How to Multiply

integers, matrices, and polynomials

. oot Desig

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

= Copyright © 2005 Pearson-Addison Wesley.

Addis?“b!s‘ley All rights reserved.




Complex Multiplication

Complex multiplication. (a + bi) (¢ + di) = x + yi.

Grade-school. x=ac-bd, y=bc + ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?



Complex Multiplication

Complex multiplication. (a + bi) (¢ + di) = x + yi.

Grade-school. x=ac-bd, y=bc + ad.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.



5.5 Integer Multiplication




Integer Addition

Addition. Given two n-bit integers a and b, compute a + b.
Grade-school. ©(n) bit operations.

1 1 0 1 0 1 0 1
+ 0 1 1 1 1 1 0 1
1 0 1 0 1 0 0 1 0

Remark. Grade-school addition algorithm is optimal.



Integer Multiplication

Multiplication. Given two n-bit integers a and b, compute a x b.
Grade-school. ©(n?) bit operations.

=
=

R, O O OoOo|mr o
=

R, O O OoOo|mr o
=

o O oo o
=

000 0 0 0
1101 1 1
11010 0 0
110101010
110101010
110101010
0000O0OOOO0ODO
0110100000000O00O01

Q. Is grade-school multiplication algorithm optimal?



Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:
- Multiply four 3n-bit integers, recursively.
. Add and shift to obtain resulft.

a = 2"%-a + q
b = 2"7-b + b,
ab = (2”/2-a1+ ao) (2”/2-191 +b0) = 2"-ab, + 2"%(a,by+agh,) + ayb,

Ex. a = 10001101 b = 11100001
a; a, b, by

T(n) = 4T(n/2) + ©(n) = T(n)=0(n")
—

recursive calls add, shift



Recursion Tree

1= { 4T((1)1/2) + n i)fthz:w(i)se L) = ,igé) S n(%) = o
T (n) n
T (n/2) T (n/2) T (n/2) T (n/2) 4(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) ... T(n/4) T(n/4) T(n/4) T(n/4) 16 (n/4)

s

T(2) T(2) T(2) T (2) T (2) T (2) T(2) T(2) 4190 (1)



Karatsuba Multiplication

To multiply fwo n-bit integers a and b:
. Add two 3n bit integers.
- Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

a = 2"%-a + a,
b = 2"7-b + b,
ab = 2"-ab + 2" (aby+agb)) + agb,
= 2"-aby + 2" ((ay+ay) (b +by) — ab, —agby) + agb,



Karatsuba Multiplication

To multiply two n-bit integers a and b:
. Add two 3n bit integers.
- Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

a = 2"%-a + a,
b = 2"7-b + b,
ab = 2"-ab + 2" (aby+agb)) + agb,
= 2"-aby + 2" ((ay+ay) (b +by) — ab, —agby) + agb,

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'>%) bit operations.

T(n) < T([n/2]) + T([n/2]) + T(1+[n/2]) + ©O®) = Tm) = On**)

add, subtract, shift

'
recursive calls

— O(n1.585 )

10



Karatsuba: Recursion Tree

0 if n=0 L (3) 7 -1
T(n) = gy Tm)= 3 n(3) =n[2—| = 3n%-2n
3T(n/2) + n otherwise =0 2=]
T (n) n
T (n/2) T (n/2) T (n/2) 3(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n / 2¥) 3k (n / 2%)

1



Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and ¢,
compute quotient g = s/t and remainder r = s mod r.

Fact. Complexity of integer division is same as integer multiplication.
To compute quotient g:

. Approximate x = 1/ using Newton's method: x,, = 2x - 1]

. After logn iterations, either g =|sx| or ¢g=[sx]. N\

using fast
multiplication

12



Matrix Multiplication




Dot Product

Dot product. Given two length n vectors a and b, compute ¢ = a -b.

Grade-school. ©(n) arithmetic operations.

a .

