
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 1/15/20 6:59 AM

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Disjoint-sets data type

Goal. Support three operations on a collection of disjoint sets.

・MAKE-SET(x): create a new set containing only element x.

・FIND(x): return a canonical element in the set containing x.

・UNION(x, y): replace the sets containing x and y with their union.

Performance parameters.

・m = number of calls to MAKE-SET, FIND, and UNION.

・n = number of elements = number of calls to MAKE-SET.

Dynamic connectivity. Given an initially empty graph G,

support three operations.

・ADD-NODE(u): add node u.

・ADD-EDGE(u, v): add an edge between nodes u and v.

・IS-CONNECTED(u, v): is there a path between u and v ?

2

1 UNION operation

2 FIND operations

1 MAKE-SET operation

disjoint sets =
 connected components

Disjoint-sets data type: applications

Original motivation. Compiling EQUIVALENCE, DIMENSION, and COMMON

statements in Fortran.

Note. This 1964 paper also introduced key data structure for problem.

3

An Improved Equivalence
Algorithm
BERNARD A. GALLER AND MICHAEL J. FISHER
University of Michigan, Ann Arbor, Michigan

An algorithm for assigning storage on the basis of EQUIV-
ALENCE, DIMENSION and COMMON declarations is pre-
sented. The algorithm is based on a tree structure, and has
reduced computation time by 40 percent over a previously
published algorithm by identifying all equivalence classes
with one scan of the EQUIVALENCE declarations. The method
is applicable in any problem in which it is necessary to identify
equivalence classes, given the element pairs defining the
equivalence relation.

An algorithm for the assignment of storage on the basis
of the EQUIVALENCE declaration found in such lan-
guages as FORTRAN and MAD was presented in [1]. The
algorithm given here, which uses a tree structure, is a
considerable improvement over the previous one, and
the two algorithms furnish a clear-cut example of the
ben:fits which can be realized through the use of such
metkods. (Comparison tests have shown that the new
method reduces the execution time of the algorithm by as
much as 40 percent.) The notation and statement of the
problem have been made as similar to that of [1] as possible
to facilitate comparison, and is reviewed here for com-
pleteness.

Figure 1 shows a general equivalence algorithm, suitable
for identification of equivalence classes in any context.
Figures 2 and 3 use this same algorithm for the address
assignment problem considered in [1], retaining additional
information (D, d, do, R, H and H ') during the con-
struction of the trees to facilitate the address assignment
at the end.

The problem may then be stated as follows: In some
algebraic (or any other) languages, one may write EQUIV-
ALEIX~CE declarations of the form:

EQUIVALENCE (X, Y, Zi), (Z, Ws), (V, V) (1)

where the entries consist of names of variables, subscripted
array names or unsubscripted array names (which are
assumed to represent the element of the array which has
subscript zero). Some of the variables or arrays which
occur here may have already been assigned to specific
locations in storage; others have not yet been assigned.
The entries are grouped by means of parentheses, the
groups being separated by commas. For example, state-
ment (1) would assign X, Y and Z1 to the same location,
then Z(~ Z0) and W5 to another location, and U and V
to yet another location (unless either U or V is made
equivalent to one of the other variables or arrays by some

Presented at the ACM National Conference, Denver, Colorado,
1963.

other EQUIVALENCE declaration). We must exhibit
an algorithm which will result in a storage assignment for
each variable and array occurring in any EQUIVALENCE
statement.

Of course, the groups may be highly linked, such as in the
following statement.

EQUIVALENCE (X, Y2), (Q, J, K), (Y3, Z1),
(U, V), (Y, Q), (U3, M10, N) (2)

We shall use this example to illustrate the algorithm
presented here. Assume that K has been assigned to loca-
tion 100 by some other declaration and that the dimensions
of Y, Z, M and U are 10, 4, 12 and 5, respectively. (In
other words, since the zero subscript is allowed here,
the highest subscripts occurring for Y, Z, M and U are
9, 3, 11 and 4, respectively.) There is no loss in generality
if we assume (and we do) that every other variable is
also an array of dimension 1.

The algorithm has as input a collection of n groups
of subscripted array names. We shall call the groups
G1, " " , Gn, and for the group Gi , we shall label the
mi array names gil, gi2, • • • , gimi • Associated with each
array name glj will be its subscript s(gii) and its dimen-
sion d(gii). I t will be convenient to use five auxiliary
vectors, called the E, R, S, H, and H ' vectors, respectively.
These vectors must be large enough to hold all distinct
array names appearing in the EQUIVALENCE state-
ments. The number of entries in the E-vector will be

• " = •

F

t = i T

¢5
Fm. 1

Volume 7 / Number 5 / May, 1964 C o m m u n i c a t i o n s o f t h e ACM 301

Disjoint-sets data type: applications

Applications.

