* 7.13 Assignment Problem
Assignment Problem

Assignment problem.
- Input: weighted, complete bipartite graph \(G = (L \cup R, E) \) with \(|L| = |R| \).
- Goal: find a perfect matching of min weight.

Min cost perfect matching
\(M = \{ 1-2', 2-3', 3-5', 4-1', 5-4' \} \)
\(\text{cost}(M) = 8 + 7 + 10 + 8 + 11 = 44 \)
Applications

Natural applications.
- Match jobs to machines.
- Match personnel to tasks.
- Match PU students to writing seminars.

Non-obvious applications.
- Vehicle routing.
- Signal processing.
- Virtual output queueing.
- Multiple object tracking.
- Approximate string matching.
- Enhance accuracy of solving linear systems of equations.
Bipartite matching. Can solve via reduction to max flow.

Flow. During Ford-Fulkerson, all capacities and flows are 0/1. Flow corresponds to edges in a matching M.

Residual graph G_M simplifies to:
- If $(x, y) \notin M$, then (x, y) is in G_M.
- If $(x, y) \in M$, then (y, x) is in G_M.

Augmenting path simplifies to:
- Edge from s to an unmatched node $x \in X$.
- Alternating sequence of unmatched and matched edges.
- Edge from unmatched node $y \in Y$ to t.
Alternating Path

Alternating path. Alternating sequence of unmatched and matched edges, from unmatched node $x \in X$ to unmatched node $y \in Y$.

![Graph showing alternating path, matching M, alternating path, matching M']
Cost of an alternating path. Pay $c(x, y)$ to match x-y; receive $c(x, y)$ to unmatch x-y.

Shortest alternating path. Alternating path from any unmatched node $x \in X$ to any unmatched node $y \in Y$ with smallest cost.

Successive shortest path algorithm.
- Start with empty matching.
- Repeatedly augment along a shortest alternating path.
Finding The Shortest Alternating Path

Shortest alternating path. Corresponds to shortest s-t path in G_M.

![Graph](image)

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G_M contains no negative cycles \Rightarrow compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cost cycles) \Rightarrow compute using Dijkstra.
Duality intuition. Adding (or subtracting) a constant to every entry in row \(x \) or column \(y \) does not change the min cost perfect matching(s).

Equivalent Assignment Problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>7</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>11</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>12</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

subtracted 11 from column 4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
Duality intuition. Adding $p(x)$ to row x and subtracting $p(y)$ from row y does not change the min cost perfect matching(s).
Reduced costs. For $x \in X$, $y \in Y$, define $c^p(x, y) = p(x) + c(x, y) - p(y)$.

Observation 1. Finding a min cost perfect matching with reduced costs is equivalent to finding a min cost perfect matching with original costs.

<table>
<thead>
<tr>
<th>$c(x, y)$</th>
<th>$c^p(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 8 9 15 10</td>
<td>0 0 3 1 2</td>
</tr>
<tr>
<td>4 10 7 16 14</td>
<td>0 1 0 1 5</td>
</tr>
<tr>
<td>9 13 11 19 10</td>
<td>4 3 3 3</td>
</tr>
<tr>
<td>8 13 12 20 13</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>1 7 5 11 9</td>
<td>1 2 2</td>
</tr>
<tr>
<td>8 13 11 19 13</td>
<td>9 + 8 - 13</td>
</tr>
</tbody>
</table>
Compatible Prices

Compatible prices. For each node \(v \), maintain prices \(p(v) \) such that:

- (i) \(c_p(x, y) \geq 0 \) for all \((x, y) \notin M \).
- (ii) \(c_p(x, y) = 0 \) for all \((x, y) \in M \).

Observation 2. If \(p \) are compatible prices for a perfect matching \(M \), then \(M \) is a min cost perfect matching.

\[
\begin{array}{cccccc}
3 & 8 & 9 & 15 & 10 & \text{cost}(M) = \sum_{(x, y) \in M} c(x, y) = (8+7+10+8+11) = 44 \\
4 & 10 & 7 & 16 & 14 & \\
9 & 13 & 11 & 19 & 10 & \\
8 & 13 & 12 & 20 & 13 & \\
1 & 7 & 5 & 11 & 9 & \\
8 & 13 & 11 & 19 & 13 & \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 0 & 3 & 1 & 2 & \text{cost}(M) = \sum_{y \in Y} p(y) - \sum_{x \in X} p(x) = (8+13+11+19+13) - (5+4+3+0+8) = 44 \\
0 & 1 & 0 & 1 & 5 & \\
4 & 3 & 3 & 3 & 0 & \\
0 & 0 & 1 & 1 & 0 & \\
1 & 2 & 2 & 0 & 4 & \\
\end{array}
\]
Successive Shortest Path Algorithm

Successive shortest path.