[70 20 .10]

[30 40 30]
. b = (70 x 30) + (20 x 40) + (.10 x 30) =

Remark. Grade-school dot product algorithm is optimal.

b
AN
b

n
= E a.b,
i=1

14



Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Grade-school. ©(n?) arithmetic operations. ——
Cl] = aik bkj
k=1

-Cn Cp = €, -au a, a, -bu blz bln-

G €y G, _ a, 4a, a,, % b21 bzz b2n

_cnl cn2 toe cnn i _anl anZ a _bnl bn2 bnn i
S59 32 41 JJ0 20 .10 80 30 .50
31 36 25 = 30 60 .10 x 0 40 .10
45 31 42 S0 .10 40 0 30 40

Q. Is grade-school matrix multiplication algorithm optimal?



C

11

Block Matrix Multiplication

= A xB, + Ap,xB, = [

0 1
4 5

|

16 17
20 21

N

2 3
6 7

|

24 25
28 29

|

|

152 158
504 526

|

16



Matrix Multiplication: Warmup

To multiply fwo n-by-n matrices A and B:
. Divide: partition A and B into $n-by-3n blocks.
. Conquer: multiply 8 pairs of 3n-by-3n matrices, recursively.
. Combine: add appropriate products using 4 matrix additions.

¢, Gy _ 4, Ay o B, B, Cii = (4yxBy) + (4% By)
G, G, Ay Ay B, B, ¢, = (A11XB12) + (A12XB22)
G, = (A21XB11) + (A22XB21)
G, = (AZI XBIZ) + (A22XBzz)

T(n)= 8T(n/2) + On?) = T(n)=0®1n")

o _/

'd
recursive calls add, form submatrices

17



Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

[Cn C12] _ [An A12] 9 [Bu B12]

C21 C22 A21 A22 B 21 B 22
¢, = B+R-B+K
C, = A+Ph
G, = PB+P

Cp = B+A-K-B

- 7 multiplications.

= 18 =8+ 10 additions and subtractions.

Ay X (B, — By,)
(Ajy +4;5) % By
(Ay + Ay ) % By
Ay X (B, — Byy)
(Aj1 + 4y) x (B + By,)
(Aip = Ay) x (B, + By,)
(A — 4y) x (By, + By,)

18



Fast Matrix Multiplication

To multiply fwo n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.

. Conquer: multiply 7 pairs of 3n-by-3n matrices, recursively.

« Combine: 7 products into 4 ferms using 8 matrix additions.

Analysis.
. Assume n is a power of 2.
« T(n) = # arithmetic operations.

T(n)= TT(n/2)+ O(n?) = T(n)=01n""2")=0n**")
recursive calls W

19



Fast Matrix Multiplication: Practice

Implementation issues.
= Sparsity.
. Caching effects.
» Numerical stability.
« Odd matrix dimensions.
« Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”
. Apple reports 8x speedup on G4 Velocity Engine when n = 2,500.
. Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD, ...

20



Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yesl! [STI"GSSQH 1969] @(nlog27)=0(n 2.807)

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?

A. Impossible. [Hopcroft and Kerr 1971] 0n 25 = O(n ™)
n =2 )=0n"

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. @(nlog321)= On 2.77)

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

« Two 20-by-20 matrices with 4,460 scalar multiplications. O(n>*)
« Two 48-by-48 matrices with 47,217 scalar multiplications. O(n 21
. A year later. 0 2™)
- December', 1979. On 2.521813)

- Januar'y, 1980. On 2.521801)

21



Fast Matrix Multiplication: Theory

Aw
w(T)
30 | {23]
2'8#'""_'. ______________ @ _(Il _________ —
e i
2-0 1 é U | T | 1 1 Tl 1 1 l
1968 1969 1975 1976 1977 1978 1979 1980 198| 1982

FIG. 1. (1) is the best exponent announced by time .

Best known. O(n?37%) [Coppersmith-Winograd, 1987]

Conjecture. O(n**) for any ¢ > 0.

Caveat. Theoretical improvements fo Strassen are progressively
less practical.



B.6 Convolution and FFT




Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any periodic function

can be expressed as the sum of a series of sinusoids. sufficiently smooth

N
W) = gzsmkt

I =1 k

N =100

24



Euler's Identity

Sinusoids. Sum of sine an cosines.

e¥ = cosx + isinx

Euler's identity

Sinusoids. Sum of complex exponentials.

25



Time Domain vs. Frequency Domain

Signal. [touch fone button 1] y@® = 3sin2m - 697 1) + 7§ sin(2w - 1209 1)

©

Time domain. i
0.5
sound ol
pressure
-0.51
_1 L 1 1 1 ]
0 0.005 0.01 0.015
time (seconds)
Frequency domain.
0.5 ° °
amplitude
200 600 800 1000 1200 1400 1600
frequency (Hz)

Reference: Cleve Moler, Numerical Computing with MATLAB

26



Time Domain vs. Frequency Domain

Signal. [recording, 8192 samples per second]

1 | I I I

05
0

-0.57;

0.38 0.385 0.39 0.395 0.4 0.405 0.41

Magnitude of discrete Fourier transform.