・Percolation.

・Kruskal’s algorithm.

・Connected components.

・Computing LCAs in trees.

・Computing dominators in digraphs.

・Equivalence of finite state automata.

・Checking flow graphs for reducibility.

・Hoshen–Kopelman algorithm in physics.

・Hinley–Milner polymorphic type inference.

・Morphological attribute openings and closings.

・Matlab’s BW-LABEL function for image processing.

・Compiling EQUIVALENCE, DIMENSION and COMMON statements in Fortran.

・...

4

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.

・Each element has an explicit parent pointer in the tree.

・The root serves as the canonical element (and points to itself).

・FIND(x): find the root of the tree containing x.

・UNION(x, y): merge trees containing x and y
(by making one root point to the other root).

6

parent of 3 is 8
root

349

8

61

5 20

7

UNION(3, 5)

Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.

・Each element has an explicit parent pointer in the tree.

・The root serves as the canonical element (and points to itself).

・FIND(x): find the root of the tree containing x.

・UNION(x, y): merge trees containing x and y
(by making one root point to the other root).

7

root

61

5 20

7

349

8

UNION(3, 5)

Array representation. Represent each set as a tree of elements.

・Allocate an array parent[] of length n.

・parent[i] = j means parent of element i is element j.

Note. For brevity, we suppress arrows and self-loops in figures.

0 1 2 3 4 5 6 7 8 9

Disjoint-sets data structure

8

7 5 7 8 8 7 5 7 8 8parent[]

must know number of elements n a priori

349

61

5 20

parent of 3 is 8
root

78

Naïve linking

Naïve linking. Link root of first tree to root of second tree.

9

61

5 20

7

UNION(5, 3)

34

8

9

Naïve linking

Naïve linking. Link root of first tree to root of second tree.

10

61

5 20

7

UNION(5, 3)

34

8

9

Naïve linking

Naïve linking. Link root of first tree to root of second tree.

11

FIND(x)
__
__

WHILE (x ≠ parent[x])

x ← parent[x].

RETURN x.

UNION(x, y)

r ← FIND(x).

s ← FIND(y).

parent[r] ← s.

MAKE-SET(x)
__
__

parent[x] ← x.

Naïve linking: analysis

Theorem. Using naïve linking, a UNION or FIND operation can take Θ(n) time

in the worst case, where n is the number of elements.

Pf.

・In the worst case, FIND takes time proportional to the height of the tree.

・Height of the tree is n – 1 after the sequence of union operations:

UNION(1, 2), UNION(2, 3), …, UNION(n – 1, n).

12

max number of links on any
path from root to leaf node

⋮

3

n

1

2

height = n-1height = 3height = 2

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.

Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

14

34

8

9

61

5 20

7

UNION(5, 3)
size = 4 size = 6

Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.

Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

15

34

8

9 61

5 20

7

UNION(5, 3)
size = 10

Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.

Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

16

FIND(x)

WHILE (x ≠ parent[x])

x ← parent[x].

RETURN x.

UNION(x, y)
__

r ← FIND(x).

s ← FIND(y).

IF (r = s) RETURN.

ELSE IF (size[r] > size[s])

parent[s] ← r.

size[r] ← size[r] + size[s].

ELSE
parent[r] ← s.

size[s] ← size[r] + size[s].

MAKE-SET(x)

parent[x] ← x.

size[x] ← 1.

link-by-size

Link-by-size: analysis

Property. Using link-by-size, for every root node r : size[r] ≥ 2height(r).

Pf. [by induction on number of links]

・Base case: singleton tree has size 1 and height 0.

・Inductive hypothesis: assume true after first i links.

・Tree rooted at r changes only when a smaller (or equal) size tree

rooted at s is linked into r.

・Case 1. [height(r) > height(s)]

17

s

size = 3
(height = 1)

r

size = 8
(height = 2)

sizeʹ[r] > size[r]

≥ 2height(r)

= 2height ʹ(r).

inductive hypothesis

Link-by-size: analysis

Property. Using link-by-size, for every root node r : size[r] ≥ 2height(r).

Pf. [by induction on number of links]

・Base case: singleton tree has size 1 and height 0.

・Inductive hypothesis: assume true after first i links.

・Tree rooted at r changes only when a smaller (or equal) size tree

rooted at s is linked into r.

