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Geometric divide-and-conquer

To find a point in P:
* Maintain ellipsoid E containing P.
* |f center of ellipsoid z is in P stop;

otherwise find hyperplane separating z from P.

separating
hyperplane

and consider corresponding
half-ellipsoid E=ENH
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Geometric divide-and-conquer

To find a point in P:
* Maintain ellipsoid E containing P.
* |f center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.
* Find smallest ellipsoid E' containing half-ellipsoid.

/

Lowner—John ellipsoid
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Geometric divide-and-conquer

To find a point in P:
* Maintain ellipsoid E containing P.
* |f center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.
* Find smallest ellipsoid E' containing half-ellipsoid.
* Repeat.



Optimization to feasibility

Standard form.

Ax = b form.

x=0
dual feasible

optimal



Ellipsoid algorithm

Goal. Given A € fimxn and b € R, find x € NR» such that Ax < b.
H_/

P

Ellipsoid algorithm.
- Let E, be an ellipsoid containing P.
* k=0.
* While center z% of ellipsoid Ex is not in P: /
- find a constraint, say a- x < B, that is violated by z*

- let E&1 be min volume ellipsoid containing EKN{x:a-x<a- zk}
—
- k=k+1 N\ e

easy to compute half-ellipsoid 4 E

enumerate constraints

_/




Shrinking lemma

Ellipsoid. Given D € i positive definite and z € R~ , then

E ={xER":(x-2))D'(x-2) =1}

is an ellipsoid centered on z with vol(E) = JJdet(D) x vol(B(0, 1))
N
unit sphere

Key lemma. Every half-ellipsoid ¥ E is contained in an ellipsoid E’
with vol(E") / vol(E) < e - 1/@n+1),
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Shrinking lemma: unit sphere

Special case. E = unit sphere, H={x:x, 20 }.

E = {x: i(xi)2 <1} E ={x: (”7”)2(361 ==
i=1

Claim. E'is an ellipsoid containing » E=FE N H.
Pf. f xE K E:
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Shrinking lemma: unit sphere

Special case. E = unit sphere, H={x:x, 20 }.

n+l

E={x: 30" =1} E ={x: (=) (x - +251 3(x) = 1)
i=1 i=2

Claim. E'is an ellipsoid containing » E=FE N H.
Pf. Volume of ellipsoid is proportional to side lengths:
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Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid WE=EN{x: a-x<a- z} is defined by:

, 1 Da , n’ 2 Daa'D
¢ =T , D= — D - T
n+1 ~la"Da n -1 n+1l a Da

E ={xeER": (x-) D)'(x-7) =1}

Moreover, vol(E') / vol(E) < e - 1/@n+1),

Pf sketch.
« We proved E = unit sphere, H={x:x,=20}
 Ellipsoids are affine transformations of unit spheres.

« Volume ratios are preserved under affine transformations.
H

/
- ’
’
’
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Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid WE=EN{x: a-x<a- z} is defined by:

, 1 Da , n’ 2 Daa'D
¢ =T , D= — D - T
n+1 ~la"Da n -1 n+1l a Da

E ={xeER": (x-) D)'(x-7) =1}

Moreover, vol(E') / vol(E) < e - 1/@n+1),

Corollary. Ellipsoid algorithm terminates after at most
2(n+1) In (vol(E,) / vol(P)) steps.
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Ellipsoid algorithm

Theorem. LPis in P.

Pf sketch.
« Shrinking lemma.

Set initial ellipsoid E, so that vol(E,) < 2¢L.

Bit complexity (to deal with square roots).
Purify to vertex solution.

Caveat. This is a theoretical result. Do not implement.

\

O(mn3L) arithmetic ops on numbers of size O(L),
where L = number of bits to encode input

Perturb Ax< b to Ax < b + ¢ = either P is empty or vol(P) = 2-<L,

15
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Separation oracle

Separation oracle. Given x € i, assert x is in P or return a
separating hyperplane.

Theorem. Let S C {0,1}7, P=conv(S), and c € Z». Assume that P is full-

dimensional. There exists an algorithm that finds min { ¢Tx: x & P } using a
poly number of ops and calls to separation oracle for P.

Remark. Don’t need a polynomial representation of P.
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Min st cut problem

Min s-t cut. Given digraph G =(V, E), distinguished vertices s and ¢, and
edge costs ¢, >0, find a min weight set of edges that intersects every s-t
path.

s.t. Y x, = 1 V s—tpaths P

e € P
X, 0 \

exponentially
many constraints

vV

Separation oracle. Shortest s-t path with weights x,.
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Min cost arborescence problem

Min cost arborescene. Given digraph G =(V, E), distinguished vertex r, and
edge costs ¢, >0, find a subgraph of G that contains a directed path from r
to all other vertices.

min ¢’ x
s. t. D x, =z 1 VSCV where reS
e = @, ]) e E
€S, J&S \ exponentially
x = 0 many constraints

Separation oracle. Perform at most n— 1 min cut procedures with r as the
source and edge weights x.,.

