N\ Algorhm Desip

]\ JON KLEINBERG - EVA TARDOS

Chapter 7

Network Flow

PEARSON Slides by Kevin Wayne.

—= . Copyright © 2005 Pearson-Addison Wesley.

Addis?“b!s‘ley All rights reserved.

*7.13 Assignment Problem

Assighment Problem

Assignment problem.
. Input: weighted, complete bipartite graph 6 = (L U R, E)
with [L| = [R].
« Goal: find a perfect matching of min weight.

' . R Min cost perfect matching
2 4 10 . 16 14 M={1_21’2_3|,3_5.I4_1.’5_4,}
11 19. cost(M)=8+7+10+8+11=44

.13 12 20 13
s s

Applications

Natural applications.

Match jobs to machines.
Match personnel to tasks.
Match PU students to writing seminars.

Non-obvious applications.

Vehicle routing.

Signal processing.

Virtual output queueing.

Multiple object tracking.

Approximate string matching.

Enhance accuracy of solving linear systems of equations.

Bipartite Matching

Bipartite matching. Can solve via reduction to max flow.

Flow. During Ford-Fulkerson, all capacities and flows are 0/1. Flow
corresponds to edges in a matching M.

Residual graph 6,, simplifies to:
« If (x,y) € M, then (x,y) isin G,,.
« If (x,y) €E M, the (y, x) is in G,,.

Augmenting path simplifies to:
. Edge from s to an unmatched node x € X.
. Alternating sequence of unmatched and matched edges.
. Edge from unmatched nodey €Y to t.

Alternating Path

Alternating path. Alternating sequence of unmatched and matched
edges, from unmatched node x € X to unmatched nodey €Y.

©

O O O

© O O

@---

matching M alternating path matching M’

9

Assighment Problem: Successive Shortest Path Algorithm

Cost of an alternating path. Pay c(x, y) fo match x-y: receive c(x, y) to
unmatch x-y.

cost(2-1)=7
cost(2-2'-1-1)=2-6+10:=6

Shortest alternating path. Alternating path from any unmatched node
x € X to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
« Start with empty matching.
. Repeatedly augment along a shortest alternating path.

Finding The Shortest Alternating Path

Shortest alternating path. Corresponds to shortest s-t path in G,,.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G,, contains no
negative cycles = compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cost
cycles) = compute using Dijkstra.

Equivalent Assignment Problem

Duality intuition. Adding (or subtracting) a constant to every entry in
row X or columny does not change the min cost perfect matching(s).

3 8 9 . 10

4 10 7 . 14 subtract 11 from
column 4

9 13 1 10 -

o O M w
—
w
—
—
—
o

8 13 12

Equivalent Assignment Problem

Duality intuition. Adding p(x) tfo row x and subtracting p(y) from row y
does not change the min cost perfect matching(s).

—
o
(&)

11 19.

.13 12 20 13
;s il 5
11 19 13

|

(@)

10

Reduced Costs

Reduced costs. For x € X,y €Y, define cP(x, y) = p(x) + c(x, y) - p(y).

Observation 1. Finding a min cost perfect matching with reduced costs
is equivalent to finding a min cost perfect matching with original costs.

—
o
(&)

11 19.

.13 12 20 13
;s il 5
11 19 13

|

(@)

1

Compatible Prices

Compatible prices. For each node v, maintain prices p(v) such that:
« (i) cP(x,y)=0 for forall (x,y) & M.
« (ii) cP(x,y) =0 for forall (x,y) € M.

Observation 2. If p are compatible prices for a perfect matching M,
then M is a min cost perfect matching.

c(x,y)

—
o
(&)

|

11 19 .
. 13 12 20 13
5 . 9 8
11 19 13
cost(M) = =, e m c(X, y) (8+7+10+8+11) = 44

cost(M) = Z, oy p(y) - Z,ex p(X) = (8+13+11+19+13) - (5+4+3+0+8) = 44

12

(@)

Successive Shortest Path Algorithm

Successive shortest path.

Successive-Shortest-Path (X, Y, c) {
M < ¢
foreach x € X: p(x) < 0 ppcmmmﬁue
foreach y € ¥: p(y) < min_ .., , c(e) A 6 ¢
while (M is not a perfect matching) ({
Compute shortest path distances d
P < shortest alternating path using costs cP
M < updated matching after augmenting along P
foreach v € X U Y: p(v) < p(v) + d(v)
}

return M

Maintaining Compatible Prices

Lemma 1. Let p be compatible prices for matching M. Let d be
shortest path distances in 6,, with costs cP. All edges (x, y) on shortest
paTh have CP+d(X, Y) = 0. forvT/ard or reverse edges
Pf. Let (x,y) be some edge on shortest path.
. If (x,y) € M, then (y, x) on shortest path and d(x) = d(y) - cP(x, y).
If (x,y) & M, then (x, y) on shortest path and d(y) = d(x) + cP(x, y).
« Ineither case, d(x) + cP(x,y) - d(y) = O.
« By definition, cP(x, y) = p(x) + c(x, y) - p(y).
. Substituting for cP(x, y) yields:
(p(x) + d(x)) + c(x, y) - (ply) + d(y)) = O.
« Inother words, cP*d(x,y)=0. =

Reduced costs: cP(x, y) = p(x) + c(x, y) - p(y).