・Case 2. [height(r) ≤ height(s)]

18

s

size = 4
(height = 2)

sizeʹ[r] = size[r] + size[s]

≥ 2 size[s]

≥ 2 ⋅ 2height(s)

= 2height(s) + 1

= 2heightʹ(r). ▪r

size = 6
(height = 1)

link-by-size

inductive hypothesis

Link-by-size: analysis

Theorem. Using link-by-size, any UNION or FIND operation takes O(log n) time

in the worst case, where n is the number of elements.

 Pf.

・The running time of each operation is bounded by the tree height.

・By the previous property, the height is ≤ ⎣lg n⎦. ▪

Note. The UNION operation takes O(1) time except for its two calls to FIND.

19

lg n = log2 n

A tight upper bound

Theorem. Using link-by-size, a tree with n nodes can have height = lg n.

 Pf.

・Arrange 2k – 1 calls to UNION to form a binomial tree of order k.

・An order-k binomial tree has 2k nodes and height k. ▪

20

B0 B1 B2 B3 B4

SECTION 5.1.4

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of

smaller rank to root of larger rank; if tie, increase rank of larger root by 1.

Note. For now, rank = height.

22

34

8

9

16

5 20

7

UNION(5, 3)
rank = 1 rank = 2

Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of

smaller rank to root of larger rank; if tie, increase rank of larger root by 1.

Note. For now, rank = height.

23

34

8

9 16

5 20

7

rank = 2

Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of

smaller rank to root of larger rank; if tie, increase rank of larger root by 1.

24

FIND(x)

WHILE (x ≠ parent[x])

x ← parent[x].

RETURN x.

UNION(x, y)
__

r ← FIND(x).

s ← FIND(y).

IF (r = s) RETURN.

ELSE IF (rank[r] > rank[s])

parent[s] ← r.

ELSE IF (rank[r] < rank[s])

parent[r] ← s.

ELSE

parent[r] ← s.

rank[s] ← rank[s] + 1.

MAKE-SET(x)

parent[x] ← x.

rank[x] ← 0.

link-by-rank

Link-by-rank: properties

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
Pf. A node of rank k is created only by linking two roots of rank k – 1. ▪

PROPERTY 2. If x is not a root node, then rank[x] will never change again.

Pf. Rank changes only for roots; a nonroot never becomes a root. ▪

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.

Pf. The parent can change only for a root, so before linking parent[x] = x.
After x is linked-by-rank to new root r we have rank[r] > rank[x]. ▪

25

rank = 2

rank = 3

rank = 1

rank = 0

Link-by-rank: properties

PROPERTY 4. Any root node of rank k has ≥ 2k nodes in its tree.

Pf. [by induction on k]

・Base case: true for k = 0.

・Inductive hypothesis: assume true for k – 1.

・A node of rank k is created only by linking two roots of rank k – 1.

・By inductive hypothesis, each subtree has ≥ 2k – 1 nodes

 ⇒ resulting tree has ≥ 2k nodes. ▪

PROPERTY 5. The highest rank of a node is ≤ ⎣lg n⎦.
Pf. Immediate from PROPERTY 1 and PROPERTY 4. ▪

26

rank = 2
(4 nodes)

rank = 2
(8 nodes)

Link-by-rank: properties

PROPERTY 6. For any integer k ≥ 0, there are ≤ n / 2k nodes with rank k.
Pf.

・Any root node of rank k has ≥ 2k descendants. [PROPERTY 4]

・Any nonroot node of rank k has ≥ 2k descendants because:
- it had this property just before it became a nonroot [PROPERTY 4]
- its rank doesn’t change once it became a nonroot [PROPERTY 2]
- its set of descendants doesn’t change once it became a nonroot

・Different nodes of rank k can’t have common descendants. [PROPERTY 1]

▪

27

rank = 4
(1 node)

rank = 3
(1 node)

rank = 2
(2 nodes)

rank = 1
(5 nodes)

rank = 0
(11 nodes)

Link-by-rank: analysis

Theorem. Using link-by-rank, any UNION or FIND operation takes O(log n) time

in the worst case, where n is the number of elements.

 Pf.

・The running time of UNION and FIND is bounded by the tree height.

