Disjoint-sets data type

Goal. Support three operations on a collection of disjoint sets.

T UNION-FIND * MAKE-SET(x): create a new set containing only element x.

g - * FIND(x): return a canonical element in the set containing x.
» naive /in/(ing * UNION(x,y): replace the sets containing x and y with their union.
» link-by-size

. Performance parameters.

» link-by-rank « m= number of calls to MAKE-SET, FIND, and UNION.

» pafh compression * n=number of elements = number of calls to MAKE-SET.

» link-by-rank with path compression

Dynamic connectivity. Given an initially empty graph G, <— disjoint sets =

JON KLEINBERG - EVA TARDOS » context . connected components
support three operations.
* ADD-NODE(x): add node u. <«—— 1 MAKE-SET operation
Lecture slides by Kevin Wayne * ADD-EDGE(u,v): add an edge between nodes u and v. «— 1 Union operation

Copyright © 2005 Pearson-Addison Wesley * IS-CONNECTED(u, v): is there a path between u and v? <« 2 Fib operations

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 1/15/20 6:59 AM

Disjoint-sets data type: applications Disjoint-sets data type: applications
Original motivation. Compiling EQUIVALENCE, DIMENSION, and COMMON Applications.
statements in Fortran. + Percolation.

» Kruskal’s algorithm.
+ Connected components.

An Improved Equivalence + Computing LCAs in trees.
Algorithm + Computing dominators in digraphs.

BrrNARD A. GALLER AND MicHagL J. FisHER . i ini
University of Michigan, Ann Arbor, Michigan EqUIVaIence Of ﬂnlte state automata.

» Checking flow graphs for reducibility.

An algorithm for assigning storage on the basis of EQUIV-

ALENCE, DIMENSION and COMMON declarations is pre- * Hoshen-Kopelman algorithm in physics.

sented. The algorithm is based on a free structure, and has

reduced computation fime by 40 percent over a previously » Hinley-Milner polymorphic type inference.

published algorithm by identifying all equivalence classes

with one scan of the EQUIVALENCE declarations. The method » Morphological attribute openings and closings.
is applicable in any problem in which it is necessary fo identify

equivalence classes, given the element pairs defining the « Matlab’s Bw-LABEL function for image processing_
equivalence relation,

* Compiling EQUIVALENCE, DIMENSION and COMMON statements in Fortran.

Note. This 1964 paper also introduced key data structure for problem.

UNION-FIND

» naive linking

Vi

'\ Mlyorithm Design

JON KLEINBERG - EVA TARDOS

Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.

» Each element has an explicit parent pointer in the tree.
» The root serves as the canonical element (and points to itself).
* FIND(x): find the root of the tree containing x.
* UNION(x,y): merge trees containing x and y
(by making one root point to the other root).

UNION(3, 5)

Disjoint-sets data structure

Parent-link representation. Represent each set as a tree of elements.
» Each element has an explicit parent pointer in the tree.
» The root serves as the canonical element (and points to itself).
* FIND(x): find the root of the tree containing x.
* UNION(x,y): merge trees containing x and y
(by making one root point to the other root).

UNION(3, 5)

root
parent of 3 is 8 ~

s (7)
(o) (3) ONONO

G

(=D

Disjoint-sets data structure

Array representation. Represent each set as a tree of elements.
» Allocate an array parent(] of Iength n. <—— must know number of elements n a priori
* parent|i] = j means parent of element i is element j.

parent([] 715 |7 8|7 (57| 8] 8

[root

- parent of 3 is 8 ~

/ (7)
(2 (3) ONONO

G

Note. For brevity, we suppress arrows and self-loops in figures.

Naive linking

Naive linking. Link root of first tree to root of second tree.

UNION(5, 3)

Naive linking

Naive linking. Link root of first tree to root of second tree.

MAKE-SET(x) UNION(x, y)
parent[x] < x. r < FIND(x).
s < FIND(y).

parent[r] < s.
FIND(x)

WHILE (x # parent[x])
X < parent|x].

RETURN x.

Naive linking

Naive linking. Link root of first tree to root of second tree.

