2.1 Computational Tractability

Chapter 2

Basics of
Algorithm Analysis

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even

\C\ Algorthm Desigr

N JON KLEINBERG - EVA TARDOS

mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing." - Francis Sullivan

PEARSON' Slides by Kevin Wayne.
Addison Copyright © 2005 Pearson-Addison Wesley.
Wesley All rights reserved.

Computational Tractability Polynomial-Time

Brute force. For many non-trivial problems, there is a hatural brute
force search algorithm that checks every possible solution.

As soon as an Analytic Engine exists, it will necessarily Typically takes 2N time or worse for inputs of size N

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what - Unacceptable in practice. \nl for stable matching
course of calculation can these results be arrived at by the with n men and n women

machine in the shortest time? - Charles Babbage
Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

There exists constants ¢ > 0 and d > O such that on every
input of size N, its running time is bounded by ¢ N steps.

Def. Analgorithm is poly-time if the above scaling property holds.
\

choose C = 2¢
Charles Babbage (1864) Analytic Engine (schematic)

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.

« Generally captures efficiency in practice.

= Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm
on random input as a function of input size N.
« Hard (or impossible) to accurately model real instances by random

distributions.

« Algorithm tuned for a certain distribution may perform poorly on

other inputs.

Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? i 15" oL n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 <lsec <lsec <1sec < 1sec < 1sec 18min 10% years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 1017 years very long

n = 1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Worst-Case Polynomial-Time

Def. Analgorithm is efficient if its running time is polynomial.

Justification: It really works in practicel
«» Although 6.02 x 1023 x N20 is technically poly-time, it would be
useless in practice.
« In practice, the poly-time algorithms that people develop almost
always have low constants and low exponents.
« Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions.
« Some poly-time algorithms do have high constants and/or
exponents, and are useless in practice.
» Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.
simplex method
Unix grep

2.2 Asymptotic Order of Growth

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = n, we have T(n) =< ¢ - f(n).

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢ >0 and ny = 0
such that for all n = ny we have T(n) = ¢ - f(n).

Tight bounds. T(n) is ©(f(n)) if T(n) is both O(f(n)) and Q(f(n)).

Ex: T(n)=32n2+17n+ 32.
« T(n) is O(n2), O(n3), Q(n2), 2(n), and B(n2) .
« T(n) is not O(n), 2(n3), B(n), or B(n3).

Properties

Transitivity.
« If f = O(g) and g = O(h) then f = O(h).
« If f = Q(g) and g = Q(h) then f = Q(h).
« If f =©(g) and g = ©(h) then f = ©(h).

Additivity.
» If f = O(h) and g = O(h) then f + g = O(h).
« If f = Q(h) and g = Q(h) then f + g = Q(h).
« If f = ©(h) and g = O(h) then f + g = B(h).

Notation

Slight abuse of notation. T(n) = O(f(n)).
= Not transitive:

- f(n) = 5n3; g(n) = 3n2

- f(n) = O(n3) = g(n)

- but f(n) = g(n).
. Better notation: T(n) € O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.

« Statement doesn't "type-check."

» Use Q for lower bounds.

Asymptotic Bounds for Some Common Functions

Polynomials. ag+a;n + ... + and is ©(nd) if a, > 0.

Polynomial time. Running time is O(nd) for some constant d independent
of the input size n.

Logarithms. O(log ,n) = O(log, n) for any constants a, b > 0.
t

can avoid specifying the
base

Logarithms. For every x >0, log n = O(nx).
t
log grows slower than every polynomial
Exponentials. For every r>1and every d >0, nd = O(r").

T

every exponential grows faster than every polynomial

2.4 A Survey of Common Running Times

Linear Time: O(n)

Linear time. Running time is proportional fo input size.

Linear Time: O(n)

Merge. Combine two sorted listsa = a,,a,,..,a, with B = b,b,,..,b,
into sorted whole.

| Merged result

i=1,3=1
while (both lists are nonempty) {
if (a; = b;) append a; to output list and increment i
else append b; to output list and increment j
}

append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by 1.

Computing the maximum. Compute maximum of n numbers aq,, ..., a,.

max < a;

for i = 2 to n {
if (a; > max)
max < a;

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps x;, ..., X, on which copies
of a file arrive at a server, what is largest interval of time when no
copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in
order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n?)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x,, y,), ...,
(%, Y. find the pair that is closest.

O(n?) solution. Try all pairs of points.

min < (%, - %,)2 + (y; - ¥,)?
for i =1 ton {
for j = i+l to n {

d < (x; - xj)z + (v; - Yj)z <— don't need to
if (d < min) take square roots
min < d

Remark. Q(n?) seems inevitable, but this is just an illusion. «— see chapter5

Polynomial Time: O(n*) Time

Independent set of size k. Given a graph, are there k nodes such that
no two are joined by an edge? N
k is a constant

O(nk) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

}

« Check whether S is an independent set = O(k?).

» Number of k element subsets = (1) n(n-1)(n-2)--- (n-k+1) nk

« O(k? nk / Kl) = O(nk). k) &
\

k(k=-D(k=-2)---2)Q) ~ &k

poly-time for k=17,
but not practical

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets S,, ..., S, each of which is a subset of
1,2, .., n,is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set S; {
foreach other set Sj {
foreach element p of S; {
determine whether p also belongs to S,
}
if (no element of S; belongs to S,)
report that S; and S; are disjoint

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2) solution. Enumerate all subsets.

S* «— ¢
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)
update S* <« S
}