・By PROPERTY 5, the height is ≤ ⎣lg n⎦. ▪

28

SECTION 5.1.4

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

30

r

T1

x

T3

v
T4

w

T2

u

r

T1

x

T3

v

T4

w

T2

u

before path
compression

after path
compression

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

31

1211

9

10

8

6 7

3

x

2

54

0

1

r

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

32

10

8

6 7

31211

9

x

2

54

0

1

r

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

Path compression

33

10

8

6

1211

9

x

r

7

3

2

54

0

1

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

34

10

8

6

7

3 x

1211

9 2

54

0

1

r

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

35

10

8

6

7

3

x

1211

9 2

54

0

1

r

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

Note. Path compression does not change the rank of a node;

so height(x) ≤ rank[x] but they are not necessarily equal.

36

FIND(x)

IF (x ≠ parent[x])

parent[x] ← FIND(parent[x]).

RETURN parent[x].

this FIND implementation
changes the tree structure (!)

Path compression

Fact. Path compression with naïve linking can require Ω(n) time to perform

a single UNION or FIND operation, where n is the number of elements.

Pf. The height of the tree is n – 1 after the sequence of union operations:

UNION(1, 2), UNION(2, 3), …, UNION(n – 1, n). ▪

Theorem. [Tarjan–van Leeuwen 1984] Starting from an empty data

structure, path compression with naïve linking performs any intermixed

sequence of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n

elements in O(m log n) time.

Pf. Nontrivial (but omitted).

37

naïve linking: link root of first tree to root of second tree

SECTION 5.1.4

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the

same with or without path compression.

Pf. Path compression does not create new roots, change ranks, or move

elements from one tree to another. ▪

39

r

T2

y
T3

z

T1

x

r

T1

x

T3

z

T2

y

before path
compression

after path
compression

Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the

same with or without path compression.

COROLLARY. PROPERTY 2, 4–6 hold for link-by-rank with path compression.

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
PROPERTY 2. If x is not a root node, then rank[x] will never change again.

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.

PROPERTY 4. Any root node of rank k has ≥ 2k nodes in its tree.

PROPERTY 5. The highest rank of a node is ≤ ⎣lg n⎦.
PROPERTY 6. For any integer k ≥ 0, there are ≤ n / 2k nodes with rank k.

Bottom line. PROPERTY 1–6 hold for link-by-rank with path compression.

(but we need to recheck PROPERTY 1 and PROPERTY 3)

40

Link-by-rank with path compression: properties

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.

Pf. Path compression can make x point to only an ancestor of parent[x].

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
Pf. Path compression doesn’t change any ranks, but it can change parents.

If parent[x] doesn’t change during a path compression, the inequality

continues to hold; if parent[x] changes, then rank[parent[x]] strictly increases.

41

r

T2

y
T3

z

T1

x

r

T1

x

T3

z

T2

y

before path
compression

after path
compression

Iterated logarithm function

Def. The iterated logarithm function is defined by:

Note. We have lg* n ≤ 5 unless n exceeds the # atoms in the universe.

42

n lg* n

1 0

2 1

[3, 4] 2

[5, 16] 3

[17, 65536] 4

[65537, 265536] 5

iterated lg function 

lg� n =

�
0 B7 n � 1
1 + lg�(lg n) Qi?2`rBb2

Analysis

Divide nonzero ranks into the following groups:

・{ 1 }

・{ 2 }

・{ 3, 4 }

・{ 5, 6, …, 16 }

・{ 17, 18, …, 216 }

・{ 65537, 65538, …, 265536}

・...

Property 7. Every nonzero rank falls within one of the first lg* n groups.

Pf. The rank is between 0 and ⎣lg n⎦. [PROPERTY 5]

43

Creative accounting

Credits. A node receives credits as soon as it ceases to be a root.

If its rank is in the interval { k + 1, k + 2, …, 2k }, we give it 2k credits.

Proposition. Number of credits disbursed to all nodes is ≤ n lg* n.

Pf.

・All nodes in group k have rank ≥ k + 1.

・By PROPERTY 6, the number of nodes with rank ≥ k + 1 is at most

・Thus, nodes in group k need at most n credits in total.

・There are ≤ lg* n groups. [PROPERTY 7] ▪

44

n

2k+1
+

n

2k+2
+ · · · � n

2k

group k

Running time of FIND

Running time of FIND. Bounded by number of parent pointers followed.

・Recall: the rank strictly increases as you go up a tree. [PROPERTY 1]

・Case 0: parent[x] is a root ⇒ only happens for one link per FIND.

・Case 1: rank[parent[x]] is in a higher group than rank[x].

・Case 2: rank[parent[x]] is in the same group as rank[x].

Case 1. At most lg* n nodes on path can be in a higher group. [PROPERTY 7]

Case 2. These nodes are charged 1 credit to follow parent pointer.