UNION(5, 3)

Naive linking: analysis

Theorem. Using naive linking, a UNION or FIND operation can take ©(n) time
in the worst case, where n is the number of elements.

max number of links on any
path from root to leaf node

Pf. /
» In the worst case, FIND takes time proportional to the height of the tree.
» Height of the tree is n -1 after the sequence of union operations:
UNION(1, 2), UNION(2, 3), ..., UNION(n — 1,).

height = 2 height = 3 height = n-1

I

UNION-FIND

» link-by-size

0\ ot Design

JON KLEINBERG - EVA TARDOS

Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION(5, 3)

Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION(5, 3)
size = 4 size =6
(2) (7)
ONONO ONONO
ONO
14
Link-by-size

Link-by-size. Maintain a tree size (number of nodes) for each root node.
Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

UNION(x, y)
MAKE-SET(x) r < FIND(x).
parent[x] < x. s < FIND(y).
size[x] < 1. IF (r=s) RETURN.

ELSE IF (size[r] > size[s])
FIND() parent[s] < r.

size[r] < size[r] + size[s]. |«—— link-by-size
WHILE (x # parent[x])
ELSE
Xx < parent|x].
parent[r] < s.
RETURN x.

size[s] < size[r] + size[s].

Link-by-size: analysis

Property. Using link-by-size, for every root node r: size[r] = 2"eish®,
Pf. [by induction on number of links]
* Base case: singleton tree has size 1 and height 0.
* Inductive hypothesis: assume true after first i links.
* Tree rooted at r changes only when a smaller (or equal) size tree
rooted at s is linked into r.
* Case 1. [height(r) > height(s)] size'[r] > size[r]

> 2height(r) <«—— inductive hypothesis

=) height'(r)

size =8
(height = 2)

size =3
(height = 1)

Link-by-size: analysis

Theorem. Using link-by-size, any UNION or FIND operation takes O(log n) time
in the worst case, where n is the number of elements.
Pf.

» The running time of each operation is bounded by the tree height.

* By the previous property, the heightis < |Ign]. =

t

lgn=1logxn

Note. The UNION operation takes O(1) time except for its two calls to FIND.

Link-by-size: analysis

Property. Using link-by-size, for every root node r: size[r] > 2"eish®,
Pf. [by induction on number of links]
* Base case: singleton tree has size 1 and height 0.
* Inductive hypothesis: assume true after first i links.
* Tree rooted at r changes only when a smaller (or equal) size tree
rooted at s is linked into r.

* Case 2. [height(r) < height(s)] size'[r] size[r] + size[s]

v

2 size[s] ~<«—— link-by-size

Q . Dheight(s) « inductive hypothesis

>
size = 6
(height = 1) = Qheigh(s)+1
size = 4 = 2h@ighr'(r)_ 0
(height = 2)
18
A tight upper bound

Theorem. Using link-by-size, a tree with n nodes can have height = Ig n.
Pf.

* Arrange 2¥-1 calls to UNION to form a binomial tree of order «.

* An order-k binomial tree has 2 nodes and height k. =

T AT T

B,

20

Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of
UNION-FIND smaller rank to root of larger rank; if tie, increase rank of larger root by 1.

» link-by-rank UNION(S, 3)

rank = 1 rank = 2

Sanjoy Dasgupta
Christos Papadimitriou
T o ° o o o e

SECTION 5.1.4

Note. For now, rank = height.

22

Link-by-rank Link-by-rank
Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of
smaller rank to root of larger rank; if tie, increase rank of larger root by 1. smaller rank to root of larger rank; if tie, increase rank of larger root by 1.
MAKE-SET(x) UNION(x, y)
parent[x] < x. r < FIND(x).

rank[x] < 0. s < FIND(y).
IF (r=s) RETURN.
ELSE IF (rank[r] > rankls])
parent[s] < r.

FIND(x) ELSE IF (rank[r] < rank[s])

parent[r] — 5 <«—— link-by-rank

WHILE (x # parent[x])
ELSE

X < parent[x].
parent[r] < s.
RETURN x.

Note. For now, rank = height. rankls] < rank[s] + 1.

