Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?
INTRACTABILITY 1l

PEARSON
Addison
Wesley

A. Sacrifice one of three desired features.
4 specia/ cases: frees i. Solve arbitrary instances of the problem.

N specia/ cases: p/anarily ii. Solve problem to optimality.
iii. Solve problem in polynomial time.

» approximation algorithms: vertex cover

» approximation algorithms: knapsack Coping strategies.
> exponenﬁa/ a/gorifhms: 3-SAT i. Design algorithms for special cases of the problem. dynaumsiicnargrge;mmng
L tial ol h TSP ii. Design approximation algorithms or heuristics. T A
JON KLEINBERG - EVA TARDOS » exponential algorithms: . . i i
P 9 iii. Design algorithms that may take exponential time. petworbiriowalgori!

Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley >
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 5/5/18 5:15 AM

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of

INTRACTABILITY Il nodes such that no two are adjacent.

» specia/ cases: frees Fact. A tree has at least one node that is a leaf (degree = 1).

Key observation. If node v is a leaf, there exists
a max-cardinality independent set containing v.
Pf. [exchange argument]

* Consider a max-cardinality independent set S.
« If vE S, we're done.

SECTION 10.2

* Otherwise, let (u,v) denote the lone edge incident to v.
- ifugSand v S, then SU {v}is independent = S not maximum
- ifueSand v s, then SU {v}-{u} is independent =

Independent set on trees: greedy algorithm Intractability Ill: quiz 1 >

Theorem. The greedy algorithm finds a max-cardinality independent How might the greedy algorithm fail if the graph is not a tree/forest?
set in forests (and hence trees).

. . A. Might get stuck.
Pf. Correctness follows from the previous key observation. =
B. Might take exponential time.
INDEPENDENT-SET-IN-A-FOREST(F) C. Might produce a suboptimal independent set.
S O. D. Any of the above.
WHILE (F has at least 1 edge)
Let v be a leaf node and let (u, v) be the lone edge incident to v.
S<=SU{v}.
F<F — { u,v } <«— delete both « and v (including all incident edges)
RETURN S U { nodes remaining in F' }.
Remark. Can implement in O(n) time by maintaining nodes of degree 1.
5
Weighted independent set on trees Weighted independent set on trees
Weighted independent set on trees. Given a tree and node weights w, >0, Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes £, cw,. find an independent set S that maximizes =, cw,.
Greedy algorithm can fail spectacularly. Dynamic-programming solution. Root tree at some node, say r.

* OPT,,(u) = max-weight IS in subtree rooted at u, containing u.
« OPT,, (u) = max-weight IS in subtree rooted at u, not containing u.
+ Goal: max { OPT, (r), OPT,,(r) }.

(overlapping
subproblems

Bellman equation.

D OPT,(u) = w,+ > OPT,,(v)
v € children(u)
(@ «—— weight = huge OPT,, (1) = S max {OPT, (v), OPT,,, ()}
v € children(u)
®

children(u) = { v, w, x }

Intractability Ill: quiz 2 I>

In which order to solve the subproblems?

A. Preorder.

B. Postorder.

C. Level order.

D. Any of the above.

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set

in a tree in O(n) time.

AN

can also find independent set itself
(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at any node r.

S @.

FOREACH (node u of T in postorder/topological order)

IF (u is a leaf node)

Miz[u] = wy.
Mout[u] = 0
ELSE

AN

ensures a node is processed
after all of its descendants

Min[u] = wu + 2y € chitdrentuy Mow[V].
Moulu] = 2y € chitdrenwy max { Min[v], Mou[v] }.
RETURN max { Min[r], Moulr] }.

SECTION 23.1

INTRACTABILITY Il

» special cases: planarity

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that
no two edges cross.

O——O

Ks is nonplanar K33 is nonplanar

planar

Applications. VLSI circuit design, computer graphics, ...

Problems on planar graphs

Fact 0. Many graph problems can be solved faster in planar graphs.
Ex. Shortest paths, max flow, MST, matchings, ...

Fact 1. Some NP-complete problems become tractable in planar graphs.
Ex. Max-CurT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...

Fact 2. Other NP-complete problems become easier in planar graphs.
Ex. INDEPENDENT-SET, VERTEX-COVER, TSP, STEINER-TREE, ...