14

Maintaining Compatible Prices

Lemma 2. Let p be compatible prices for matching M. Let d be
shortest path distances in G,, with costs cP. Thenp' = p + d are also
compatible prices for M.

Pf. (x,y)EM
« (v, x) is the only edge entering x in G,,. Thus, (y, x) on shortest path.
. Bylemmal, cr9(x,y)=0.

Pf. (x,y) &M
« (x,y)isanedge inG,, = d(y) = d(x) + cpP(x, y).
« Substituting cP(x, y) = p(x) + c(x, y) - p(y) = O yields

(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) = O.
- Inother words, cP*d(x,y)=0. =

Compatible prices. For each node v:

(i) cP(x,y)=0 for forall (x,y) & M.
(ii) cP(x,y) =0 for forall (x,y) E M.

15

Maintaining Compatible Prices

Lemma 3. Let M' be matching obtained by augmenting along a min cost
path with respect to cP*d. Thenp' = p + d is compatible with M".

Pf.
. By Lemma 2, the prices p + d are compatible for M.
. Since we augment along a min cost path, the only edges (x, y) that
swap into or out of the matching are on the shortest path.
. By Lemma 1, these edges satisfy cP*d(x, y) = O.
« Thus, compatibility is maintained. =

Compatible prices. For each node v:

(i) cP(x,y)=0 for forall (x,y) & M.
(ii) cP(x,y) =0 for forall (x,y) E M.

16

Successive Shortest Path: Analysis

Invariant. The algorithm maintains a matching M and compatible prices

p.
Pf. Follows from Lemmas 2 and 3 and initial choice of prices. =

Theorem. The algorithm returns a min cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible
prices. Optimality follows from Observation 2. =

Theorem. The algorithm can be implemented in O(n3) time.
Pf.
. Each iteration increases the cardinality of M by 1 = n iterations.
. Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n?) time
using (dense) Dijkstra. =

17

Weighted Bipartite Matching

Weighted bipartite matching. Given weighted bipartite graph, find

maximum cardinality matching of minimum weight. m edges, n nodes

Successive shortest path algorithm. O(mn log n) time using heap-based
version of Dijkstra's algorithm.

Best known bounds. O(mn!/2) deterministic; O(nh237¢) randomized.

Planar weighted bipartite matching. O(n3/2log®n).

18

Input Queued Switching

Input-queued switch.

Input-Queued Switching

« ninputs and n outputs in an n-by-n crossbar layout.
. At most one cell can depart an input at a time.
. At most one cell can arrive at an output at a time.

. Cell arrives at input x and must be routed to outputy.

inputs

Xl O O O
XZ D)
X3 D)

Y1 Y2 Y3

outputs

20

Input-Queued Switching

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL).
. A cell can be blocked by a cell queued ahead of it that is destined
for a different output.
. Can limit throughput to 58%, even when arrivals are uniform.

| lelwlv] X o o o

FIFO T1Th x, > > 0
| Inlylvsl g o o o

Y1 Y2 Y3

outputs

Input-Queued Switching

Virtual output queueing (VOQ). Each input x maintains n queue of cells,
one for each output y.

Maximum size matching. Find a max cardinality matching.
. Achieves 100% when arrivals are uniform.
. Can starve input-queues when arrivals are non-uniform.

EEET
Chebebd
1 bl

[T TT]
VOQ bl
el

[Tvelvoly] X3 Q O o
[[T Ty

O
O
O

NX
)
A\
A\

Y1 Y2 Y3

outputs

Input-Queued Switching

Max weight matching. Find a min cost perfect matching between inputs
x and outputs y, where c(x, y) equals:

. [LQF] The number of cells waiting to go from input x to outputy.

. [OCF] The waiting time of the cell at the head of VOQ from x toy.

Theorem. LQF and OCF achieve 100% throughput if arrivals are
independent.

Practice.
. Too slow in practice for this application; difficult to implement in
hardware. Provides theoretical framework.
« Use maximal (weighted) matching = 2-approximation.

Reference: http://robotics.eecs.berkeley.edu/~wlr/Papers/ AMMW.pdf

23