300 T T T T |

0.415 0.42

200

100

Ll N | V.

600 800 1000 1200 1400

Reference: Cleve Moler, Numerical Computing with MATLAB

1600

27



Fast Fourier Transform

FFT. Fast way to convert between time-domain and frequency-domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.
N\

we take this approach

If you speed up any nontrivial algorithm by a factor of a
million or so the world will beat a path towards finding
useful applications for it. -Numerical Recipes

28



Fast Fourier Transform: Applications

Applications.

Optics, acoustics, quantum physics, telecommunications, radar,
control systems, signal processing, speech recognition, data

compression, image processing, seismology, mass spectrometry...

Digital media. [DVD, JPEG, MP3, H.264]

Medical diagnostics. [MRI, CT, PET scans, ultrasound]
Numerical solutions to Poisson's equation.

Shor's quantum factoring algorithm.

The FFT is one of the truly great computational
developments of [the 20th] century. It has changed the
face of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan

29



Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Konig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm, x-ray crystallography.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and
tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

30



Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

2 n-1
Ax)=ay+ax+a,x" +---+a,_x

B(x)=by+bx+bx*+---+b _x""

Add. O(n) arithmetic operations.

A(X)+ B()C) = (aO +b0)+(a1 +bl)_x 40t (an—l +bn_1)x"_1

Evaluate. O(n) using Horner's method.

A(x)=ag+(x(ay+x(ar +---+x(a,_»+x(a,_1)) "))

Multiply (convolve). O(n?) using brute force.

2n-2 . i
A(x)x B(x)= Y ¢;x', wherec,= Y a,b,_;
i=0 j=0

31



A Modest PhD Dissertation Title

"New Proof of the Theorem That Every Algebraic Rational
Integral Function In One Variable can be Resolved into
Real Factors of the First or the Second Degree."

- PhD dissertation, 1799 the University of Helmstedt

AY7831976K1

ZEHN DEUTSCHE MARK

32



Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.

33



Polynomials: Point-Value Representation

Polynomial. [point-value representation]

Ax): (X9, Y0)s -os (X005 Y, 1)
B(x): (xgs 2)s -5 (X,452,1)

Add. O(n) arithmetic operations.

AX)+B(x): (X5 Yo+20)s w0 (X5 Yooy +2,00)
Multiply (convolve). O(n), but need 2n-1 points.

A(x) x B(x): (X0, YoX Z29)s--s (X, 15 Youot X Zopy)

Evaluate. O(n?) using Lagrange's formula.

n-1 ]-_;C(x B xj)
Ax)= Sy, &2
(x) goyk [[G =)

Jj=k

34



Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

coefficient O(n?) Oo(n)
point-value O(n) O(n?)

Goal. Efficient conversion between two representations = all ops fast.

>

Clo, al,.--, al’l-l < (XO, yo), ...,(Xn_l, yl’l—l)

coefficient representation point-value representation

35



Converting Between Two Representations: Brute Force

Coefficient = point-value. Given a polynomial a, + a,x + ... + a,_ x"!,
evaluate it at n distinct points x,, ..., x,_,.

Running time.

2 n-1
2 n-1
yl 1 xl xl °°c xl al
— 2 n-1
2 n-1
L yn—l J i 1 xn—l xn—l xn—l J L an—l d

O(n?) for matrix-vector multiply (or n Horner's).

36



Converting Between Two Representations: Brute Force

Point-value = coefficient. Given n distinct points x,, ..., x, , and values
Yo > ¥,.1. Tind unique polynomial a, + a;x + ... + a,_, x*'!, that has given
values at given points.

T [ 2 n-171T
yO 1 xo XO s XO ao
2 n-1
N 1 x  x X a,
— 2 n-1
2 n-1
| yn—l | | 1 xn—l xn—l t xn—l ] L an—l _

Vandermonde matrix is invertible iff x; distinct

Running fime. O(n?) for Gaussian elimination.

\

or O(n*37%) via fast matrix multiplication

37



Divide-and-Conquer

Decimation in frequency. Break up polynomial intfo low and high powers.

= A(x) = Ay + a X + a,x*> + a x> + ax*t + ax’ + ax® + ax’.
» A (X) = ay+ ax + ax? + ax’.

o Ay () = ay+ asx + age® + ax.