23 24

Link-by-rank: properties

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
Pf. A node of rank k is created only by linking two roots of rank k- 1. =

PROPERTY 2. If x is not a root node, then rank[x] will never change again.
Pf. Rank changes only for roots; a nonroot never becomes a root. =

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.
Pf. The parent can change only for a root, so before linking parent[x] = x.
After x is linked-by-rank to new root r we have rank[r] > rank[x]. =

rank = 3

rank = 1

rank = 0
25

Link-by-rank: properties

PROPERTY 6. For any integer k> 0, there are < n/2*f nodes with rank k.
Pf.
* Any root node of rank k has = 2* descendants. [PROPERTY 4]
* Any nonroot node of rank k has = 2 descendants because:
- it had this property just before it became a nonroot [PROPERTY 4]
- its rank doesn’t change once it became a nonroot [PROPERTY 2]
- its set of descendants doesn’t change once it became a nonroot
+ Different nodes of rank k can’t have common descendants. [PROPERTY 1]

rank = 4
(1 node)

rank = 3
(1 node)

rank = 2
(2 nodes)

rank =1
(5 nodes)

rank =0
(11 nodes)
27

Link-by-rank: properties

PROPERTY 4. Any root node of rank k has > 2¢ nodes in its tree.
Pf. [by induction on k]
* Base case: true for k=0.
* Inductive hypothesis: assume true for k- 1.
* A node of rank k is created only by linking two roots of rank k—1.
* By inductive hypothesis, each subtree has =2*-! nodes
= resulting tree has =2 nodes. =

PROPERTY 5. The highest rank of a node is < |lgn].
Pf. Immediate from PROPERTY 1 and PROPERTY 4. =

rank = 2
(8 nodes)

rank = 2
(4 nodes)

-

Link-by-rank: analysis

Theorem. Using link-by-rank, any UNION or FIND operation takes O(log n) time
in the worst case, where n is the number of elements.
Pf.

» The running time of UNION and FIND is bounded by the tree height.

* By PROPERTY 5, the heightis < |lgn]. =

26

28

Path compression

Path compression. When finding the root r of the tree containing x,
UNION-FIND change the parent pointer of all nodes along the path to point directly to r.

before path
compression

» path compression

after path
compression

Sanjoy Dasgupta
Christos Papadimitriou
Umesh Vazirani

SECTION 5.1.4

30

Path compression Path compression
Path compression. When finding the root r of the tree containing x, Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r. change the parent pointer of all nodes along the path to point directly to r.

©—06—©
©
©

® @
ONONC)

31 32

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

33

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

35

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

Path compression

Path compression. When finding the root r of the tree containing x,
change the parent pointer of all nodes along the path to point directly to r.

FIND(x)

IF (x # parent[x])
this FIND implementation
parent[x] < FIND(parent[x]). changes the tree structure ()

RETURN parent[x].

Note. Path compression does not change the rank of a node;
SO height(x) < rank[x] but they are not necessarily equal.

34

36

Path compression

Fact. Path compression with naive linking can require Q(n) time to perform
a single UNION or FIND operation, where n is the number of elements.

Pf. The height of the tree is n—1 after the sequence of union operations:
UNION(1, 2), UNION(2, 3), ..., UNION(n — 1,n). =

naive linking: link root of first tree to root of second tree

Theorem. [Tarjan-van Leeuwen 1984] Starting from an empty data
structure, path compression with naive linking performs any intermixed
sequence of m = n MAKE-SET, UNION, and FIND operations on a set of
elements in O(m log n) time.

Pf. Nontrivial (but omitted).

37

Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the
same with or without path compression.

Pf. Path compression does not create new roots, change ranks, or move
elements from one tree to another. =

before path after path
compression

compression

39

UNION-FIND

» link-by-rank with path compression

Sanjoy Dasgupta
Christos Papadimitriou
Umesh Vazirani

SECTION 5.1.4

Link-by-rank with path compression: properties

PROPERTY. The tree roots, node ranks, and elements within a tree are the
same with or without path compression.

COROLLARY. PROPERTY 2, 4-6 hold for link-by-rank with path compression.