・Each time x pays 1 credit, rank[parent[x]] strictly increases. [PROPERTY 1]

・Therefore, if rank[x] is in the group { k + 1, …, 2k }, the rank of its parent

will be in a higher group before x pays 2k credits.

・Once rank[parent[x]] is in a higher group than rank[x], it remains so

because:
- rank[x] does not change once it ceases to be a root. [PROPERTY 2]
- rank[parent[x]] does not decrease. [PROPERTY 3]
- thus, x has enough credits to pay until it becomes a Case 1 node. ▪

45

Link-by-rank with path compression

Theorem. Starting from an empty data structure, link-by-rank with path

compression performs any intermixed sequence of m ≥ n MAKE-SET, UNION,

and FIND operations on a set of n elements in O(m log* n) time.

46

UNION–FIND

‣ naïve linking

‣ link-by-size

‣ link-by-rank

‣ path compression

‣ link-by-rank with path compression

‣ context

Link-by-size with path compression

Theorem. [Fischer 1972] Starting from an empty data structure,

link-by-size with path compression performs any intermixed sequence

of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log log n) time.

48

Link-by-size with path compression

Theorem. [Hopcroft–Ullman 1973] Starting from an empty data structure,

link-by-size with path compression performs any intermixed sequence

of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log* n) time.

49

SIAM J. COMPUT.
Vol. 2, No. 4, December 1973

SET MERGING ALGORITHMS*
J. E. HOPCROFT" AND J. D. ULLMAN{

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words, algorithm, algorithmic analysis, computational complexity, data structure, equivalence
algorithm, merging, property grammar, set, spanning tree

1. Introduction. Let us consider the problem of efficiently merging sets
according to an initially unknown sequence of instructions, while at the same time
being able to determine the set containing a given element rapidly. This problem
appears as the essential part of several less abstract problems. For example, in [13
the problem of "equivalencing" symbolic addresses by an assembler was con-
sidered. Initially, each name is in a set by itself, i.e., it is equivalent to no other
name. An assembly language statement that sets name A equivalent to name B by
implication makes C equivalent to D if A and C were equivalent and B and D
were likewise equivalent. Thus, to make A and B equivalent, we must find the
sets (equivalence classes) of which A and B are currently members and merge
these sets, i.e., replace them by their union.

Another setting for this problem is the construction of spanning trees for an
undirected graph [2]. Initially, each vertex is in a set (connected component) by
itself. We find edges (n, m) by some strategy and determine the connected compo-
nents containing n and m. If these differ, we add (n, m) to the tree being constructed
and merge the components containing n and m, which now are connected by the
tree being formed. If n and m are already in the same component, we throw away
(n, m)and find a new edge.

A third application [33 is the implementation of property grammars I43, and
many others suggest themselves when it is realized that the task we discuss here
can be done in less than O(n log n) time.

By way of introduction, let us consider some of the more obvious data struc-
tures whereby objects could be kept in disjoint sets, these sets could be merged, and
the name of the set containing a given object could be determined. One possibility
is to represent each set by a tree. Each vertex of the tree would correspond to an
object in the set. Each object would have a pointer to the vertex representing it,
and each vertex would have a pointer to its father. If the vertex is a root, however,
the pointer would be zero to indicate the absence of a father. The name of the set
is attached to the root.

Received by the editors August 10, 1972, and in revised form May 18, 1973. This research was
supported by the National Science Foundation under Grant GJ-1052 and the Office of Naval Research
under Contract N00014-67-A-0071-0021.

5 Department of Computer Sciences, Cornell University, Ithaca, New York 14850.
:1: Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.

294D
ow

nl
oa

de
d

02
/2

0/
13

 to
 1

28
.1

12
.1

39
.1

95
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Link-by-size with path compression

Theorem. [Tarjan 1975] Starting from an empty data structure,

link-by-size with path compression performs any intermixed sequence

of m ≥ n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m α(m, n)) time, where α(m, n) is a functional inverse of the Ackermann

function.

50

Efficiency of a Good But Not Linear Set Union Algorithm

ROBERT ENDRE TAR JAN

University of California, Berkeley, Califorma

ABSTRACT. TWO types of instructmns for mampulating a family of disjoint sets which part i tmn a
umverse of n elements are considered FIND(x) computes the name of the (unique) set containing
element x UNION(A, B, C) combines sets A and B into a new set named C. A known algorithm for
implementing sequences of these mstructmns is examined I t is shown that , if t(m, n) as the maximum
time reqmred by a sequence of m > n FINDs and n -- 1 intermixed UNIONs, then kima(m, n) _~
t(m, n) < k:ma(m, n) for some positive constants ki and k2, where a(m, n) is related to a functional
inverse of Ackermann's functmn and as very slow-growing.