= AX) = A, (x) +x* Apigh()-

low

Decimation in fime. Break polynomial up into even and odd powers.
« A(X) = agtax+ax’+ax+axt +ax’ +ax® +ax’.
» A, (X) = ay+ ax +ax?+ ax’.
A (X)) = a; + ax + ax? + ax’.

even

38



Coefficient to Point-Value Representation: Intuition

Coefficient = point-value. Given a polynomial a, + a,x + ... + a,_, x"",

evaluate it at n distinct points x,, ..., x .
\

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.
« A(X) = agtax+ax’+ax+axt +ax’ +ax® +ax’.
» A
A (X)) = a; +ax+ax®+ax’.
Ax)=A4, ,(x*) +xA, (x).
A(-x)=A,, (x*)-xA, [xX?).

_ 2 3
even(x) = Ay + AyX + ax° + agx°.

Intuition. Choose two points to be +1.
< A=A, ()+1A4 (D).
« ACD=A4,,,()-1A4A,,,(D. Can evaluate polynomial of degree < n

at 2 points by evaluating two polynomials
of degree < 3n at 1 point.

39



Coefficient to Point-Value Representation: Intuition

Coefficient = point-value. Given a polynomial a, + a,x + ... + a,_, x"",

evaluate it at n distinct points x,, ..., x .
\

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.
« A(X) = agtax+ax’+ax+axt +ax’ +ax® +ax’.
» A
A (X)) = a; +ax+ax®+ax’.
Ax)=A4, ,(x*) +xA, (x).
A(-x)=A,, (x*)-xA, [xX?).

_ 2 3
ovenX) = Ay + A X + ax° + agx’.

Intuition. Choose four complex points to be +1, +i.

A=A, () +1A (1.
« ACD=A4,,,()-1A4A,,,~1. Can evaluate polynomial of degree < n
« A(i)=A,, (D) +iA (~-1). at 4 points by evaluating two polynomials

. A(-i)=A,, (-D)-iA (-1). of degree < 3n at 2 points.

40



Discrete Fourier Transform

Coefficient = point-value. Given a polynomial a, + a,x + ... + a,_, x"",
evaluate it at n distinct points x,, ..., x .

Key idea. Choose x, = o* where w is principal n” root of unity.

- Yo - 1 1
31 I o
A% 1
| |1 o

_yn—l_ 1 wn_l

DFT

1 1 1
2 w3 "]
o w° 2D
oS w’ 3D
02D 3D (n=D(n-D)

T

Fourier matrix F,

41



Roots of Unity

Def. An n’ root of unity is a complex number x such that x* = 1.

Fact. The n™ roots of unity are: o, o', ..., ®"! where o = e >/,
Pf. ((Dk)n =(e 2rcik/n)n =(erci)2k — (_1)2k = 1.

Fact. The $n roots of unity are: v0,v!, ..., v">! where v = w2=¢ 4ti/n,

42



Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) =a, + ... +a,, x*! at its
n roots of unity: o, !, ..., 0",

Divide. Break up polynomial into even and odd powers.
« A, (X) = ay+ax+ax*+...+a x" L
« A (X)) =a +ax+ax*+...+a,  x"L
» Alx) =A,, (X3 +x A x?).
Conquer. Evaluate A, (x) and A, (x) at the n"
roots of unity: vO,vi, ... v/,

vk = (k)2

Combine. J/
« A(w%)  =A4A,,WvH+wkA, v, 0sk<n/2

even(vk) —w kAodd(Vk)a O<k<n/2

- A(w* iy = A
/ N\

Vk — ((Dk+ Yan )2 (l)k+ Yan = -(L)k

43



FFT Algorithm

44



FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the n™ roots of unity in O(n log n) steps. \

assumes n is a power of 2

Running time.
T(n) = 2T(n/2) + ®O(n) = T(n) = BO(nlogn)
O(n log n)
>
Gos s oes Gy (@°, )5 con (@" ¥, )
coefficient ??7? point-value

representation representation

45



Recursion Tree

a,, a,;, a,, az, a,, a;, ag, a,

perfect shuffle

a,, a,, a,, a, a,;, a;, ag, a,
2y, A4 2y, 3ag a,, as az, a,
Ch) a, a, 3, a, as as a,
000 100 010 110 001 101 011 111

"bit-reversed" order

46



Inverse Discrete Fourier Transform

Point-value = coefficient. Given n distinct points x,, ..., x, , and values
Yo > ¥,.1. Tind unique polynomial a, + a;x + ... + a,_, x*'!, that has given
values at given points.