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].
PROPERTY 2. If x is not a root node, then rank[x] will never change again.
PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.
PROPERTY 4. Any root node of rank k has > 2¥ nodes in its tree.

PROPERTY 5. The highest rank of a node is < |lgn].

PROPERTY 6. For any integer k> 0, there are < n/2* nodes with rank k.

Bottom line. PROPERTY 1-6 hold for link-by-rank with path compression.
(but we need to recheck PROPERTY 1 and PROPERTY 3)

40

Link-by-rank with path compression: properties

PROPERTY 3. If parent[x] changes, then rank[parent[x]] strictly increases.
Pf. Path compression can make x point to only an ancestor of parent|x].

PROPERTY 1. If x is not a root node, then rank[x] < rank[parent[x]].

Pf. Path compression doesn’t change any ranks, but it can change parents.
If parent[x] doesn’t change during a path compression, the inequality
continues to hold; if parent[x] changes, then rank[parent[x]] strictly increases.

before path after path
compression

compression

41

Analysis

Divide nonzero ranks into the following groups:
{1}
{2}
* {3,4}
. {5,6,...,16}
© {17,18,...,216}
* {65537,65538, ...,26536}

Property 7. Every nonzero rank falls within one of the first 1g* n groups.
Pf. The rank is between 0 and |lg n]. [PROPERTY 5]

43

Iterated logarithm function

Def. The iterated logarithm function is defined by:

lg"n = { 0 2 if n < 1 ; (1)
1+1g"(Ign) otherwise

3,4] 2

(5, 16] 3

[17,65536] 4

[65537, 265536] 5

iterated lg function

Note. We have Ig*n < 5 unless n exceeds the # atoms in the universe.

Creative accounting

Credits. A node receives credits as soon as it ceases to be a root.
If its rank is in the interval { k+1,k+2,...,2%}, we give it 2¢ credits.
group K
Proposition. Number of credits disbursed to all nodes is < nIg*n.
Pf.
* All nodes in group k have rank = k + 1.
* By PROPERTY 6, the number of nodes with rank = k+ 1 is at most

n n n
ok+1 + ok+2 T ocoe & ok

* Thus, nodes in group k need at most n credits in total.
* There are < Ig*n groups. [PROPERTY 7] =

42

44

Running time of FIND

Running time of FIND. Bounded by number of parent pointers followed.
» Recall: the rank strictly increases as you go up a tree. [PROPERTY 1]
* Case 0: parent[x] is a root = only happens for one link per FIND.
* Case 1: rank[parent[x]] is in a higher group than rank[x].
* Case 2: rank[parent[x]] is in the same group as rank[x].

Case 1. At most Ig*n nodes on path can be in a higher group. [PROPERTY 7]

Case 2. These nodes are charged 1 credit to follow parent pointer.

* Each time x pays 1 credit, rank[parent[x]] strictly increases. [PROPERTY 1]

* Therefore, if rank[x] is in the group { k+1,...,2%}, the rank of its parent
will be in a higher group before x pays 2* credits.

* Once rank[parent[x]] is in a higher group than rank[x], it remains so
because:
- rank[x] does not change once it ceases to be a root. [PROPERTY 2]
- rank[parent[x]] does not decrease. [PROPERTY 3]

- thus, x has enough credits to pay until it becomes a Case 1 node. = i

UNION-FIND

» confext

Link-by-rank with path compression

Theorem. Starting from an empty data structure, link-by-rank with path
compression performs any intermixed sequence of m >n MAKE-SET, UNION,
and FIND operations on a set of n elements in O(m log* n) time.

46

Link-by-size with path compression

Theorem. [Fischer 1972] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log log n) time.

MASSACHUSETTS INSTITUTE OF TECHNOLOBY
A. 1. LABORATORY

Artificial Intelligence
Memo Na. 256 April 1972

EFFICIENCY OF EQUIVALENCE ALGORITHMS

Michael J. Fischer

1. INTRODUCTION

The equivalence problem is to determine the finest partition
on a set that is consistent with a sequence of assertions of the
form "x = y". A strategy for doing this on a computer processes
the assertions serially, maintaining always in storage a represen-
tation of the partition defined by the asserticms so far emcoun-
tered. To process the command "x = y", the equivalence classes of
x and y are determined. 1f they are the same, nothing further is
done; otherwise the two classes are merged together.