KEY WORDS AND PHRASES. algorithm, complexity, eqmvalence, partition, set umon, tree

CR C A T E G O R I E S : 4 12, 5.25, 5.32

Introduction

Suppose we w a n t to use two types of i n s t ruc t ions for m a n i p u l a t i n g d is jo in t sets. F I N D (x)
compu te s the n a m e of t he un ique set c o n t a i n i n g e l emen t x. U N I O N (A , B, C) combines
sets A a n d B in to a new set n a m e d C. In i t i a l ly we are g iven n e lements , each in a single-
t o n set. We t h e n wish to ca r ry ou t a sequence of rn >_ n F I N D s a n d n, - 1 i n t e r m i x e d
U N I O N s .

A n a l g o r i t h m for solving th i s p rob lem is useful in m a n y contexts , inc lud ing h a n d l i n g
E Q U I V A L E N C E a n d C O M M O N s t a t e m e n t s in FORTRAN [3, 6], f inding m i n i m u m span-
n ing t rees [9], c o m p u t i n g d o m i n a t o r s in d i rec ted g r a p h s [14], checking flow g raphs for
r educ ib i l i ty [13], ca lcu la t ing d e p t h s in t rees [2], c o m p u t i n g leas t c o m m o n ances to r s in
t rees [2], a n d solv ing a n effiine m i n i m u m prob lem [7].

Several a lgor i thms h a v e been deve loped [3, 5-7, 10, 12], n o t a b l y a v e r y compl i ca t ed one
b y H o p c r o f t a n d U l l m a n [7]. I t is a n ex tens ion of a n idea b y S t ea r n s a n d R o s e n k r a n t z
[12] a n d has a n 0 (m log* n) wors t -case r u n n i n g t ime, where

) t i m e s

log* n = m i n { i] log log . . . log (n) _< 1}.

All o the r k n o w n a lgo r i thms are slower, except for t he ve ry s imple one we ana lyze here,
wh ich has b e e n prev ious ly cons idered in [5, 7, 11].

E a c h set is r ep re sen t ed as a t r ee? E a c h ver tex in t h e t r ee r ep resen t s a n e l e m en t in t he

Copyright © 1975, Association for Computing Machinery, Inc General permission to republish, but
not for profit, all or part of this material is granted provided that ACM's copyright notice is given
and t ha t reference is made to the publication, to its date of issue, and to the fact tha t reprinting privi-
leges were granted by permmsion of the Association for Computing Machinery
Thin work was partially supported by the NSF, Contract No NSF-GJ-35604X, and by a Miller Re-
search Fellowship at the University of California, Berkeley, and by the Office of Naval Research,
Contract NR 044--402, Stanford University
Author's address' Department of Electrical Engineering and Computer Sciences, Computer Science
Division, Umvers~ty of California, Berkeley, CA 94720
1 For the purposes of this paper, a tree T is a directed graph with a umque vertex s, the root of T,
such that (i) no edge (s, v) exists in T, 0i) ff v ~ s, there is a unique edge (% w) in T, and (id) there
are no cycles in T If (v, w) is an edge of T (denoted by v --~ w), w as called the father of v (denoted
by w = f(v)) and v is called a son of w If there is a path from v to w an T (denoted by v ~ w), then

Journal of the Associatmn for Computing Machinery, Vol 22, No 2, Apml 1975, pp 215-225

Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not

primitive recursive.

Note. There are many inequivalent definitions.
51

A(m, n) =

�
��

��

n + 1 B7 m = 0

A(m � 1, 1) B7 m > 0 �M/ n = 0

A(m � 1, A(m, n � 1)) B7 m > 0 �M/ n > 0

Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not

primitive recursive.

Inverse Ackermann function.

52

�(m, n) = min{i � 1 : A(i, �m/n�) � log2 n}

“ I am not smart enough to understand this easily. ”

 — Raymond Seidel

A(m, n) =

�
��

��

n + 1 B7 m = 0

A(m � 1, 1) B7 m > 0 �M/ n = 0

A(m � 1, A(m, n � 1)) B7 m > 0 �M/ n > 0

Inverse Ackermann function

Definition.

Ex.

・α1(n) = ⎡ n / 2 ⎤.

・α2(n) = ⎡ lg n ⎤ = # of times we divide n by 2, until we reach 1.

・α3(n) = lg* n = # of times we apply the lg function to n, until we reach 1.

