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INTRACTABILITY III
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‣ special cases: planarity 
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‣ approximation algorithms: knapsack 

‣ exponential algorithms: 3-SAT 

‣ exponential algorithms: TSP

Coping with NP-completeness

Q.  Suppose I need to solve an NP-hard problem. What should I do? 

 
A.  Sacrifice one of three desired features. 

i. Solve arbitrary instances of the problem. 

ii. Solve problem to optimality. 

iii. Solve problem in polynomial time. 

 
Coping strategies. 

i. Design algorithms for special cases of the problem.  

ii. Design approximation algorithms or heuristics. 

iii. Design algorithms that may take exponential time.
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using greedy, 
dynamic programming, 
divide-and-conquer, and 
network flow algorithms!
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SECTION 10.2

Independent set on trees

Independent set on trees.  Given a tree, find a max-cardinality subset of 

nodes such that no two are adjacent. 

 
Fact.  A tree has at least one node that is a leaf (degree = 1). 

 
 
 
 
Key observation.  If node v is a leaf, there exists 
a max-cardinality independent set containing v. 
Pf.  [exchange argument] 

・Consider a max-cardinality independent set S. 

・If v ∈ S, we’re done. 

・Otherwise, let (u, v) denote the lone edge incident to v. 
- if u ∉ S and v ∉ S, then S ∪  { v } is independent  ⇒  S not maximum 
- if u ∈ S and v ∉ S, then S ∪  { v } − { u } is independent  ▪
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Independent set on trees:  greedy algorithm

Theorem.  The greedy algorithm finds a max-cardinality independent  
set in forests (and hence trees). 

 
Pf.  Correctness follows from the previous key observation.  ▪ 
 
 
 
 
 
 
 
 
 
 
 
Remark.  Can implement in O(n) time by maintaining nodes of degree 1.
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INDEPENDENT-SET-IN-A-FOREST(F)                          


S ← ∅.

WHILE (F has at least 1 edge)

Let v be a leaf node and let (u, v) be the lone edge incident to v.

S ← S ∪ { v }.

F ← F  – { u, v }.

RETURN  S ∪ { nodes remaining in F }.

delete both u and v (including all incident edges)

How might the greedy algorithm fail if the graph is not a tree/forest? 

A. Might get stuck. 

B. Might take exponential time. 

C. Might produce a suboptimal independent set. 

D. Any of the above.

(resulting) graph may not have a leaf node

if algorithm can always find a leaf node, then it finds 
a max-cardinality independent set in O(m + n) time

Intractability III:  quiz 1
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Weighted independent set on trees.  Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.  

 
Greedy algorithm can fail spectacularly.

Weighted independent set on trees
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Weighted independent set on trees

Weighted independent set on trees.  Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.  

 
Dynamic-programming solution.  Root tree at some node, say r. 

・OPTin (u)  = max-weight IS in subtree rooted at u, containing u. 

・OPTout (u) = max-weight IS in subtree rooted at u, not containing u. 

・Goal:  max { OPTin (r),  OPTout (r) }. 

 
 
Bellman equation.
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€ 

OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

children(u) = { v, w, x }

  

€ 

OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

overlapping 
subproblems



Intractability III:  quiz 2

In which order to solve the subproblems? 

A. Preorder. 

B. Postorder. 

C. Level order. 

D. Any of the above.
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all descendants of a node processed before node

Weighted independent set on trees:  dynamic-programming algorithm

Theorem.  The DP algorithm computes max weight of an independent set 
in a tree in O(n) time.

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)                          


Root the tree T at any node r.

S ← ∅.

FOREACH (node u of T in postorder/topological order)

IF (u is a leaf node)

Min[u] = wu.

Mout[u] = 0.

ELSE

Min[u]  = wu + Σv ∈ children(u) Mout[v].

Mout[u] = Σv ∈ children(u)  max { Min[v],  Mout[v] }.

RETURN  max { Min[r],  Mout[r] }.
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ensures a node is processed 
after all of its descendants

can also find independent set itself 
(not just value)

NP-hard problems on trees:  context

Independent set on trees.  Tractable because we can find a node that breaks 

the communication among the subproblems in different subtrees.
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Planarity

Def.  A graph is planar if it can be embedded in the plane in such a way that 

no two edges cross. 

 
 
 
 
 
 
 
 
 
 
 
 
Applications.  VLSI circuit design, computer graphics, ...
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planar

K5 is nonplanar K3,3 is nonplanar

Planarity testing

Theorem.  [Hopcroft–Tarjan 1974]  There exists an O(n) time algorithm to 

determine whether a graph is planar.
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simple planar graph 
has at ≤ 3n edges

Efficient Planarity Testing 

J O H N  H O P C R O F T  A N D  R O B E R T  TAR JAN 

Cornell University, Ithaca, New York 

ABSTRACT. This paper describes an efficient algorithm to determine whether an arbitrary graph G 
can be embedded in the plane. The algorithm may be viewed as an iterative version of a method 
originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm 
uses depth-first search and has O(V) time and space bounds, where V is the number of vertices in 
G. An ALGOS implementation of the algorithm successfully tested graphs with as many as 900 vertices 
in less than 12 seconds. 

KEY WORDS AND PHRASES: algorithm, complexity, depth-first search, embedding, genus, graph, 
palm tree, planarity, spanning tree 

CR CATEGORIES: 3.24, 5.25, 5.32 

1. Introduction 
Graph theory is an endless source of easily s ta ted yet  very hard problems. Many  of these 
problems require algorithms; given a graph, one may ask if the graph has a certain prop- 
erty, and an algori thm is to provide the answer. Since graphs are widely used as models 
of real phenomena, it  is impor tant  to discover e~cient algorithms for answering graph- 
theoretic questions. This paper presents an efficient algorithm to determine whether a 
graph G can be embedded (without any crossing edges) in the plane. 

The planar i ty  algori thm may be viewed as an i terat ive version of a recursive method 
originally proposed b y  Auslander and Pat te r  [1] and correctly formulated by  Goldstein 
[2]. The algorithm uses depth-first search to order the calculations and thereby achieve 
efficiency. Depth-first  search, or backtracking,  has been widely used for finding solu- 
tions to problems in combinatorial  theory and artificial intelligence [3, 4]. Recently this 
type of search has been used to construct efficient algorithms for solving several problems 
in graph theory, including finding biconnected components [5, 6], finding triconnected 
components [7, 81, finding strongly connected components [61, finding dominators [9], 
and determining whether a directed graph is reducible [10, 11]. 

In  order to analyze the theoretical efficiency of the planar i ty  algorithm, a random ac- 
cess computer model is used. Da ta  storage and retrieval, ari thmetic operations, compari- 
sons, and logical operations are assumed to require fixed times. A memory cell is allowed 
to hold integers whose absolute value is bounded by  kV for some constant  k, where V is 
the number of vertices in the problem graph. Cook [12] describes an exact computer model 
along these lines. If f and g are functions of x, we say " f (x)  is O(g(x) )"  if, for some 
constants kI and k2, I f (x)  I -< ki I g(x) I + k2 for all x. Within this framework, the  
planar i ty  algorithm has 0 (V) t ime and space bounds and is opt imal  to within a constant  
factor. 