Successive-Shortest-Path(X, Y, c) {
 $M \leftarrow \phi$
 foreach $x \in X$: $p(x) \leftarrow 0$
 foreach $y \in Y$: $p(y) \leftarrow \min_{e \text{ into } y} c(e)$

 while (M is not a perfect matching) {
 Compute shortest path distances d
 $P \leftarrow$ shortest alternating path using costs c^P
 $M \leftarrow$ updated matching after augmenting along P
 foreach $v \in X \cup Y$: $p(v) \leftarrow p(v) + d(v)$
 }
 return M
}
Lemma 1. Let p be compatible prices for matching M. Let d be shortest path distances in G_M with costs c_p. All edges (x, y) on shortest path have $c_{p+d}(x, y) = 0$.

Pf. Let (x, y) be some edge on shortest path.
- If $(x, y) \in M$, then (y, x) on shortest path and $d(x) = d(y) - c_p(x, y)$.
 - If $(x, y) \notin M$, then (x, y) on shortest path and $d(y) = d(x) + c_p(x, y)$.
- In either case, $d(x) + c_p(x, y) - d(y) = 0$.
- By definition, $c_p(x, y) = p(x) + c(x, y) - p(y)$.
- Substituting for $c_p(x, y)$ yields:
 $(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) = 0$.
- In other words, $c_{p+d}(x, y) = 0$. □

Reduced costs: $c_p(x, y) = p(x) + c(x, y) - p(y)$.

Maintaining Compatible Prices
Lemma 2. Let p be compatible prices for matching M. Let d be shortest path distances in G_M with costs c_p. Then $p' = p + d$ are also compatible prices for M.

Pf. $(x, y) \in M$
- (y, x) is the only edge entering x in G_M. Thus, (y, x) on shortest path.
- By Lemma 1, $c_{p+d}(x, y) = 0$.

Pf. $(x, y) \notin M$
- (x, y) is an edge in $G_M \Rightarrow d(y) \leq d(x) + c_p(x, y)$.
- Substituting $c_p(x, y) = p(x) + c(x, y) - p(y) \geq 0$ yields $(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) \geq 0$.
- In other words, $c_{p+d}(x, y) \geq 0$. □

Compatible prices. For each node v:
(i) $c_p(x, y) \geq 0$ for all $(x, y) \notin M$.
(ii) $c_p(x, y) = 0$ for all $(x, y) \in M$.

Maintaining Compatible Prices
Lemma 3. Let M' be matching obtained by augmenting along a min cost path with respect to c^{p+d}. Then $p' = p + d$ is compatible with M'.

Pf.
- By Lemma 2, the prices $p + d$ are compatible for M.
- Since we augment along a min cost path, the only edges (x, y) that swap into or out of the matching are on the shortest path.
- By Lemma 1, these edges satisfy $c^{p+d}(x, y) = 0$.
- Thus, compatibility is maintained. ▪

Compatible prices. For each node v:
(i) $c^p(x, y) \geq 0$ for all $(x, y) \not\in M$.
(ii) $c^p(x, y) = 0$ for all $(x, y) \in M$.

Maintaining Compatible Prices

Pf. Follows from Lemmas 2 and 3 and initial choice of prices.

Theorem. The algorithm returns a min cost perfect matching.

Pf. Upon termination M is a perfect matching, and p are compatible prices. Optimality follows from Observation 2.

Theorem. The algorithm can be implemented in $O(n^3)$ time.

Pf.
- Each iteration increases the cardinality of M by 1 \Rightarrow n iterations.
- Bottleneck operation is computing shortest path distances d.

 Since all costs are nonnegative, each iteration takes $O(n^2)$ time
 using (dense) Dijkstra.
Weighted Bipartite Matching

Weighted bipartite matching. Given weighted bipartite graph, find maximum cardinality matching of minimum weight.

Successive shortest path algorithm. $O(mn \log n)$ time using heap-based version of Dijkstra's algorithm.

Best known bounds. $O(n^{1/2})$ deterministic; $O(n^{2.376})$ randomized.

Planar weighted bipartite matching. $O(n^{3/2} \log^5 n)$.
Input Queued Switching
Input-Queued Switching

Input-queued switch.
- n inputs and n outputs in an n-by-n crossbar layout.
- At most one cell can depart an input at a time.
- At most one cell can arrive at an output at a time.
- Cell arrives at input x and must be routed to output y.
Input-Queued Switching

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL).
- A cell can be blocked by a cell queued ahead of it that is destined for a different output.
- Can limit throughput to 58%, even when arrivals are uniform.
Input-Queued Switching

Virtual output queueing (VOQ). Each input x maintains n queue of cells, one for each output y.

Maximum size matching. Find a max cardinality matching.
- Achieves 100% when arrivals are uniform.
- Can starve input-queues when arrivals are non-uniform.
Input-Queued Switching

Max weight matching. Find a min cost perfect matching between inputs x and outputs y, where $c(x, y)$ equals:

- [LQF] The number of cells waiting to go from input x to output y.
- [OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are independent.

Practice.

- Too slow in practice for this application; difficult to implement in hardware. Provides theoretical framework.
- Use maximal (weighted) matching \Rightarrow 2-approximation.

Reference: http://robotics.eecs.berkeley.edu/~wlr/Papers/AMMW.pdf