An O(nlog n) Algorithm for Maximum st-Flow TS oo o
in a Directed Planar Graph

APPLICATIONS OF A PLANAR SEPARATOR THEOREM*
GLENCORA BORRADAILE AND PHILIP KLEIN RICHARD J. LIPTONt AND ROBERT ENDRE TARJANY

Planarity testing

Theorem. [Hopcroft-Tarjan 1974] There exists an O(n) time algorithm to

determine whether a graph is planar.
simple planar graph
has at < 3n edges

Efficient Planarity Testing

JOHN HOPCROFT AND ROBERT TARJAN
Cornell University, Ithaca, New York

apsTracT. This paper describes an efficient algorithm to determine whether an arbitrary graph G
can be embedded in the plane. The algorithm may be viewed as an iterative version of a method
originally proposed by Auslander and Parter and correctly by Goldstein. The algori
uses depth-first search and has O(V) time and spacc bounds, where V" is the number of vertices in
G. An ALgoL impl ion of the algorith tested graphs with as many as 900 vertices
in less then 12 seconds.

Planar graph 3-colorability

PLANAR-3-COLOR. Given a planar graph, can it be colored using 3 colors
so that no two adjacent nodes have the same color?

Planar map 3-colorability

PLANAR-MAP-3-CoLOR. Given a planar map, can it be colored using 3 colors
so that no two adjacent regions have the same color?

yes instance

Planar graph and map 3-colorability reduce to one another

Theorem. PLANAR-3-COLOR = p PLANAR-MAP-3-COLOR.
Pf sketch.
» Nodes correspond to regions.
» Two nodes are adjacent iff they share a nontrivial border.

e.g., not Arizona
and Colorado

Planar map 3-colorability

PLANAR-MAP-3-CoLOR. Given a planar map, can it be colored using 3 colors

so that no two adjacent regions have the same color?

no instance

Planar 3-colorability is NP-complete

Theorem. PLANAR-3-COLOR € NP-complete.

Pf.

» Easy to see that PLANAR-3-COLOR € NP.

* We show 3-COLOR <p PLANAR-3-COLOR.

» Given 3-COLOR instance G, we construct an instance of
PLANAR-3-COLOR that is 3-colorable iff G is 3-colorable.

20

Planar 3-colorability is NP-complete

Lemma. W is a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
» Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

planar gadget W
21

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G’ by replacing each edge crossing with planar gadget w.

Lemma. G is 3-colorable iff G’ is 3-colorable.
* In any 3-coloring of W, a#a' and b #b'.
* Ifa#a and b# b’ then can extend to a 3-coloring of W.

Planar 3-colorability is NP-complete

Lemma. W is a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
» Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

Pf. The only 3-colorings (modulo permutations) of W are shown below. =

planar gadget W
22

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G’ by replacing each edge crossing with planar gadget w.

Lemma. G is 3-colorable iff G’ is 3-colorable.
* In any 3-coloring of W, a#a' and b#b'.
* Ifaza and b# b’ then can extend to a 3-coloring of W.

a crossing gadget W

23

concatenate copies of gadget W

multiple crossings

24

Planar map k-colorability

Theorem. [Appel-Haken 1976] Every planar map is 4-colorable.

» Resolved century-old open problem.

» Used 50 days of computer time to deal with many special cases.

+ First major theorem to be proved using computer.

BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 82, Number §, September 1976

RESEARCH ANNOUNCEMENTS

EVERY PLANAR MAP IS FOUR COLORABLE!
BY K. APPEL AND W. HAKEN
Communicated by Robert Fossum, July 26, 1976

The following theorem is proved.

THEOREM. Every planar map can be colored with at most four colors.

Remarks.

* Appel-Haken yields O(n*) algorithm to 4-color of a planar map.
* Best known: O®?) to 4-color; O(n) to 5-color.

* Determining whether 3 colors suffice is NP-complete.

Poly-time special cases of NP-hard problems

Trees. VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-ISOMORPHISM, ...
Bipartite graphs. VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-COLOR, ...
Planar graphs. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...
Bounded treewidth. HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM, ...

Small integers. SUBSET-SUM, KNAPSACK, PARTITION, ...

ey

tree

bipartite

planar

bounded treewidth

25

27

Beyond planarity

Graph minor theorem. [Robertson-Seymour 1983-2004]
Pf of theorem. Tour de force.