・α4(n) = # of times we apply the iterated lg function to n, until we reach 1.

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 216

α1(n) 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 … 215

α2(n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 … 16

α3(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 … 4

α4(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 … 3

2 � 65536 = 2 22

XXX
2

� �� �
65536 iBK2b

… 265536 … 2 ↑ 65536

… 265535 … huge

… 65536 … 2 ↑ 65535

… 5 … 65536

… 3 … 4

�k(n) =

�
��

��

�n/2� B7 k = 1

0 B7 n = 1 �M/ k � 2

1 + �k(�k�1(n)) Qi?2`rBb2

Inverse Ackermann function

Definition.

Property. For every n ≥ 5, the sequence α1(n), α2(n), α3(n), … converges to 3.

Ex. [n = 9876!] α1(n) ≥ 1035163, α2(n) = 116812, α3(n) = 6, α4(n) = 4, α5(n) = 3.

One-parameter inverse Ackermann. α(n) = min { k : αk(n) ≤ 3 }.

Ex. α(9876!) = 5.

Two-parameter inverse Ackermann. α(m, n) = min { k : αk(n) ≤ 3 + m / n }.

54

�k(n) =

�
��

��

�n/2� B7 k = 1

0 B7 n = 1 �M/ k � 2

1 + �k(�k�1(n)) Qi?2`rBb2

A tight lower bound

Theorem. [Fredman–Saks 1989] In the worst case, any CELL-PROBE(log n)
algorithm requires Ω(m α(m, n)) time to perform an intermixed sequence of

m MAKE-SET, UNION, and FIND operations on a set of n elements.

Cell-probe model. [Yao 1981] Count only number of words of memory

accessed; all other operations are free.

55

Michael L. Fredmarl ’

Bellcore and
U.C. San Diego

1. Summary of Results

Dynamic data stNcture problems involve the representation of
data in memory in such a way as to permit certain types of
modifications of the data (updates) and certain types of questions
about the data (queries). This paradigm encompasses many
fimdamental problems in computer science.

The purpose of this paper is to prove new lower and upper
bounds on the tie per operation to implement solutions to some
familiar dynamic data structure problems including list
representation, subset ranking, partial sums, and the set union
problem . The main features of our lower bounds are:

(1)

(2)

(3)

They hold in the cell probe model of computation (A. Yao
[18]) in which the time complexity of a sequential
computation is defined to be the number of words of
memory that are accessed. (The number of bits b in a
single word of memory is a parameter of the model). All
other computations are free. This model is at least as
powerful as a random access machine and allows for
unusual representation of data, indirect addressing etc. This
contrasts with most previous lower bounds which are
proved in models (e.g., algebraic, comparison, pointer
manipulation) which require restrictions on the way data is
represented and manipulated.

The lower bound method presented here can be used to
derive amortized complexities, worst cast per operation
complexities, and randomized complcxitics.

The results occasionally provide (nearly tight) tradeoffs
between the number R of words of memory that are read
per operation, the number W of memory words rewritten
per operation and the size b of each word. For the
problems considered here thcrc is a parameter n that
represents the size of the data set being manipulated and for
these problems b = logn is a natural register size to
consider. By letting b vary, our results illustrate the effect
of register size on time complexity. For instance, one
consequence of the resuhs is that for some of the problems
considered here, increasing the

The Cell Probe Complexity of Dynamic Data Structures

Michael E. Sak>. 2

U.C. San Diego,
Bellcore and

Rutgers University

register size from logn to polylog(n) only reduces the time
complexity by a constant factor. On the other hand,
decreasing the register size from logn to 1 increases time
complexity by a logn factor for one of the problems we
consider and only a loglogn factor for some other
problems.

The first two specific data structure problems for which we
obtain bounds are:

List Representation. This problem concerns the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U = (1, 2 ,..., n). The operations to be
supported are report(k). which returns the k” element of the list,
insert(k, u) which inserts element u into the list between the
elements in positions k - 1 and k, delete(k), which deletes the k’”
item.

Subset Rank. This problem concerns the representation of a
subset S of CJ = [1, 2 ,..., n]. The operations that must be
supported are the updates “insert item j into the set” and
“delete item j from the set” and the queries rank(j), which
returns the number of elements in S that are less than or equal
to j .