48

Link-by-size with path compression

Theorem. [Hopcroft-Ullman 1973] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m log* n) time.

SIAM J. Compur.
Vol. 2, No. 4, December 1973

SET MERGING ALGORITHMS*

J. E. HOPCROFT*t anp J. D. ULLMAN}

Abstract. This paper considers the problem of merging sets formed from a total of n items in such
a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms
using different data structures are discussed. The execution times of both algorithms are bounded by a
constant times nG(n), where G(n) is a function whose asymptotic growth rate is less than that of any
finite number of logarithms of n.

Key words. algorithm. algorithmic analysis, computational complexity. data structure, equivalence
algorithm, merging, property grammar, set, spanning tree

49

Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not
primitive recursive.

n+1 ifm=0
A(m,n) = ¢ A(m —1,1) ifm>0andn=0
Am—1,A(m,n—1)) ifm>0andn>0

Zum Hilbertschen Aufbau der reellen Zahlen.
Von
Wilhelm Ackermann in Gottingen.

Um den Beweis fir die von Cantor sufgestellte Vermutung zu er-
bringen, daB sich die Menge der reellen Zahlen, d. h. der zahlentheoretischen
Funktionen, mit Hilfe der Zahlen der zweiten Zahlklasse auszahlen Jit,
benutzt Hilbert einen speziellen Aufbau der zahlentheoretischen Funktionen.
Wesentlich bei diesem Aufbau ist der Begrifi des Typs einer Funktion.
Eine Funktion vom Typ 1 ist eine solche, deren Argumente und Werte
ganze Zahlen sind, also cine gewhnliche zablentheoretische Funktion. Die
Funktionen vom Typ 2 sind die Funktionenfunktionen. Eine derartige
Funktion ordnet jeder zahlentheoretischen Funktion eine Zahl zu. Eine
Funktion vom Typ 3 ordnet wieder den Funktionenfunktionen Zahlen zu,
usw. Die Definition der Typen 1i8t sich auch ins Transfinite fortsetzen,
fiir den Gegenstand dieser Arbeit ist das aber nicht von Belang?).

Note. There are many inequivalent definitions. .

Link-by-size with path compression

Theorem. [Tarjan 1975] Starting from an empty data structure,
link-by-size with path compression performs any intermixed sequence
of m = n MAKE-SET, UNION, and FIND operations on a set of n elements

in O(m a(m, n)) time, where a(m, n) is a functional inverse of the Ackermann
function.

Efficiency of a Good But Not Linear Set Union Algorithm

ROBERT ENDRE TARJAN

Unaversity of California, Berkeley, Califorma

ABSTRACT. 'TWo types of instructions for mampulating a family of disjomnt sets which partition a
universe of n elements are considered FIND(z) computes the name of the (unique) set containing
element z UNION(4, B, C) combines sets A and B into a new set named C. A known algorithm for
implementing sequences of these instructions is examined It 1s shown that, if ¢(m, n) 18 the maximum
time required by a sequence of m > n FINDs and n — 1 intermixed UNIONS, then kuna(m, n) <
tm, n) £ kama(m, n) for some posttive constants ky and kz, where a(m, n) is related to a functional
inverse of Ackermann’s function and 1s very slow-growing.

Ackermann function

Ackermann function. [Ackermann 1928] A computable function that is not
primitive recursive.

n+1 ifm=0
A(m,n) = ¢ A(m —1,1) ifm>0andn=0
Am—1,A(m,n—1)) ifm>0andn>0

Inverse Ackermann function.

a(m,n) =min{i > 1: A(i, [m/n]) > logan}

“ I am not smart enough to understand this easily. ”

— Raymond Seidel

50

52

Inverse Ackermann function Inverse Ackermann function

Definition. n/2] T Definition. n/2] fEo1
ag(n) =<0 ifn=1and k> 2 ag(n) =<0 ifn=1and k> 2
1+ ag(ak—1(n)) otherwise 1+ ag(ak—1(n)) otherwise
Ex.