Note. Faster combinatorial algorithm exist.
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Ellipsoid and combinatorial optimization

Grotschel-Lovasz-Schrijver. Poly-time algorithms for:

Network synthesis.

Matroid intersection.

Chinese postman problem.

Min weight perfect matching.
Minimize submodular set function.
Stability number of a perfect graph.
Covering of directed cuts of a digraph.

20



Totally unimodular matrices

Def. A matrix A €fim is totally unimodular if the determinant of each
square submatrix is 0, +1, or —1.

00 10 1 -1 -]
Lo b -1 1 0 0 0
o 110 0 -1 -1 0 1
11 0 1] ' '

no yes



Totally unimodular matrices

Theorem. If Ais totally unimodular and b is integral, then every vertex of
{Ax=b,x=01}is integral.

Pf. Each vertex is a solution to Az;x =b for invertible A,.
Apply Cramer’s rule.

Cramer’s rule. For B € fi=n invertible, b € Nr,
the solution to Bx = b is given by:

det(B) replace ith column of B with b
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Totally unimodular matrices

Theorem. A (0,+1,-1) matrix is totally unimodular if it contains at most
one +1 and at most one —1 in each column.

10 1 -1 -1
-1 1 0 0 0
0 -1 -1 0 1

Pf. [induction on size of a square submatrix B]
« Base case: 1-by-1 matrix.
* Case 1: a column of B is all Os.
* Case 2: a column of B has exactly one 1 (or one -1).
* Case 3: all columns of B have exactly one 1 and one -1.

Ex. Network flow matrices.



Assignment problem

Assignment problem. Assign n jobs to n machines to minimize total cost,
where ¢; = cost of assignment job j to machine i.

| 2' 3 4’ 5'
. ; o s s

14 z 10.16 14
3 13.19 10 ; 13 11 19.
4 .13 4.13 12 20

x| n. ; .9

cost=3+10+11+20+9=53 cost=8+7+20+8+11 =44
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Assignment problem: LP formulation

(P) min i i Cii X;;

Interpretation: if x;=1,

n
S. L Exij = 1 l<i=<n then assign job j to machine i
j=l
m
dx;, = 1 lsj=n
i=1
x; =z 0 I=i,j=n

Theorem. [Birkhoff 1946, von Neumann 1953] All vertices of the above
polyhedron are {0-1}-valued.

Pf. Total unimodularity.

Corollary. There exist poly-time algorithm for assignment problem.

25



LINEAR PROGRAMMING I

» matrix games




Matrix games

Matrix game. For A € iimx», define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a,.

column player B
1 2

2 +3
row player A

2 43 -4

Ex. A plays row 2: B plays column 2; A loses $4.
Ex. A plays row 1: B plays column 1; A loses $2.

A canh guarantee to lose at most $2.



Matrix games

Matrix game. For A € iimx», define a game for two players.

= Row player A selects one of rows i=1,2,...,m.
= Column player B selects one of columns j=1,2,...,n.
= Payoff to row player is a,.

column player B
1 2

2 +3
row player A

2 43 -4

Ex. A plays row 1 with prob 3/5 and row 2 with prob 2/5.

* B plays column 1: A wins =-2(3/5) + 3(2/5) = 0.
* B plays column 2: A wins =+3(3/5) - 4(2/5) = 1/5.

A can guarantee to lose at most $0 (in expectation).
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Matrix games

Matrix game. For A € iimx», define a game for two players.

= Row player A selects one of rows i=1,2,...,m.
= Column player B selects one of columns j=1,2,...,n.
= Payoff to row player is a,.

column player B
1 2

2 +3
row player A

2 43 -4

Ex. A plays row 1 with prob 7/12 and row 2 with prob 5/12.
* B plays column 1: A wins =-2(7/12) + 3(5/12) = 1/12 on average.
* B plays column 2: A wins =+3(7/12) - 4(5/12) = 1/12 on average.

A can guarantee to win 1/12 in expectation.
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Matrix games

Matrix game. For A € iimx», define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a,.

column player B
1 2

2 +3
row player A

2 43 -4

Ex. B plays column 1 with prob 7/12 and column 2 with prob 5/12.

* A plays row 1: B loses =-2(7/12) + 3(5/12) = 1/12 on average.

* A plays row 2: B loses =+3(7/12) - 4(5/12) = 1/12 on average.

B can guarantee to lose at most 1/12.
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Matrix games

Matrix game. For A € iimx», define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a,.

Pure strategy. Player chooses a given row (or column).