The practical efficiency of the algorithm was measured by  implementing i t  in ALGOL 

Copyright (~) 1974, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM's copyright notice is 
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for Computing Machinery. 
This research was supported by the Hertz Foundation, the NSF, and the Office of Naval Research 
under grants #N-0O014-A-Ol12-0057 and #N-00014-67-A-0077-0021. 
Authors' present addresses: J. Hopcroft, Department of Computer Science, Cornell University, 
Ithaca, NY 14850; R. Tarjan, Department of Electrical Engineering, University of California, 
Berkeley, CA 94720. 

Journal of the Association for Computing Machinery, Vol. 21, No. 4, October 1974, pp. 549-568. 

Problems on planar graphs

Fact 0.  Many graph problems can be solved faster in planar graphs. 

Ex.  Shortest paths, max flow, MST, matchings, … 

 
Fact 1.  Some NP-complete problems become tractable in planar graphs. 

Ex.  MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ... 

 
Fact 2.  Other NP-complete problems become easier in planar graphs. 

Ex.  INDEPENDENT-SET, VERTEX-COVER, TSP,  STEINER-TREE, ...
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An O(n log n) Algorithm for Maximum st-Flow
in a Directed Planar Graph

GLENCORA BORRADAILE AND PHILIP KLEIN

Brown University, Providence, Rhode Island

Abstract. We give the first correct O(n log n) algorithm for finding a maximum st-flow in a directed
planar graph. After a preprocessing step that consists in finding single-source shortest-path distances
in the dual, the algorithm consists of repeatedly saturating the leftmost residual s-to-t path.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms

Additional Key Words and Phrases: Maximum flow, planar graphs

ACM Reference Format:
Borradaile, G. and Klein, P. 2009. An O(n log n) algorithm for maximum st-flow in a directed
planar graph. J. ACM 56, 2, Article 9 (April 2009), 30 pages. DOI = 10.1145/1502793.1502798
http://doi.acm.org/ 10.1145/1502793.1502798

1. Introduction

Informally, the maximum st-flow problem is as follows: given a graph with positive
arc-capacities, and given a source vertex s and a sink vertex t , the goal is to find a
way to route the maximum amount of a single commodity along s-to-t paths in such
a way that the amount of commodity passing through an arc is at most the capacity
of the arc. In the minimum st-cut problem, the goal is to find a minimum-capacity
set of arcs such that each s-to-t path includes at least one arc in the set. Formal
definitions will be given in Section 4.5.

The history of maximum-flow and minimum-cut problems [Schrijver 2002] is
tied closely to planar graphs. During the height of the cold war, the United States

A preliminary version of this article was published in Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’06), ACM, New York, 2006, pp. 524–533.
G. Borradaile was supported by NSERC PGS-D, Rowland-Lloyd CST, Kanellakis, a Brown University
Dissertation Fellowship, and NSF Grant CCF-0635089. P. Klein was supported by NSF Grant CCF-
0635089.
Authors’ addresses: Department of Computer Science, Brown University, Providence, RI 02912,
e-mail: {glencora; klein}@cs.brown.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C⃝ 2009 ACM 0004-5411/2009/04-ART9 $5.00
DOI 10.1145/1502793.1502798 http://doi.acm.org/10.1145/1502793.1502798

Journal of the ACM, Vol. 56, No. 2, Article 9, Publication date: April 2009.

Planar graph 3-colorability

PLANAR-3-COLOR.  Given a planar graph, can it be colored using 3 colors 
so that no two adjacent nodes have the same color?
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Planar map 3-colorability

PLANAR-MAP-3-COLOR.  Given a planar map, can it be colored using 3 colors  
so that no two adjacent regions have the same color?
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yes instance

Planar map 3-colorability

PLANAR-MAP-3-COLOR.  Given a planar map, can it be colored using 3 colors 
so that no two adjacent regions have the same color?
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no instance

Planar graph and map 3-colorability reduce to one another

Theorem.  PLANAR-3-COLOR ≣ P PLANAR-MAP-3-COLOR. 

Pf sketch. 

・Nodes correspond to regions. 

・Two nodes are adjacent iff they share a nontrivial border.
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e.g., not Arizona 
and Colorado

Planar 3-colorability is NP-complete

Theorem.  PLANAR-3-COLOR ∈ NP-complete. 

 
Pf. 

・Easy to see that PLANAR-3-COLOR ∈ NP. 

・We show 3-COLOR ≤ P PLANAR-3-COLOR. 

・Given 3-COLOR instance G, we construct an instance of 
PLANAR-3-COLOR that is 3-colorable iff G is 3-colorable.  
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Planar 3-colorability is NP-complete

Lemma.  W is a planar graph such that: 

・In any 3-coloring of W, opposite corners have the same color.  

・Any assignment of colors to the corners in which opposite corners have 

the same color extends to a 3-coloring of W.
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planar gadget W

Planar 3-colorability is NP-complete

Lemma.  W is a planar graph such that: 

・In any 3-coloring of W, opposite corners have the same color.  

・Any assignment of colors to the corners in which opposite corners have 

the same color extends to a 3-coloring of W. 

Pf.  The only 3-colorings (modulo permutations) of W are shown below.  ▪
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planar gadget W

Planar 3-colorability is NP-complete

Construction.  Given instance G of 3-COLOR, draw G in plane, letting edges 

cross. Form planar Gʹ by replacing each edge crossing with planar gadget W. 

 
Lemma.  G is 3-colorable iff Gʹ is 3-colorable. 

・In any 3-coloring of W, a ≠ aʹ and b ≠ bʹ. 

・If a ≠ aʹ and b ≠ bʹ then can extend to a 3-coloring of W.
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a crossing

a a′

b

b′

a a′

b

b′

gadget W

Planar 3-colorability is NP-complete

Construction.  Given instance G of 3-COLOR, draw G in plane, letting edges 

cross. Form planar Gʹ by replacing each edge crossing with planar gadget W. 

Lemma.  G is 3-colorable iff Gʹ is 3-colorable. 

・In any 3-coloring of W, a ≠ aʹ and b ≠ bʹ. 

・If a ≠ aʹ and b ≠ bʹ then can extend to a 3-coloring of W.
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multiple crossings

a′a a′ W W Wa

concatenate copies of gadget W



Planar map k-colorability

Theorem.  [Appel–Haken 1976]  Every planar map is 4-colorable. 

・Resolved century-old open problem. 

・Used 50 days of computer time to deal with many special cases. 

・First major theorem to be proved using computer. 

 
 
 
 
 
 
 
 
Remarks. 

・Appel–Haken yields O(n4) algorithm to 4-color of a planar map. 

・Best known:  O(n2) to 4-color; O(n) to 5-color. 