Corollary. There exist an O(n%) algorithm to determine if a graph can be
embedded in the torus in such a way that no two edges cross. 21k = 22
&

k
more than 212121 (n/2)
Mind boggling fact 1. The proof is highly nonconstructive! /

Mind boggling fact 2. The constant of proportionality is enormous!

“ Unfortunately, for any instance G = (V, E) that one could fit into the known
universe, one would easily prefer n”’ to even constant time, if that constant

had to be one of Robertson and Seymour’s. ” — David Johnson

Theorem. There exists an explicit O(n) algorithm.
Practice. LEDA implementation guarantees O(n%).

26

INTRACTABILITY Il

» approximation algorithms: vertex cover

{\ Nyt Desp

JON KLEINBERG - EVA TARDOS

SECTION 11.8

Approximation algorithms

p-approximation algorithm.
* Runs in polynomial time.
» Applies to arbitrary instances of the problem.
» Guaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 OPT(G) vertices
in O(m + n) time.

Challenge. Need to prove a solution’s value is close to optimum value,
without even knowing what optimum value is!

The DESIGN of
APPROXIMATION
ALGORITHMS

Kpproximation

Algorithms

29

Vertex cover: greedy algorithm

VERTEX-COVER. Given a graph G =(V,E), find a min-size vertex cover.

GREEDY-VERTEX-COVER(G)

S <.
E'< E.

, every vertex cover must take
WHILE (E # Q) at least one of these; we take both

Let (u, v) € E' be an arbitrary edge.
M<— MU {(u,v)}. <«— Misamatching
S < SU{u Ut

Delete from E' all edges incident to either u or v.

RETURN S.

Running time. Can be implemented in O(m + n) time.

31

Vertex cover

VERTEX-COVER. Given a graph G =(V, E), find a min-size vertex cover.

Intractability Ill: quiz 3

!

for each edge (u,v) EE:
eitheru €S, v E S, or both

. vertex cover of size 4

Q O @&—0O O
e O O @

30

Given a graph G, let M be any matching and let S be any vertex cover.
Which of the following must be true?

A
B

C.
D

M| < |S|

IA

A

Is] < M|
IS| = M|

None of the above.

32

Vertex cover: greedy algorithm is a 2-approximation algorithm

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm
computes a vertex cover S with | S| <2 |S*|. «— 2-approximation algorithm
Pf.
* S is avertex cover. «— delete edge only after it's already covered
* Mis a matching. <— when (4, v) added to M, all edges incident to either u or v are deleted
cS|=2|M|=<2[S*]. =

t 1

design weak duality

Corollary. Let M* be a maximum matching. Then, greedy algorithm
computes a matching M with |[M| = % |M*|.
Pf. IM|=%|S| = B |M*|. =

t

weak duality

33

INTRACTABILITY Il

» approximation algorithms: knapsack

g i ey

JON KLEINBERG - EVA TARDOS

SECTION 11.8

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation for
VERTEX-COVER for any p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Trit Dinur* Samuel Safra!

May 26, 2004

Abstract

‘We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

Open research problem. Close the gap.
Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

34

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <— we assume w; = W for each i
» Knapsack has weight limit w.
» Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

36

Knapsack is NP-complete

SUBSET-SUM. Given a set X, values u; =0, and an integer U, is there a subset
S C X whose elements sum to exactly U?

KNAPSACK. Given a set X, weights w; =0, values v; =0, a weight limit W, and a
target value V, is there a subset S C X such that:

dowi < W
€S
Susv
€S
Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., us, U) of SUBSET-SUM, create KNAPSACK instance:
doui U
V= W; = Uy i€S
V=W=U dui > U
€S

37

Knapsack problem: dynamic programming Il

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value > v using a subset of items 1,...,i.

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1, ...,i—1 that achieves value > v.

Case 2. OPT selects item i.
* Consumes weight w;, need to achieve value = v-v,.
* OPT selects best of 1,...,i—1 that achieves value = v—v,.