: - e -
a, 1 1 1 | | Yo
. 1 o w2 w3 ! 5
a, 1 o o’ oS 2(n-1) Y,
a, 1 o w° o’ 3D v,

a 1 o™ XD 3D (DD )

T T

Inverse DFT Fourier matrix inverse (F)) -!

47



Inverse DFT

Claim. Inverse of Fourier matrix F, is given by following formula.

1 1 1 1 1
1 -1 2 3 (D
1 -2 -4 -6 ~2(n-1)
G, =-—
n a1 -3 -6 w2 ~3(n-1)
1 oD 20D Beh (D)D)

1 L
- I, 1s unitary

Consequence. To compute inverse FFT, apply same algorithm but use
w! = e 27i/n gs principal n” root of unity (and divide by ).

48



Inverse FFT: Proof of Correctness

Claim. F_and G, are inverses.
Pf.

n-1 ., n-1 . 1 ifk=k
(Fn Gn)kk’ -1 S oot = L S 0 =

n j- n o \{ O otherwise

summation lemma

Summation lemma. Let w be a principal n” root of unity. Then

S0l -

j=

n-1 n ifk=0modn
0 otherwise

Pf.
. If kis a multiple of n then w*=1 = series sums to n.
« Each n™ root of unity o* is aroot of x*-1=(x-1) (1 +x+x2+ ...+ x").
= ifwf=1wehave: 1+0f+0@+ ... + D=0 = series sums to 0. =



Inverse FFT: Algorithm

50



Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n roots of unity in O(n log n) steps.
\

assumes n is a power of 2

O(n log n)

ao,al,...,an_l (CUO,)’O), -'°’(wn_l’yn—1)

<
| :
coefficient O(n log n) point-value
representation representation

51



Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

pad with 0s to make n a power of 2

coefficient
representation coefficient

representation

a,,d,...,a,
G @ oons Cor
bO’bl""’bn-l 0 1 A 2]12

2 FFTs O(n log n) inverse FFT O(n log n)

v
A@°), ..., A(w*™) point-value multiplication

B(®"), ..., B(w*"™) O(n)

» C(@),...,C(w™™)



FFT in Practice ?

000 fft java - Google Search

@ . @ http [ /www.google.com/search?hl=en&g=fft+java&btnG=GCGoogle+Search "va Coogle

im: Google Movies Weatherv Tech News Sports Princeton CS Javal5 Book1l Book2 Coursesv Otherv

Web Images Groups News Froogle Local Scholar more »

Advanced Search
Google = o) e

Web Results 1 - 10 of about 630,000 for fft java. (0.17 seconds)
FFT.java

FFT code in Java. ... Compilation: javac FFT.java * Execution: java FFT N * Dependencies:
Complex.java * * COmputetheFFTand inverse FFT of a length N ...
www.cs.princeton.edu/introcs/97data/FFT.java.html - 36k - Cached - Similar pages

YOV408 Programming Resources - Code Spotlight - FFT Java source ...
Compilation: javac FFT.java * Execution: java FFT N * Dependencies: ... A nice
implementation of the FFT algorithm in Java, Eventhough it can use too much ...
www.yov408.com/html/codespot.php?gg=35 - 26k - Cached - Similar pages

FET JAVA Demo

This is a JAVA applet demonstrating basic concept of Fast Fourier ... If you want to run the
program locally, download FFT.zip and unzip it to a directory. ...
www.ling.upenn.edu/~tklee/Projects/dsp/ - 8k - Cached - Similar pages

Mathtools.net : Java/FFT
Listing of Java FFT related links, tools, and resources.
www.mathtools.net/Java/FFT/index.html - 18k - Cached - Similar pages

FFT Spectrum Analyser Demo

The following features are new in the Java 1.1 version of the FFT Spectrum Analyser applet:.
The signal is plotted in either the time domain (signal) or the ...
www.dsptutor.freeuk.com/analyser/SpectrumAnalyser.html - 4k - Cached - Similar pages

Fun with Java, Understanding the Fast Fourier Transform (FFT ...

Fun with Java, Understanding the Fast Fourier Transform (FFT) Algorithm By Richard G.
Baldwin. Java Programming, Notes # 1486. Preface; General Discussion ...
www.developer.com/java/other/article.php/3457251 - 116k - Cached - Similar pages

Spectrum Analysis using Java, Sampling Frequency, Folding ...