・Determining whether 3 colors suffice is NP-complete.
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BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 82, Number 5, September 1976 

RESEARCH ANNOUNCEMENTS 

EVERY PLANAR MAP IS FOUR COLORABLE1 

BY K. APPEL AND W. HAKEN 

Communicated by Robert Fossum, July 26, 1976 

The following theorem is proved. 

THEOREM . Every planar map can be colored with at most four colors. 

As has become standard, the four color map problem will be considered 
in the dual sense as the problem of whether the vertices of every planar graph 
(without loops) can be colored with at most four colors in such a way that no 
pair of vertices which lie on a common edge have the same color. The restriction 
to triangulations with all vertices of degree at least five is a consequence of the 
work of A. B. Kempe. Over the past 100 years, a number of authors including 
A. B. Kempe, G. D. Birkhoff, and H. Heesch have developed a theory of 
reducibility to attack the problem. Simultaneously, a theory of unavoidable 
sets has been developed and the fusion of these has led to the proof. 

A configuration is a subgraph of a planar triangulation consisting of a 
circuit (called the ring) and its interior. A configuration is called reducible if it 
can be shown by certain standard methods that it cannot be immersed in a 
minimal counterexample to the four color conjecture. (For details, see [3] or 
[4].) A set of configurations is called unavoidable if every planar triangulation 
contains some member of the set. From the definitions, it is immediate that 
the four color theorem is proved if an unavoidable set of reducible configurations 
is provided. 

The most efficient known method of producing unavoidable sets of con-
figurations is called the method of discharging. This method treats the planar 
triangulation as an electrical network with charge assigned to the vertices. 
Euler's formula is used to show that the initial charge distribution, giving 
positive charge to vertices of degree five and negative charge to vertices of 
degree greater than six, has positive total charge. Next, the initial charge is 
redistributed in a manner which obeys the principle of conservation of charge. 
This means that some vertices must end up with positive charge. Such an 
algorithm can be made sufficiently sophisticated that a finite list of neighborhoods 
of all possible vertices of ultimately positive charge can be described in detail. 

AMS (MOS) subject classifications (1970). Primary 05C15. 
1This work appears in full in two papers, Every planar map is four colorable; part I, 

Discharging, by K. Appel and W. Haken and part II, Reducibility, by K. Appel, W. Haken, 
and J. Koch. These papers have been submitted to another journal. 

Copyright © 1976, American Mathematical Society 
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Beyond planarity

Graph minor theorem.  [Robertson–Seymour 1983–2004] 
Pf of theorem.  Tour de force.  

 
Corollary.  There exist an O(n3) algorithm to determine if a graph can be 

embedded in the torus in such a way that no two edges cross. 

 
Mind boggling fact 1.  The proof is highly nonconstructive! 

Mind boggling fact 2.  The constant of proportionality is enormous! 

 
 
 
 
 
 
Theorem.  There exists an explicit O(n) algorithm. 

Practice.  LEDA implementation guarantees O(n3).
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“ Unfortunately, for any instance G = (V, E) that one could fit into the known

   universe, one would easily prefer n70 to even constant time, if that constant

   had to be one of Robertson and Seymour’s. ”       — David Johnson

more than 2↑2↑2↑(n/2)

2 � k = 2222
...

2
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k
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Trees.  VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-ISOMORPHISM, ... 

Bipartite graphs.  VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-COLOR, … 

Planar graphs.  MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...  

Bounded treewidth.  HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM, ... 

Small integers.  SUBSET-SUM, KNAPSACK, PARTITION, ...

Poly-time special cases of NP-hard problems

 27
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Approximation algorithms

ρ-approximation algorithm. 

・Runs in polynomial time. 

・Applies to arbitrary instances of the problem. 

・Guaranteed to find a solution within ratio ρ of true optimum. 

 
Ex.  Given a graph G, can find a vertex cover that uses ≤  2 OPT(G) vertices  
in O(m + n) time. 

 
Challenge.  Need to prove a solution’s value is close to optimum value,  
without even knowing what optimum value is!
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Vertex cover

VERTEX-COVER.  Given a graph G = (V, E), find a min-size vertex cover.
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for each edge (u, v) ∈ E: 
either u ∈ S, v ∈ S, or both

vertex cover of size 4

Vertex cover:  greedy algorithm

VERTEX-COVER.  Given a graph G = (V, E), find a min-size vertex cover. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  Can be implemented in O(m + n) time.

 31

GREEDY-VERTEX-COVER(G)                          


S   ← ∅.

E ʹ ← E.

WHILE (E ʹ ≠ ∅)
Let (u, v) ∈ E ʹ be an arbitrary edge.
M ← M ∪ {(u, v)}.
S  ← S ∪ {u} ∪ {v}.
Delete from E ʹ all edges incident to either u or v.

RETURN S.

every vertex cover must take  
at least one of these; we take both

M is a matching

Intractability III:  quiz 3

Given a graph G, let M be any matching and let S be any vertex cover. 
Which of the following must be true? 

A.  ⎢M ⎢ ≤  ⎢S ⎢

B.  ⎢S ⎢  ≤  ⎢M ⎢ 

C.  ⎢S ⎢  =  ⎢M ⎢ 

D.  None of the above. 

 
 
 
Weak duality.  ⎢M ⎢ ≤  ⎢S ⎢. 
Pf. 

・For each edge (u, v) ∈ M : S must contain either u, or v, or both. 

・Edges in M  have no common endpoints.  ▪
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strong duality holds for bipartite graphs 
(recall problem set #7)



Vertex cover:  greedy algorithm is a 2-approximation algorithm

Theorem.  Let S*  be a minimum vertex cover. Then, greedy algorithm 
computes a vertex cover S with ⎢S ⎢ ≤ 2 ⎢S* ⎢. 

Pf. 

・S is a vertex cover. 

・M is a matching. 

・⎢S ⎢ = 2 ⎢M ⎢ ≤  2 ⎢S* ⎢.  ▪ 
 

 
Corollary.  Let M *  be a maximum matching. Then, greedy algorithm 
computes a matching M with ⎢M ⎢  ≥  ½ ⎢M * ⎢. 

Pf.  ⎢M ⎢ = ½ ⎢S ⎢  ≥  ½ ⎢M * ⎢.  ▪
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weak duality

delete edge only after it’s already covered

when (u, v) added to M, all edges incident to either u or v are deleted

design

2-approximation algorithm

weak duality

Vertex cover inapproximability

Theorem.  [Dinur–Safra 2004]  If P ≠ NP, then no ρ-approximation for  
VERTEX-COVER for any ρ < 1.3606. 

 
 
 
 
 
 
 
 
 
 
 
 
Open research problem.  Close the gap. 