0 ifv<0
OPT(i,v) = co ifi=0and v>0
min {OPT(i — 1,v), w; + OPT(i —1,v —v;)} otherwise

39

Knapsack problem: dynamic programming |

Def. OPT(i,w)= max value subset of items 1....,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1, ...,i—1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w —w,.
* OPT selects best of 1, ...,i—1 using up to weight limit w—w;.

0 if i=0
OPT(i,w)=3{ OPT(i-1,w) if w,>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

Theorem. Computes the optimal value in O(n W) time.
» Not polynomial in input size.
» Polynomial in input size if weights are small integers.

38

Knapsack problem: dynamic programming Il

Theorem. Dynamic programming algorithm Il computes the optimal value
in O(n2 vmax) time, where vima is the maximum of any value.
Pf.

* The optimal value V* < n vmax.

» There is one subproblem for each item and for each value v < v*.

* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

40

Knapsack problem: poly-time approximation scheme

Intuition for approximation algorithm.
» Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
* Return optimal items in rounded instance.

e | vatue | weiore SR e |_vatve | weip |
1 1 1 1

934221 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

original instance (W = 11) rounded instance (W = 11)

41

Knapsack problem: poly-time approximation scheme

Theorem. If S is solution found by rounding algorithm and $*

is any other feasible solution, then (1+6Y v > Y w
i€S i€S*

Pf. Let $* be any feasible solution satisfying weight constraint.

subset containing

E v; < E Ui always round up only the item
ies* ies* of largest value
< Zﬁi §o|ve roundgd
2 instance optimally
s choosing $* = { max }
never round up
= Z(UZ +90) by more than 0 Umax < Z’Ui + % € Umax
i€S i€S
) 1
< E v; + nb ISl <n = Zvl + 3 Umax
ies thus €S
1 v, < 2 v;
= E Vi + 3 €Vmax O=gvy,/2n e ; ‘
i€S
< (I+¢) E v; Vmax < 2 Zjes Vi

i€S
43

Knapsack problem: poly-time approximation scheme

Round up all values:
* 0 <e=<1 =precision parameter.

largest value in original instance.

vmax

scaling factor = e v, / 2n.
Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with 7.

Intuition. v close to v so optimal solution using v is nearly optimal;
P small and integral so dynamic programming algorithm Il is fast.

42

Knapsack problem: poly-time approximation scheme

Theorem. For any &> 0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢) factor of the optimum in O3/) time.

Pf.
* We have already proved the accuracy bound.
* Dynamic program Il running time is own* Ymax), Where

N _ ’V'Umax—‘ _ 2n
Umax = 0 = c

44

INTRACTABILITY Il

Exact exponential algorithms

Complexity theory deals with worst-case behavior.
» Instances you want to solve may be “easy.”

» exponential algorithms: 3-SAT

Intractability Ill: quiz 1

“ For every polynomial-time algorithm you have, there is an exponential

algorithm that I would rather run.” — Alan Perlis

"Fools ignore
complexity. Pragmatists
suffer it. Some can
avoid it. Geniuses
remove it."”

. Alan Perlis

46

Exact algorithms for 3-satisfiability

What is complexity of 3-SAT? Choose the best answer.

A. O

B. 07(134"
C. 0184
D. 02"

\

O* ignores poly(m, n) terms

Brute force. Given a 3-SAT instance with n variables and m clauses,
the brute-force algorithm takes O((m + n) 2" time.
Pf.

* There are 2" possible truth assignments to the n variables.

* We can evaluate a truth assignment in O(m + n) time. =

47 48

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula ® is either empty or the disjunction
of a clause (£1 v £2 v £3) and a 3-SAT formula @’ with one fewer clause.

()]
|

Liv Lav €3 A D

LiAD) v (2A D) v (34 D)

(D' 1 &i=true) v (D' 182 =true) v (D'14L3 = true)

Notation. @ |x = true is the simplification of ® by setting x to true.
Ex.

L] =@vyvag) Axvayvzg Awvyv-g) A(CxVvyvz).
- @ = (xvyvz AwWvyv-g) A(xVvyvz).
c (@' lx=true) = wvyv-z) AQyVv2).

each clause has < 3 literals
49

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (£ v £ v £3) must fall into one of 3 classes:
e Lyis true.
* Liis false; L2is true.
* Liis false; L2is false; L3is true.

3-SAT ()

IF ® is empty RETURN true.
L1v Lav E3) A D' — .

