, c', L/2)
        boolean y = hasPath(c2, c', L/2)
        if (x and y) return true
    }
    return false
}
```
9.5 PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) for every problem X in PSPACE, $X \leq_p Y$.

Theorem. PSPACE \subseteq EXPTIME.

Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete.

Summary. $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$.

It is known that $P \neq EXPTIME$, but unknown which inclusion is strict; conjectured that all are.

PSPACE-Complete Problems

More PSPACE-complete problems.
- **Competitive facility location.**
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Competitive Facility Location

Input. Graph with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Yes if B = 20; no if B = 25.
Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

- To solve in poly-space, use recursion like QSAT, but at each step there are up to n choices instead of 2.
- To show that it’s complete, we show that QSAT polynomial reduces to it. Given an instance of QSAT, we construct an instance of COMPETITIVE-FACILITY such that player 2 can force a win iff QSAT formula is true.

Construction. Given instance $\Phi(x_1, ..., x_n) = C_1 \land C_1 \land ... C_k$ of QSAT.

- Include a node for each literal and its negation and connect them.
- Choose $c \geq k+2$, and put weight c^i on literal x^i and its negation; set $B = c^{n-1} + c^{n-3} + ... + c^4 + c^2 + 1$.
- Ensures variables are selected in order $x_n, x_{n-1}, ..., x_1$.
- As is, player 2 will lose by 1 unit: $c^{n-1} + c^{n-3} + ... + c^4 + c^2$.

Assume n is odd.