The natural word size for these problems is b = logn, which
allows an item of Cl or an index into the list to be stored in one
register. One simple solution to the list representation problem is
to maintain a vector v, whose k’” entry contains the kih item of
the list. The report operation can bc done in constant time, but
the insert and delete operations may take time linear in the length
of the list. Alternatively, one could store the items of the list with
each element having a pointer to its predecessor and successor in
the list. This allows for constant time updates (given a pointer to
the appropriate location), but requires linear cost for queries.

This problem can be solved much more efticiently by use of
balanced trees (such as AVL trees). When b = logn, the worst
case cost per operation using AVL trees is O(logn). If instead
b = 1, so that each bit access costs 1, then the AVL tree solution
requires 0 (log2n) per operation.

1 Supported in parr by NSF @-ant DCR85042~S
2 Su[m,rIci! !” CL? 5.” 4 SF <r--;t I)‘.!S57 I,?!.:! .‘,i* ! z.2 Force Office of

Scientific Rese~ch grylt AFOSR-oZi t

It is not hard to find similar upper bounds for the subset rank
problem (the algorithms for this problem are actually simpler than
AVL trees).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM O-89791-307-8/89/0005/0345 $1.50

The question is: are these upper bounds best possible? Our
results show that the upper bounds for the case of logn bit
registers are within a loglogn factor of optimal. On the other
hand, somewhat surprisingly, for the case of single bit registers
there are implementations for both of these problems that run in
time significantly faster than 0 (log2n) per operation.

Let CPROBE(b) denote the cell probe computational model
with register size b .

345

Path compaction variants

Path splitting. Make every node on path point to its grandparent.

56

r

T1

x1

T3

x3 T4

x4

T2

x2

r

T1

x1 T3

x3 T4

x4

T2

x2

before path
splitting

after path
splitting

T5

x5

T5

x5

Path compaction variants

Path halving. Make every other node on path point to its grandparent.

57

r

T1

x1

T3

x3

T4

x4

T2

x2

after path
halving

T5

x5

r

T1

x1

T3

x3 T4

x4

T2

x2

before path
halving

T5

x5

Linking variants

Link-by-size. Number of nodes in tree.

Link-by-rank. Rank of tree.

Link-by-random. Label each element with a random real number between

0.0 and 1.0. Link root with smaller label into root with larger label.

58

Disjoint-sets data structures

Theorem. [Tarjan–van Leeuwen 1984] Starting from an empty data

structure, link-by- { size, rank } combined with { path compression, path

splitting, path halving } performs any intermixed sequence of m ≥ n MAKE-SET,

UNION, and FIND operations on a set of n elements in O(m α(m, n)) time.

59

Worst-Case Analysis of Set Union Algorithms

ROBERT E. TAR JAN

AT&T Bell Laboratories, Murray Hdl, New Jersey

AND

JAN VAN LEEUWEN

Universtty of Utrecht. Utrecht. The Netherlands

Abstract. This paper analyzes the asymptotic worst-case running time of a number of variants of the
well-known method of path compression for maintaining a collection of disjoint sets under union. We
show that two one-pass methods proposed by van Leeuwen and van der Weide are asymptotically
optimal, whereas several other methods, including one proposed by Rein and advocated by Dijkstra,
are slower than the best methods.

Categories and Subject Descriptors: E. 1 [Data Structures]: Trees; F2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems---computations on discrete structures;
G2.1 [Discrete Mathematics]: Combinatories---combinatorial algorithms; (32.2 [Disertqe Mathemat-
ics]: Graph Theory--graph algortthms
General Terms: Algorithms, Theory
Additional Key Words and Phrases: Equivalence algorithm, set union, inverse Aekermann's function

1. Introduction
A well-known problem in data structures is the set union problem, defined as
follows: Carry out a sequence o f intermixed operat ions o f the following three kinds
on labeled sets:

make set(e, l): Create a new set with label l containing the single e lement e. This
operat ion requires that e initially be in no set.
f ind label(e): Return the label o f the set containing e lement e.
unite(e, f) : Combine the sets containing elements e and f i n t o a single set, whose
label is the label o f the old set containing e lement e. This operat ion requires that
elements e and f in i t i a l l y be in different sets.

Because of the constraint on make set, the sets existing at any t ime are disjoint
and define a parti t ion of the d e m e n t s into equivalence classes. For this reason the
set union problem has been called the equivalence problem by some authors. A
solution to the set union problem can be used in the compil ing o f F O R T R A N

Authors addre ,sses: R. E. Tarjan, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974; J. van Leeuwen, Department of Computer Science, University of Utrecht, Utrecht, The
Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0400-0245 $00.75

Journal of the Assoaatton for Computmg Machinery, Vot. 31, No. 2, April 1984, pp 245--281.