* ai(n) =[n/2].

* ax(n) =[lgn] = # of times we divide n by 2, until we reach 1.

* asz(n) = lg*n =# of times we apply the Ig function to n, until we reach 1.
* au(n) = # of times we apply the iterated Ig function to n, until we reach 1.

Property. For every n =5, the sequence ai(n), ax(n), as(n), ... converges to 3.
Ex. [n=9876!] ai(n)= 103163, ox(n)= 116812, as(n) = 6, au(n) = 4, as(n) = 3.

2
522"
2165536 = 22
——
65536 times

One-parameter inverse Ackermann. a(n)=min { k: ox(n) < 3 }.
Ex. a(9876!) = 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 216 265536 2 165536
15 65535 " B .
am | 1|1]2)2]3/3]4)4]5/5]6/6]7)7]8]8].]128]..)2 - huge Two-parameter inverse Ackermann. a(m,n)=min{k:axn) < 3+m/n}.
a2(n) 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 16 ... 65536 2 165535
az(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 5 65536
a4(n) 0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4
53

A tight lower bound Path compaction variants

Theorem. [Fredman-Saks 1989] In the worst case, any CELL-PROBE(log n) Path splitting. Make every node on path point to its grandparent.
algorithm requires Q(m a(m, n)) time to perform an intermixed sequence of

before path
splitting

m MAKE-SET, UNION, and FIND operations on a set of n elements.

Cell-probe model. [Yao 1981] Count only number of words of memory
accessed; all other operations are free.

The Cell Probe Complexity of Dynamic Data Structures

after path

Michael L. Fredman ' Michacl E. Saks * splitting
Bellcore and
U.C. San Diego

U.C. San Diego,
Bellcore and
Rutgers University

register size from logn 10 polylog(n) only reduces the time
complexity by a constant factor. On’ the other hand,
decreasing the register size from loga 1o 1 increases time
complexity by a logn factor for one of the problems we
consider and only a loglogn factor for some other
about the data (queries). This paradigm encompasses many problems.

1. Summary of Results

Dynamic data structure problems involve the representation of
data in memory in such a way as to permit certain types of
modifications of the data (updates) and certain types of questions

fundamental problems in computer science.

‘The purpose of this paper is o prove new lower and upper
bounds on the time per operation to implement solutions o some
familiar dynamic data structure problems including list
representation, subsel ranking, partial sums, and the sel union
problem . The main features of our lower bounds are:

(1) Thev hold in the cell probe model of commutation (A Yao

The first two specific data structure problems for which we
obtain bounds are:

List Representation. This problem concems the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U =(1,2,.,n). The operations to be
supported are report(k), which returns the k* element of the list,
Insert(k. u) which inserts element u into the list between the

55

56

Path compaction variants

Path halving. Make every other node on path point to its grandparent.

before path
halving

after path
halving

57

Disjoint-sets data structures

Theorem. [Tarjan-van Leeuwen 1984] Starting from an empty data
structure, link-by- { size, rank } combined with { path compression, path
splitting, path halving } performs any intermixed sequence of m > n MAKE-SET,
UNION, and FIND operations on a set of n elements in O(m a(m, n)) time.

Worst-Case Analysis of Set Union Algorithms

ROBERT E. TARJAN

AT&T Bell Laboratories, Murray Hull, New Jersey

AND

JAN VAN LEEUWEN

University of Utrecht, Utrecht, The Netherlands

Abstract. This paper analyzes the asymptotic worst-case running time of a2 number of variants of the
well-known method of path compression for maintaining a collection of disjoint sets under union, We
show that two one-pass methods proposed by van Leeuwen and van der Weide are asympotically

optimal, whereas several other methods, including one proposed by Rem and advocated by Dijkstra,
are slower than the best methods.

59

Linking variants

Link-by-size. Number of nodes in tree.

Link-by-rank. Rank of tree.

Link-by-random. Label each element with a random real number between
0.0 and 1.0. Link root with smaller label into root with larger label.

58