Conjecture.  no ρ-approximation for VERTEX-COVER for any ρ < 2.
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On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur∗ Samuel Safra†

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

1 Introduction

The basic purpose of Computational Complexity Theory is to classify computational problems
according to the amount of resources required to solve them. In particular, the most basic task
is to classify computational problems to those that are efficiently solvable and those that are
not. The complexity class P consists of all problems that can be solved in polynomial-time. It
is considered, for this rough classification, as the class of efficiently-solvable problems. While
many computational problems are known to be in P, many others, are neither known to be in
P, nor proven to be outside P. Indeed many such problems are known to be in the class NP,
namely the class of all problems whose solutions can be verified in polynomial-time. When it
comes to proving that a problem is outside a certain complexity class, current techniques are
radically inadequate. The most fundamental open question of Complexity Theory, namely, the
P vs. NP question, may be a particular instance of this shortcoming.

While the P vs NP question is wide open, one may still classify computational problems into
those in P and those that are NP-hard [Coo71, Lev73, Kar72]. A computational problem L
is NP-hard if its complexity epitomizes the hardness of NP. That is, any NP problem can be
efficiently reduced to L. Thus, the existence of a polynomial-time solution for L implies P=NP.
Consequently, showing P̸=NP would immediately rule out an efficient algorithm for any NP-
hard problem. Therefore, unless one intends to show NP=P, one should avoid trying to come
up with an efficient algorithm for an NP-hard problem.

Let us turn our attention to a particular type of computational problems, namely, optimization
problems — where one looks for an optimal among all plausible solutions. Some optimization
problems are known to be NP-hard, for example, finding a largest size independent set in a
graph [Coo71, Kar72], or finding an assignment satisfying the maximum number of clauses in a
given 3CNF formula (MAX3SAT) [Kar72].

∗ The Miller Institute, UC Berkeley. Email: iritd@cs.berkeley.edu.
† School of Mathematics and School of Computer Science, Tel Aviv University and The Miller Institute, UC

Berkeley. Research supported in part by the Fund for Basic Research administered by the Israel Academy of
Sciences, and a Binational US-Israeli BSF grant. Email: safra@math.tau.ac.il.
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Knapsack problem

Knapsack problem. 

・Given n objects and a knapsack. 

・Item i has value vi  > 0 and weighs wi  >  0. 

・Knapsack has weight limit W. 

・Goal:  fill knapsack so as to maximize total value. 

Ex:  { 3, 4 } has value 40.
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we assume wi ≤ W for each i

original instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7



Knapsack is NP-complete

SUBSET-SUM.  Given a set X, values ui  ≥ 0, and an integer U, is there a subset  
S  ⊆ X whose elements sum to exactly U ?  
 
KNAPSACK.  Given a set X, weights wi  ≥ 0, values vi  ≥ 0, a weight limit W, and a 

target value V, is there a subset S  ⊆ X such that: 

 
 
 
 
 
Theorem.  SUBSET-SUM ≤ P  KNAPSACK. 

Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK instance:
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�

i�S

wi � W

�

i�S

vi � V
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i�S

ui � U

�

i�S

ui � U
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vi = wi = ui

V = W = U
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Knapsack problem:  dynamic programming I

Def.  OPT(i, w) = max value subset of items 1,..., i with weight limit w. 

 
Case 1.  OPT does not select item i. 

・OPT selects best of 1, …, i – 1 using up to weight limit w. 

 
Case 2.  OPT selects item i. 

・New weight limit = w – wi. 
・OPT selects best of 1, …, i – 1 using up to weight limit w – wi. 

 

 

 

 

 
Theorem.  Computes the optimal value in O(n W) time. 

・Not polynomial in input size. 

・Polynomial in input size if weights are small integers.

 38

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 

Knapsack problem:  dynamic programming II

Def.  OPT(i, v) = min weight of a knapsack for which we can obtain a solution 

of value ≥ v using a subset of items 1,..., i. 
 
Note.  Optimal value is the largest value v such that OPT(n, v)  ≤  W. 

 
Case 1.  OPT does not select item i. 

・OPT selects best of 1, …, i – 1 that achieves value ≥ v. 
 
Case 2.  OPT selects item i. 

・Consumes weight wi, need to achieve value ≥  v – vi. 
・OPT selects best of 1, …, i – 1 that achieves value ≥  v – vi.
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OPT (i, v) =

�
��
��

0 B7 v � 0

� B7 i = 0 �M/ v > 0

min {OPT (i � 1, v), wi + OPT (i � 1, v � vi)} Qi?2`rBb2

Knapsack problem:  dynamic programming II

Theorem.  Dynamic programming algorithm II computes the optimal value 

in O(n2 vmax) time, where vmax is the maximum of any value. 

Pf. 

・The optimal value V* ≤  n vmax. 

・There is one subproblem for each item and for each value v ≤ V*. 

・It takes O(1) time per subproblem. ▪ 
 
Remark 1.  Not polynomial in input size! 

Remark 2.  Polynomial time if values are small integers.
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Knapsack problem:  poly-time approximation scheme

Intuition for approximation algorithm. 

・Round all values up to lie in smaller range. 

・Run dynamic programming algorithm II on rounded/scaled instance. 

・Return optimal items in rounded instance.
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original instance (W = 11)

item value weight

1 934221 1

2 5956342 2

3 17810013 5

4 21217800 6

5 27343199 7

rounded instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

Knapsack problem:  poly-time approximation scheme

Round up all values:   

・0  <  ε  ≤  1 = precision parameter. 

・vmax = largest value in original instance. 

・θ =  scaling factor = ε vmax / 2n. 

 
 
Observation.  Optimal solutions to problem with    are equivalent to  
optimal solutions to problem with    . 

 
Intuition.     close to v so optimal solution using    is nearly optimal; 
   small and integral so dynamic programming algorithm II is fast.
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v̄i =
�vi
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�vi
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Theorem.  If S is solution found by rounding algorithm and S* 
is any other feasible solution, then 

 
Pf.  Let S* be any feasible solution satisfying weight constraint. 

vmax � 2
�

i�S

vi
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Knapsack problem:  poly-time approximation scheme
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θ = ε vmax / 2n
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thus
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Knapsack problem:  poly-time approximation scheme

Theorem. For any ε > 0, the rounding algorithm computes a feasible solution 

whose value is within a  (1 + ε) factor of the optimum in O(n3 / ε) time.  

 
Pf. 

・We have already proved the accuracy bound. 

・Dynamic program II running time is                ,  where
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INTRACTABILITY III

‣ special cases: trees 

‣ special cases: planarity  

‣ approximation algorithms: vertex cover 

‣ approximation algorithms: knapsack 

‣ exponential algorithms: 3-SAT 

‣ exponential algorithms: TSP

Exact exponential algorithms

Complexity theory deals with worst-case behavior. 

・Instances you want to solve may be “easy.”

“ For every polynomial-time algorithm you have, there is an exponential

   algorithm that I would rather run.”    —   Alan Perlis

 46

Intractability III:  quiz 1

What is complexity of 3-SAT? Choose the best answer. 

A. O(n2)

B. O*(1.34n) 

C. O*(1.84n) 

D. O*(2n)

 47

O* ignores poly(m, n) terms

Exact algorithms for 3-satisfiability

Brute force.  Given a 3-SAT instance with n variables and m clauses,  
the brute-force algorithm takes O((m + n) 2n) time. 

