LONGEST INCREASING SUBSEQUENCE
LONGEST INCREASING SUBSEQUENCE

Longest increasing subsequence. Given a sequence of elements c_1, c_2, \ldots, c_n from a totally ordered universe, find the longest increasing subsequence.

Ex. 7 2 8 1 3 4 10 6 9 5

Elements must be in order (but not necessarily contiguous)

Application. Part of MUMmer system for aligning whole genomes.
Patience solitaire

Rules. Deal cards c_1, c_2, \ldots, c_n into piles according to two rules:
 • Can put next card into a new singleton pile.
 • Can put next card on a pile if it’s smaller than the top card of pile.

Goal. Form as few piles as possible.
Patience-LIS: weak duality

Weak duality. Length of any increasing subsequence ≤ number of piles.

Pf.
• Cards within a pile form a decreasing subsequence.
• Any increasing sequence can use at most one card per pile. □
Patience-LIS: weak duality

Weak duality. Length of any increasing subsequence \leq number of piles.

Corollary. If length of an increasing subsequence $=$ number of piles, then both are optimal.
Patience: greedy algorithm

Greedy algorithm. Place each card on **leftmost** pile that fits.
Patience: greedy algorithm

Greedy algorithm. Place each card on **leftmost** pile that fits.

Observation. At any stage during greedy algorithm, top cards of piles increase from left to right.

![Diagram of card piles](image-url)
Patience-LIS: strong duality

Theorem. [Hammersley 1972] Min number of piles = max length of an IS; moreover, greedy algorithm finds both.

Pf. Each card maintains a pointer to top card in previous pile.
- Following pointers yields an increasing subsequence.
- Length of this increasing subsequence = number of piles.
- By weak duality corollary, both are optimal. ▪
Greedy algorithm: implementation

Theorem. The greedy algorithm can be implemented in $O(n \log n)$ time.

- Use n stacks to represent n piles.
- Use binary search to find leftmost legal pile.

PATIENCE-SORT(n, c_1, c_2, \ldots, c_n)

INITIALIZE an array of n empty stacks S_1, S_2, \ldots, S_n.

FOR $i = 1$ **TO** n

- $S_j \leftarrow$ binary search to find leftmost stack that fits c_i.
- **PUSH**(S_j, c_i).
- $\text{pred}[c_i] \leftarrow \text{PEEK}(S_{j-1})$. \hspace{1cm} null if $j = 1$

RETURN sequence formed by following predecessor pointers from top card of rightmost nonempty stack.
Patience sorting

Patience sorting. [Ross, Mallows 1962]

- Deal cards using greedy algorithm.
- Repeatedly remove the smallest card among the remaining piles.

Theorem. Can implement patience sorting in $O(n \log n)$ time.

- To represent piles: use an array of stacks.
- To deal cards: use binary search to find leftmost pile.
- To remove cards: maintain piles in a binary heap (priority = top card).

Theorem. The expected number of piles $\leq 2n^{1/2}$.

Corollary. An elementary $O(n^{3/2})$ probabilistic sorting algorithm.

Speculation. [Persi Diaconis] Is patience sorting the fastest way to sort a deck of cards by hand?
Bonus theorem

Theorem. [Erdős–Szekeres 1935] Any sequence of $n^2 + 1$ distinct real numbers either has an increasing or decreasing subsequence of length $n + 1$.

Pf. [by pigeonhole principle]
- Run greedy patience algorithm.
- Decreasing subsequence in each pile.
- Increasing subsequence using one card per pile.
- If $\leq n$ cards per pile and $\leq n$ piles, then $\leq n^2$ cards. ※