File Dsp030.java Copyright 2004, RGBaldwin Rev 5/14/04 Uses an FFT algorithm to compute
and display the magnitude of the spectral content for up to five ...
www.developer.com/java/other/article.php/3380031 - 278k - Cached - Similar pages

Bruce R. Miller's Java(tm) Demo Page

These classes may be of use to other java programmers. Available Packages, Demos & Bug
Fixes:. FFT. TabPanel. ObjectList. StackLayout. Scroller. ...
math.nist.gov/~BMiller/java/ - 7k - Cached - Similar pages

FFT : Java Glossa

Roedy Green's Java & Internet Glossary : FFT. ... You are here : home < Java Glossary <
F words < FFT. FFT: Fast Fourier Transform. ...

mindprod.com/jgloss/fft.html - 8k - Cached - Similar pages

Ll e

<>l

R ~

53



FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]
« Optimized C library.
. Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software.
. Portable, competitive with vendor-tuned code.

Implementation details.

. Instead of executing predetermined algorithm, it evaluates your
hardware and uses a special-purpose compiler to generate an
optimized algorithm catered to "shape" of the problem.

. Core algorithm is nonrecursive version of Cooley-Tukey.

« O(nlogn), even for prime sizes.

Reference: http://www.fftw.org

54



Integer Multiplication, Redux

Integer multiplication. Given two n bit integersa=a,,...a,a,and
b=>b,,...bb, compute their product a - b.

Convolution algorithm.
. Form two polynomials. A(X) = ay + @)X +ayx° 4004 @, X
- Note: a=A(2), b= B(2). B(x)=by+bx+b,x* +---+b _x""
Compute C(x) = A(x) - B(x).
Evaluate C(2) = a - b.
Running time: O(nlog n) complex arithmetic operations.

n-1

Theory. [Schonhage-Strassen 1971] O(n log n log log n) bit operations.
Theory. [Firer 2007] O(n log n 200e™m) bit operations.

55



Integer Multiplication, Redux

Integer multiplication. Given two n bit integersa=a,_,...a,a,and
b=>b,,...bb, compute their product a - b.

"the fastest bignum library on the planet"

e
Practice. [GNU Multiple Precision Arithmetic Library]

It uses brute force, Karatsuba, and FFT, depending on the size of n.

56



Integer Arithmetic

Fundamental open question. What is complexity of arithmetic?

addition O(n) Q(n)
multiplication O(n log n 20Uog*m) Q(n)
division O(n log n 20Uog™n) Q(n)

57



Factoring

Factoring. Given an n-bit integer, find its prime factorization.

2773 = 47 x 59

267-1 = 147573952589676412927 = 193707721 x 761838257287

a disproof of Mersenne's conjecture that 267 - 1 is prime

740375634795617128280467960974295731425931888892312890849
362326389727650340282662768919964196251178439958943305021
275853701189680982867331732731089309005525051168770632990
72396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

58



Factoring and RSA

Primality. Given an n-bit integer, is it prime?
Factoring. Given an n-bit integer, find its prime factorization.

Significance. Efficient primality testing = can implement RSA.

Significance. Efficient factoring = can break RSA.

Theorem. [AKS 2002] Poly-time algorithm for primality testing.

R |

P £ @ PRIME
N= PR
£D = | mob (P-Da-D
C = M* MODN
M= C° pAODN

RSA PUBLIC-KEY CRYPTOSYSTEM US PATENT # 4,406,829

IT’S JUST AN ALGORITHM

59



Shor's Algorithm

Shor's algorithm. Can factor an n-bit integer in O(n’) time on a

quantum computer. AN
algorithm uses quantum QFT !

Ramification. At least one of the following is wrong:
« RSA is secure.
. Textbook quantum mechanics.
. Extending Church-Turing thesis.

ng s/// /.v

60



Shor's Factoring Algorithm

Period finding.

1 2 4 8 16 32 64 128
2 ‘mod 15 1 2 4 8 1 2 4 8 .
period = 4
2 ‘mod 21 1 2 4 8 16 11 1 2
™ period = 6

Theorem. [Euler] Let p and g be prime, and let N =p g. Then, the
following sequence repeats with a period divisible by (p-1) (g-1):

xmod N, x2mod N, x> mod N, x*mod N, ...

Consequence. If we can learn something about the period of the

sequence, we can learn something about the divisors of (p-1) (¢-1).
AN

by using random values of x, we get the divisors of (p-1) (¢-1),
and from this, can get the divisors of N=p ¢

61



Extra Slides




Fourier Matrix Decomposition

63