Pf. 

・There are 2n possible truth assignments to the n variables. 

・We can evaluate a truth assignment in O(m + n) time.   ▪

 48



Exact algorithms for 3-satisfiability

A recursive framework.  A 3-SAT formula Φ is either empty or the disjunction 

of a clause (ℓ1   ∨ ℓ2  ∨ ℓ3  ) and a 3-SAT formula Φʹ with one fewer clause. 

 
 
 
 
 
 
 
 
Notation.  Φ | x = true is the simplification of Φ by setting x to true. 
Ex. 

・Φ =  (x ∨ y ∨ ¬z)  ∧ (x ∨ ¬y ∨ z)  ∧ (w ∨ y ∨ ¬z)  ∧ (¬x ∨ y ∨ z). 

・Φʹ =  (x ∨ ¬y ∨ z)  ∧ (w ∨ y ∨ ¬z)  ∧ (¬x ∨ y ∨ z). 

・(Φʹ | x = true) =  (w ∨ y ∨ ¬z)  ∧ (y ∨ z).

Φ = (ℓ1 ∨ ℓ2 ∨ ℓ3)  ∧  Φʹ  

= (ℓ1 ∧ Φʹ)  ∨  (ℓ2 ∧ Φʹ)  ∨  (ℓ3 ∧ Φʹ)    

= (Φʹ | ℓ1 = true)  ∨  (Φʹ | ℓ2  = true)  ∨  (Φʹ | ℓ3  = true)    

 49

each clause has ≤ 3 literals

Exact algorithms for 3-satisfiability

A recursive framework.  A 3-SAT formula Φ is either empty or the disjunction 

of a clause (ℓ1   ∨ ℓ2  ∨ ℓ3  ) and a 3-SAT formula Φʹ with one fewer clause. 

 
 
 
 
 
 
 
 
 
 
 
 
Theorem.  The brute-force 3-SAT algorithm takes O(poly(n) 3n) time. 

Pf.  T(n)  ≤  3T(n – 1) + poly(n).  ▪ 

3-SAT (Φ)                          
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  Φ is empty RETURN true.

(ℓ1 ∨ ℓ2  ∨ ℓ3)  ∧  Φʹ  ←  Φ.

IF 3-SAT (Φʹ | ℓ1 = true)  RETURN true.
IF 3-SAT (Φʹ | ℓ2 = true)  RETURN true.
IF 3-SAT (Φʹ | ℓ3 = true)  RETURN true.
RETURN false.
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Exact algorithms for 3-satisfiability

Key observation.  The cases are not mutually exclusive. Every satisfiable 

assignment containing clause (ℓ1   ∨ ℓ2  ∨ ℓ3  ) must fall into one of 3 classes: 

・ℓ1 is true. 

・ℓ1 is false; ℓ2 is true. 

・ℓ1 is false; ℓ2 is false; ℓ3 is true.
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3-SAT (Φ)                          


IF  Φ is empty RETURN true.

(ℓ1 ∨ ℓ2 ∨ ℓ3  )  ∧  Φʹ ← Φ.

IF 3-SAT(Φʹ | ℓ1 = true) RETURN true.
IF 3-SAT(Φʹ | ℓ1 = false, ℓ2 = true) RETURN true.
IF 3-SAT(Φʹ | ℓ1 = false, ℓ2 = false, ℓ3 = true) RETURN true.
RETURN false.

Exact algorithms for 3-satisfiability

Theorem.  The brute-force algorithm takes O(1.84n) time. 

Pf.  T(n)  ≤  T(n – 1) + T(n – 2) + T(n – 3) + O(m + n).  ▪ 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largest root of r3 = r2 + r + 1

3-SAT (Φ)                          


IF  Φ is empty RETURN true.

(ℓ1 ∨ ℓ2 ∨ ℓ3  )  ∧  Φʹ ← Φ.

IF 3-SAT(Φʹ | ℓ1 = true) RETURN true.
IF 3-SAT(Φʹ | ℓ1 = false, ℓ2 = true) RETURN true.
IF 3-SAT(Φʹ | ℓ1 = false, ℓ2 = false, ℓ3 = true) RETURN true.
RETURN false.



Exact algorithms for 3-satisfiability
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Abstract

Schöning [7] presents a simple randomized algorithm for k-SAT with running time
O(an

kpoly(n)) for ak = 2(k − 1)/k. We give a deterministic version of this algorithm
running in time O((ak + ϵ)npoly(n)), where ϵ > 0 can be made arbitrarily small.

1 Introduction

In 1999, Uwe Schöning [7] gave an extremely simple randomized algorithm for k-SAT.
Ten years on, the fastest algorithms for k-SAT are only slightly faster than his, and far
more complicated. His algorithm works as follows: Let F be a (≤ k)-CNF formula over
n variables. Start with a random truth assignment. If this does not satisfy F , pick an
arbitrary unsatisfied clause C. From C, pick a literal uniformly at random, and change
the truth value of its underlying variable, thus satisfying C. Repeat this reassignment
step O(n) times. If F is satisfiable, this finds a satisfying assignment with probability at
least (

k

2(k − 1)

)n

.

By repetition, this gives a randomized O∗(1.334n) algorithm for 3-SAT, an O∗(1.5n) for
4-SAT, and so on (we use O∗ to suppress polynomial factors in n). Shortly after Schöning
published his algorithm, Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou,
Raghavan and Schöning [2] (henceforth Dantsin et al. for the sake of brevity) came up
with a deterministic algorithm that can be seen as an attempt to derandomize Schöning’s
algorithm. We say attempt because its running time is O∗((2k/(k + 1))n), which is ex-
ponentially slower than Schöning’s. For example, this gives an O∗(1.5n) algorithm for
3-SAT and O∗(1.6n) for 4-SAT. Subsequent papers have improved upon this running
time, mainly focusing on 3-SAT: Dantsin et al. already improve the running time for
3-SAT to O(1.481n), Brueggemann and Kern [1] to O(1.473n), Scheder [6] to O(1.465n),
and Kutzkov and Scheder [4] to O∗(1.439n). All improvements suffer from two drawbacks:
First, they fall short of achieving the running time of Schöning’s randomized algorithm,
and second, they are all fairly complicated. In this paper, we give a rather simple deter-
ministic algorithm with a running time that comes arbitrarily close to Schöning’s, thus
completely derandomizing his algorithm. We also show how to derandomize Schöning’s
algorithm for constraint satisfaction problems, which are a generalization of SAT, allowing
more than two truth values.

1

Theorem.  There exists a O(1.33334n) deterministic algorithm for 3-SAT. 
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Exact algorithms for satisfiability

DPPL algorithm.  Highly-effective backtracking procedure. 

・Splitting rule:  assign truth value to literal; solve both possibilities. 

・Unit propagation:  clause contains only a single unassigned literal. 