Mixed strategy. Player chooses a row (or column) at random, according to
some probability distribution x&€ A (ory€A). \

L T
Expected payoff. 21 ]_21%' Xy, =y Ax A, = {zEER” - Sz.=1, 2,20
=l J= k=1

stochastic vector

|
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Matrix games: LP formulation

Row player strategy. If row player uses strategy x, he guarantees an

expected payoff of min y" Ax so, goal is to find max min y' Ax
YEA, XEA, yYEA, y\
nested min max not linear in X,y

Observation. If row player uses fixed strategy x, then column player wants

to solve linear program:
fixed vector

\

w»n
H
M=
<
~
Il
[

<
\
-]

. T .
min y’ Ax = min ) a,; X,
yEA, Jj o
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Matrix games: LP formulation

Optimal strategy for row player:

Equivalent to following linear program:

every optimal solution (x*, z¥)
to (P) satisfies at least of one
these constraints with equality,
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Matrix games

Optimal strategy for row player:

Optimal strategy for column player:

Observation. (P") and (D’) are LP duals!

34



Minimax theorem

Theorem. [von Neumann 1928] For every A € fimxn,

. T . T
max min y Ax = min max y Ax
xXEAN, YEA, YEA, x€EA,

Pf. LP duality.

Consequence. As long as your mixed strategy is optimal,
you can reveal it to your opponent.

Theorem. Nash equilibrium exist for 2-person zero-sum games.

Moreover, they are poly-time computable.

35



Application: poker

Kuhn’s simplified poker.
« Deck of 3 cards, numbered 1, 2, and 3.
- Each player antes $1.
* One round of betting ($1 bet).

 |f pass-pass, pass-bet-bet, or bet-bet, player with higher card wins;
otherwise player that bet wins.

Strategies for X. Strategies for Y.

1. Pass; if Y bets; pass. 1. Pass no matter what X did.

2. Pass; if Y bets, bet. 2. If X passes, pass; if X bets, bet.
3. Bet. 3. If X passes, bet; if X bets, pass.

4. Bet no matter what X did.

>
< P D

o €

kSN

< »
N e

>
<
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Application: poker

Optimal strategy for X. bluft 17% of time
 When dealt 1, mix strategies 1 and 3 in ratio 5:1.
* When dealt 2, mix strategies 1 and 2 in ratio 1:1.

 When dealt 3, mix strategies 2 and 3 in ratio 1:1.

N

trap 50% of time
Optimal strategy for Y.
 When dealt 1, mix strategies 1 and 3 in ratio 2:1.

« When dealt 2, mix strategies 1 and 2 in ratio 2:1. ™ |
bluff 33% of time

« When dealt 3, use strategy 4.

Value of game. —-1/18 for X.

Gambling lessons. Optimal strategies involve bluffing and trapping.
Player who acts last has advantage.

37
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Strongly polynomial

An algorithm is strongly polynomial if:

- Elementary ops: +, —, *, /, comparison.

« # ops is polynomial in the dimension of input.

« Polynomial space on a classic TM.

EX.
EX.
EX.

EX.
EX.

Mergesort: O(nlg n).
Edmonds—Karp max-flow: O(mn?).
Gaussian elimination: O(3) arithmetic ops.

weakly polynomial
Ellipsoid: O(mn3L) arithmetic ops. /
Ye's interior point method: O(n3L) arithmetic ops.

Open problem. Strongly-polynomial algorithm for LP ?

Open problem. Is LP in Py?

39



New York Times article

An Approach to leflcult Problems

Mathematicmns disagree asto the

ultimate practical value of Leonid:

| Khachiyan’s new technique, but con-

‘cur that in any case it is an impor-

- tant theoretical accomplishment.

 Mr. Khachiyan's method is be
lieved to offer an approach for the

linear programming of computers to

~solve so-called ‘‘traveling sales-
man” problems. Such problems are

. among the most intractable in
mathematics. They involve, for in-

- stance, finding the shortest route by -
~which a salesman could visit a num- .

“ber of cities without his path touch-
- ing the same city twice..

_Each time a new city is added to )

' theroute, the problem becomes very

much more complex. Very large
‘numbers of variables must be calcu- |

lated from large numbers of equa

| tions using a system of linear pro-
gramming. At a certain point, the
compexity bec,omes so great thata
- computer would require billions of

years to find a solution.

In the past, “traveling salesmen"
problems, including the efficient
scheduling of airline crews or hospi-

tal nursing statfs, have been solved -

on computers using the “simplex

‘method’’ invented by George B.

Dantzig of Stanford University.

As a rule, the simplex method
- works well, but it offers no guaran-
tee that after a certain number of
‘computer steps it will always find an

answer. Mr. Khachiyan’s approach
offers a way of telling right from the

‘start whether or not a problem will
" be soluble in a given number of

steps.

‘Two mathematicians conducting
research at Stanford already have
applied the Khachiyan method to de-

. velop a program for a pocket calcu-
lator, which has solved problems
‘that would not have been possible

 with a pocket calculator using the

simplex method.
Mathematically, the Khachiyan

~approach uses equations to create

imaginary ellipsoids that encapsu-

late the answer, unlike the simplex

method, in which the answer is rep-
resented by the intersections of the

~ gides of polyhedrons. As the ellip-

soids are made smaller and smaller,

- the answer is known with greater

pre_eision. MALCOLM W. BROWNE
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