・Pure literal elimination:  if literal appears only negated or unnegated.
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A Machine Program for 
Theorem-Provingt 

Mart in Davis, G e o r g e  Logemann, and 
Donald Loveland 

Institute of Mathematical Sciences, New York University 

The programming of a proof procedure is discussed in 
connection with trial runs and possible improvements. 

In [1] is set forth an algorithm for proving theorems of 
quantification theory which is an improvement in certain 
respects over previously available algorithms such as that  
of [2]. The present paper deals with the programming of 
the algorithm of [1] for the New York University, In- 
stitute of Mathematical  Sciences' IBM 704 computer, 
with some modifications in the algorithm suggested by 
this work, with the results obtained using the completed 
algorithm. Familiarity with [1] is assumed throughout. 

Changes in the Algorithm and Programming 
Techniques Used 

The algorithm of [1] consists of two interlocking parts. 
The first part, called the QFl-Generator, generates (from 
the formula whose proof is being at tempted) a growing 
propositional calculus formula in conjunctive normal form, 
the "quantifier-free lines." The second part, the Processor, 
tests, at regular stages in its "growth," the consistency of 
this propositional calculus formula. An inconsistent set 
of quantifier-free lines constitutes a proof of the original 
formula. 

The algorithm of [1] used in testing for consistency 
proceeded by successive elimination of atomic formulas, 
first eliminating one-literal clauses (one-literM clause rule), 
and then atomic formulas all of whose occurrences were 
positive or all of whose occurrences were negative (affirma- 
tive-negative rule). Finally, the remaining atomic formulas 
were to have been eliminated by the rule: 

III .  Rule for Eliminating Atomic Formulas. Let the 
given formula F be put  into the form 

(A V p) & (B V ?~) & R 

where A, B, and R are free of p. (This can be done 
simply by grouping together the clauses containing p and 
"factoring out"  occurrences of p to obtain A, grouping 
the clauses containing # and "factoring out"  # to obtain 
B, and grouping the remaining clauses to obtain R.) Then 
F is inconsistent if and only if (A V B) & R is inconsistent. 

After programming the algorithm using this form of 
Rule I I I ,  it was decided to replace it by the following rule: 

t The research reported in this document has been sponsored 
by the Mathematical Sciences Directorate, Air Force Office of 
Scientific Research, under Contract No. AF 49(638)-777. 

III*. Splitting Rule. Let the given formula F be put  in 
the form 

(A V p )  & ( B V / 5 )  & R  

where A, B, and R are free of p. Then F is inconsistent if 
and only if A & R and B & R are both inconsistent. 

JUSTIFICATION OF RULE III*. For 1 p = 0, F = A & R ; 
f o r p  = 1, F = B &R.  

The forms of Rule I I I  are interchangeable; Mthough 
theoretically they are equivalent, in actual applications 
each has certain desirable features. We used Rule I I I*  be- 
cause of the fact that  Rule I I I  can easily increase the 
mlmber and the lengths of the clauses in the expression 
rather quickly after several applications. This is prohibi- 
tive in a computer if ones fast access storage is limited. 
Also, it was observed that  after performing Rule III ,  
many duplicated and thus redundant  clauses were present,. 
Some success was obtained by causing the machine to sys- 
tematically eliminate the redundancy; but  the problem of 
total  length increasing rapidly still remained when more 
complicated problems were at tempted.  Also use of Rule 
I I I  can seldom yield new one-literM clauses, whereas use 
of Rule I I I*  often will. 

In programming Rule III*, we used auxiliary tape 
storage. The rest of the testing for consistency is carried 
out using only fast access storage. When the "Splitting 
Rule" is used one of the two formulas resulting is placed 
on tape. Tape memory records are organized in tbe cafe- 
terial stack-of-plates scheme: the last record written is 
the first to be read. 

In the program written for the IBN[ 704, the matrix and 
conjunction of quantifier-free lines are coded into cross- 
referenced associated (or linked) memory tables by the 
QFL-Generator  and then analyzed by the Processor. In 
particular, the QFL-Generator  is programmed to read in 
the matrix M in suitably coded Polish (i.e., "parenthesis- 
free") form. The conversion to a quantifier-free matrix in 
conjunctive normal form requires, of course, a certain 
amount  of pencil work on the formula, which could have 
been done by the computer. In doing this, we departed 
from [1], by not using prenex normal form. The steps are: 

(1) Write all truth-functional connectives in terms of 
~ ,  6,  V.  

(2) Move all ~-~'s inward successively (using de Morgan 
laws) until they either are cancelled (with another ,-,~) or 
acting on an atomic formula. 

(3) Now, replace existential quantifiers by function 
symbols (cf. [1], p. 205), drop universal quantifiers, and 
place in conjunctive normal form. A simple one-to-one 
assembler was written to perform the final translation of 
the matrix M into octal numbers. 

I t  will be recalled that  the generation of quantifier-free 
lines is accomplished by successive substitutions of "con- 
stants" for the variables in the matrLx M. In the program 

As in [1], I stands for "truth", and 0 for "falsehood". 

394 Communications of the ACM 

A Computing Procedure for Quantification Theory* 
~RTIiN D~_v~s 

Rensselaer Polytechnic Institute, Hartford Division, East Windsor Hill, Conn. 

AND 

HILARY PUTNAM' 

Princeton University, Princeton, New Jersey 

The hope that mathematical methods employed in the investigation of formal 
logic would lead to purely computational methods for obtaining mathematical 
theorems goes back to Leibniz and has been revived by Peano around the turn 
of the century and by Hilbert's school in the 1920%. Hilbert, noting that all of 
classical mathematics could be formalized within quantification theory, declared 
that the problem of finding an algorithm for determining whether or not a given 
formula of quantification theory is valid was the central problem of mathe- 
matical logic. And indeed, at one time it seemed as if investigations of this "de- 
cision" problem were on the verge of success. However, it was shown by Church 
and by Turing that such an algorithm can not exist. This result led to consider- 
able pessimism regarding the possibility of using modern digital computers in 
deciding significant mathematical questions. However, recently there has been 
a revival of interest in the whole question. Specifically, it has been realized that 
while no decision procedure exists for quantification theory there are many proof 
procedures available--that is, uniform procedures which will ultimately locate 
a proof for any formulai of quantification theory which is valid but which will 
usually involve seeking "forever" in the Case of a formula which is not valid-- 
and that some of these proof procedures could well turn out to be feasible for 
use with modern computing machinery. 

Hao Wang [9] and P. C. Gilmore [3] have each produced wor]dng programs 
which employ proof procedures in quantification theory. Gilmore's program 
employs a form of a basic theorem of mathematical logic due to Herbrand, and 
Wang's makes use of a formulation of quantification theory related to those 
studied by Gentzen. However, both programs encounter decisive difficulties 
with any but the simplest formulas of quantification theory, in connection with 
methods of doing propositional calculus. Wang's program, because of its use of 
Gentzen-like methods, involves exponentiation on the total number of truth- 
functional connectives, whereas Gilmore's program, using normal forms, in- 
volves exponentiation on the number of clauses present. Both methods are su- 
perior in many cases to truth table methods which involve exponentiation on the 

* Received September, 1959. This research was supported by the United States Air 
Force through the Air Force Office of Scientific Research of the Air Research and Develop- 
ment Command, under Contract No. AF 49(638)-527. Reproduction in whole or in part  is 
permitted for any purpose of the United States Government. 
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Chaff.  State-of-the-art SAT solver. 

・Solves real-world SAT instances with ~ 10K variable.  
Developed at Princeton by undergrads.
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ABSTRACT 

Boolean Satisfiability is probably the most studied of 
combinatorial optimization/search problems. Significant effort 
has been devoted to trying to provide practical solutions to this 
problem for problem instances encountered in a range of 
applications in Electronic Design Automation (EDA), as well as 
in Artificial Intelligence (AI). This study has culminated in the 
development of several SAT packages, both proprietary and in 
the public domain (e.g. GRASP, SATO) which find significant 
use in both research and industry. Most existing complete solvers 
are variants of the Davis-Putnam (DP) search algorithm. In this 
paper we describe the development of a new complete solver, 
Chaff, which achieves significant performance gains through 
careful engineering of all aspects of the search – especially a 
particularly efficient implementation of Boolean constraint 
propagation (BCP) and a novel low overhead decision strategy. 
Chaff has been able to obtain one to two orders of magnitude 
performance improvement on difficult SAT benchmarks in 
comparison with other solvers (DP or otherwise), including 
GRASP and SATO.  
Categories and Subject Descriptors 
J6 [Computer-Aided Engineering]: Computer-Aided Design. 

General Terms 
Algorithms, Verification. 

Keywords 
Boolean satisfiability, design verification. 

1. Introduction 
The Boolean Satisfiability (SAT) problem consists of 

determining a satisfying variable assignment, V, for a Boolean 
function, f, or determining that no such V exists.  SAT is one of 
the central NP-complete problems. In addition, SAT lies at the 
core of many practical application domains including EDA (e.g. 
automatic test generation [10] and logic synthesis [6]) and AI 
(e.g. automatic theorem proving).  As a result, the subject of 
practical SAT solvers has received considerable research 
attention, and numerous solver algorithms have been proposed 
and implemented. 

 
 
 
 
 
 
 
 
 
 

 Many publicly available SAT solvers (e.g. GRASP [8], 
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been 
developed, most employing some combination of two main 
strategies: the Davis-Putnam (DP) backtrack search and heuristic 
local search.  Heuristic local search techniques are not 
guaranteed to be complete (i.e. they are not guaranteed to find a 
satisfying assignment if one exists or prove unsatisfiability); as a 
result, complete SAT solvers (including ours) are based almost 
exclusively on the DP search algorithm. 

1.1 Problem Specification 
Most solvers operate on problems for which f is specified in 

conjunctive normal form (CNF).  This form consists of the 
logical AND of one or more clauses, which consist of the logical 
OR of one or more literals.  The literal comprises the 
fundamental logical unit in the problem, being merely an 
instance of a variable or its complement.  (In this paper, 
complement is represented by ¬.)  All Boolean functions can be 
described in the CNF format.  The advantage of CNF is that in 
this form, for f to be satisfied (sat), each individual clause must 
be sat. 

1.2 Basic Davis-Putnam Backtrack Search 
We start with a quick review of the basic Davis-Putnam 

backtrack search. This is described in the following pseudo-code 
fragment: 
 
while (true) { 
  if (!decide()) // if no unassigned vars 
    return(satisifiable); 
  while (!bcp()) {  
    if (!resolveConflict()) 

return(not satisfiable); 
  } 
} 
 
bool resolveConflict() { 
  d = most recent decision not ‘tried both 
ways’; 
 
  if (d == NULL) // no such d was found 
    return false; 
       
  flip the value of d; 
  mark d as tried both ways; 
  undo any invalidated implications; 
  return true; 
} 
 

The operation of decide() is to select a variable that is 
not currently assigned, and give it a value.  This variable 
assignment is referred to as a decision.  As each new decision is 
made, a record of that decision is pushed onto the decision stack. 

INTRACTABILITY III

‣ special cases: trees 

‣ special cases: planarity  

‣ approximation algorithms: vertex cover 

‣ approximation algorithms: knapsack 

‣ exponential algorithms: 3-SAT 

‣ exponential algorithms: TSP



Pokemon Go

Given the locations of n Pokémon, find shortest tour to collect them all.

 57

Traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ?
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13,509 cities in the United States
http://www.math.uwaterloo.ca/tsp

can view as a complete graph

Traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ?
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11,849 holes to drill in a programmed logic array
http://www.math.uwaterloo.ca/tsp

TSP books, apps, and movies
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Hamilton cycle reduces to traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ? 
 
HAMILTON-CYCLE.  Given an undirected graph G = (V, E), does there exist a 

cycle that visits every node exactly once? 

 
Theorem.  HAMILTON-CYCLE ≤ P TSP. 

Pf. 

・Given an instance G = (V, E) of HAMILTON-CYCLE, create n = ⎜V ⎜ cities  
with distance function 
 

・TSP instance has tour of length  ≤  n iff G has a Hamilton cycle.  ▪
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d(u, v) =

�
1 B7 (u, v) � E

2 B7 (u, v) /� E
<latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA=">AAACl3icbVHRSiMxFM1M3VXrulb3SfYlbFVcWMqMLKwgoiC79FFhq0KnlEzmThvMJENyp7QM/Uqf/JR9M21nwbZeSDice+5JchLnUlgMghfPr218+Li5tV3f+bT7ea+xf3BvdWE4dLiW2jzGzIIUCjooUMJjboBlsYSH+Olm1n8YgbFCq784yaGXsYESqeAMHdVvZMlp8YOOvtPogl66rR7FMBCq5M7TTuvRRUhPaIQwxlKk9Oi/WCj6+2hKo8gpzt5VKI0LUT0ClVR+/UYzaAXzousgrECTVHXb3/cOokTzIgOFXDJru2GQY69kBgWX4MwLCznjT2wAXQcVy8D2ynkuU3rsmISm2rilkM7ZtxMly6ydZLFTZgyHdrU3I9/rdQtMz3ulUHmBoPjioLSQFDWdhUwTYYCjnDjAuBHurpQPmWEc3VcsnTL3zoEvvaQcF0pwncAKK3GMhs1SDFczWwf3Z60waIV3P5vX51WeW+Qr+UZOSUh+kWvSJrekQzh5Jv8836v5h/6V/8dvL6S+V818IUvl370CCb3GHg==</latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit>

Intractability III:  quiz 4

What is complexity of TSP? Choose the best answer. 

A. O(n2)

B. O*(1.657 n) 

C. O*(2n) 

D. O*(n!)
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O* hides poly(n) terms

there are ½ (n – 1)! tours

coming next

known for HAMILTON-CYCLE but not TSP

would imply P = NP

Exponential algorithm for TSP:  dynamic programming

Theorem. [Held–Karp, Bellman 1962]  TSP can be solved in O(n2 2n) time.

D y n a m i c  P r o g r a m m i n g  T r e a t m e n t  o f  t h e  

T r a v e l l i n g  S a l e s m a n  P r o b l e m *  

RICHARD }~ELLMAN 

R A N D  Corporation, Santa Monica, California 

Introd~ct ion 

The well-known travelling salesman problem is the following: " A  salesman is 
required ~,o visit once and only once each of n different cities starting from a base 
city, and returning to this city. What  path minimizes the to ta l  distance travelled 
by the salesman?" 

The problem has been treated by a number  of different people using a var ie ty  
of techniques; el. Dantzig, Fulkerson, Johnson [1], where a combination of 
ingemtity and linear programming is used, and Miller, Tucker  and Zemlin [2], 
whose experiments using an all-integer program of Gomory  did not produce 
results i~ cases with ten cities although some success was achieved in eases of 
simply four cities. The  purpose of this note is to show tha t  this problem can 
easily be formulated in dynamic programming terms [3], and resolved computa- 
tionally for up to 17 cities. For  larger numbers,  the method presented below, 
combined with various simple manipulations, may  be used to obtain quick 
approximate solutions. Results of this nature  were independently obtained by  
M. Held and R. M. Karp,  who are in the process of publishing some extensions 
and computat ional  results. 

D y n a m i c  P r o g r a m m i n g  Formula t ion  

Consider the problem as a multistage decision problem. With no loss in gen- 
erality, since the tour is a round trip, fix the origin at some city, say 0. Suppose 
that  at a certain stage of an optimal tour  starting at 0 one has reached a city 
i and there remain k cities j l ,  j~, • • • , jk to be visited before returning to 0. 
Then it is clear that ,  the tour being optimal, the path from i through j l  , j2,  • • • ,jk 
in some order and then to 0 must  be of minimum length; for, if not  the entire 
tour  could not  be optimal, since its total length could be reduced by  choosing 
a shorter path  from i through j l ,  j2,  • • • , jk to 0. 

Therefore, let us define 

f ( i ;  j ~ ,  j 2 ,  " • • , j z )  =- length of a path of minimum length from i to 0 which 

passes once and only once through each of the re- (1) 

maining k unvisited cities j l ,  j2 ,  • • • , f l  • 

Thus, if we obtuin f (0 ;  j l ,  j..,, • • • , j~), and a path which has this length, the 
problem has been solved. 

* Received March, 1961; revised July, 1961. 
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HAMILTON-CYCLE is a special case

Theorem. [Held–Karp, Bellman 1962]  TSP can be solved in O(n2 2n) time. 
 
Pf.  [dynamic programming] 

・Subproblems:  c(s, v, X)  = cost of cheapest path between s and v ≠ s  
that visits every node in X exactly once (and uses only nodes in X). 

・Goal:  

・There are ≤ n 2n subproblems and they satisfy the recurrence:  
 
 
 
 

・The values c(s, v, X) can be computed in increasing 
order of the cardinality of X.   ▪

Exponential algorithm for TSP:  dynamic programming

c(s, v, X) =

�
�
�

c(s, v) B7 |X| = 2

min
u�X\{s,v}

c(s, u, X \ {v}) + c(u, v) B7 |X| > 2.
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u

v s

min
v�V

c(s, v, V ) + c(v, s)
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pick node s arbitrarily



22-city TSP instance takes 1,000 years
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22! = 1,124,000,727,777,607,680,000  ~  1021

222 = 4,194,304

Concorde TSP solver

Concorde TSP solver.  [Applegate–Bixby–Chvátal–Cook] 

・Linear programming + branch-and-bound + polyhedral combinatorics. 

・Greedy heuristics, including Lin–Kernighan. 

・MST, Delaunay triangulations, fractional b-matchings, ... 

Remarkable fact.  Concorde has solved all 110 TSPLIB instances.
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largest instance has 85,900 cities!

Euclidean traveling salesperson problem

Euclidean TSP.  Given n points in the plane and a real number L, is there a 

tour that visit every city exactly once that has distance ≤ L ? 
 
Fact.  3-SAT ≤ P EUCLIDEAN-TSP. 

Remark.  Not known to be in NP.
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13509 cities in the USA and an optimal tour

�
5 +

�
6 +

�
18 <

�
4 +

�
12 +

�
12

8.928198407  <    8.928203230
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Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if ;;s instances are 
restricted to be realizable by sets of points on the Euclidean plane. 

The Traveling Salesman Problem (TSP) can be stated as follows 
(n - l)n/2 integers denoting the distances bjetween all pairs of n cities, fin 
that is, a simple path visiting all cities, so that the total traversed distance is the leas 
possible. Recently there have been increasingly many reasons for one to believe 
that the TSP is extremely hard. There is evidence that there are no polyno 
algorithms for obtaining an exact solution (even if the distances are restrict 
0-l [5]) or a solution of some guaranteed accuracy [8]. oreoyer, the p 

iven solution is (exactly or approxi 

Euclidean metric) there is little known about the complexity o 

is almost alwayseasy in t 

using rounded weights

Euclidean traveling salesperson problem

Theorem.  [Arora 1998, Mitchell 1999]  Given n points in the plane, for any 

constant ε > 0: there exists a poly-time algorithm to find a tour whose length 

is at most (1 + ε) times that of the optimal tour. 

 
Pf recipe.  Structure theorem + divide-and-conquer + dynamic programming.
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Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric
Problems

Sanjeev Arora

Princeton University

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA

Tel: (212) 555-1212; Fax: (212) 555-2000

We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For
every fixed c > 1 and given any n nodes in ℜ2 , a randomized version of the scheme finds a
(1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n)O(c)) time. When

the nodes are in ℜd, the running time increases to O(n(log n)(O(
√

dc))d−1
). For every fixed c, d the

running time is n · poly(log n), i.e., nearly linear in n. The algorithm can be derandomized, but
this increases the running time by a factor O(nd). The previous best approximation algorithm
for the problem (due to Christofides) achieves a 3/2-approximation in polynomial time.

We also give similar approximation schemes for some other NP-hard Euclidean problems: Mini-
mum Steiner Tree, k-TSP, and k-MST. (The running times of the algorithm for k-TSP and k-MST
involve an additional multiplicative factor k.) The previous best approximation algorithms for all
these problems achieved a constant-factor approximation. We also give efficient approximation
schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial
time.

All our algorithms also work, with almost no modification, when distance is measured using
any geometric norm (such as ℓp for p ≥ 1 or other Minkowski norms). They also have efficient
parallel (i.e., NC) implementations.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Geometrical problems and computations, Routing and layout; G.2.2 [Graph Theory]: Path
and circuit problems, Trees

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation Algorithms, Traveling Salesman Problem,
Steiner Problem, Network Design, Matching
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