IF 3-SAT(D' | £1 = true)

IF 3-SAT(D' | £1= false, Lr= true)
IF 3-SAT(®' | £1=false, L2=false, L3=true) ~ RETURN true.

RETURN true.
RETURN true.

RETURN false.

51

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula ® is either empty or the disjunction
of a clause (£; v £2 v £3) and a 3-SAT formula @’ with one fewer clause.

3-SAT (D)

IF @ is empty RETURN true.
Riveavi) A D «— D,

IF 3-SAT (®' | £1 = true) RETURN true.
IF 3-SAT (@' | £2=true) RETURN true.
IF 3-SAT (@' | £3= true) RETURN true.
RETURN false.

Theorem. The brute-force 3-SAT algorithm takes O(poly(n) 3" time.
Pf. T(n) < 3T(n—1) + poly(n). =

Exact algorithms for 3-satisfiability

Theorem. The brute-force algorithm takes O(1.84") time.
Pf. Tn) <= Th-1)+Tn-2)+T(n—3)+ O(m +n). = \

largest root of B =12+ r+ 1

3-SAT (®)

IF ® is empty RETURN true.
€1v Lav E3) A D' < .

IF 3-SAT(D' | £1 = true)

IF 3-SAT(D' | £1= false, Lr= true)
IF 3-SAT(®' | £1=false, L= false, L3=true) ~ RETURN true.

RETURN true.
RETURN true.

RETURN false.

50

52

Exact algorithms for 3-satisfiability

Theorem. There exists a O(1.33334") deterministic algorithm for 3-SAT.

A Full Derandomization of Schoning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science
Department of Computer Science
ETH Ziirich, 8092 Ziirich, Switzerland
{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schining [7] presents a simple randomized algorithm for k-SAT with running time
Oapoly(n)) for a = 2(k — 1)/k. We give a deterministic version of this algorithm
running in time O((ax + €)"poly(n)), where € > 0 can be made arbitrarily small.

53

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.
» Solves real-world SAT instances with ~ 10K variable.
Developed at Princeton by undergrads.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik

Department of EECS Department of EECS Department of Electrical Engineering
UC Berkeley MIT Princeton University
moskewcz@alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.

+ Splitting rule: assign truth value to literal; solve both possibilities.

» Unit propagation: clause contains only a single unassigned literal.

 Pure literal elimination: if literal appears only negated or unnegated.

AC ing Procedure for Quantification Theory*

Martoy Davis
Rensselacr Polytachnic Institute, Hartford Division, East Windsor Hill, Conn.

Axp
Hiary Porsax

Princeton University, Princeton, New Jersoy

‘The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back o Leibnis and has been revived by Peano around the turn
of the century and by Hilbert's school in the 1920’s. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or 1ot a given
formula. of quantification theory is valid was the central problem of mathe-
‘matical logic. And indeed, at one time it seemed as if investigations of this “de-
cision” problem were on the verge of success. However, it was shown by Church
and by Turing that such an algorithm can not exist. This result led to consider-

ism regarding the possibility of using modern digital computers in
deciding significant mathematical questions. However, recently there has been
& revival of interest in the whole question. Specifically, it has been realized that
while no decision procedure exists for quantification theory there are many proof
procedures availsble—that is, uniform procedures which wil ultimately locate
& proof for any formula; of quantification theory which is valid but which will
usually involve seeking “forever” in the case of a formula which is not valid—
and that some of these proof procedures could well turn out to be feasible for
use with modern eomputine machinerv.

A Machine Program for
Theorem-Proving'

Martin Davis, George Logemann, and
Donald Loveland

Institute of Mathematical Sciences, New York University

The programming of a proof procedure is discussed in
connection with trial runs and possible improvements.

In (1] is set forth an algorithm for proving theorems of
quantification theory which is an improvement in certain
respects over previously available algorithms sucl
of [2]. The present paper deals with the programming of
the algorithm of [1] for the New York University, In-
stitute of Mathematical Sciences’ IBM 704 computer,
with some modifications in the algorithm suggested by
this work, with the results obtained using the completed
algorithm. Familiarity with [1] is assumed throughout.

INTRACTABILITY [l

ABSTRACT
Boolean Satisfiability is probably the most studied of
ial imizati problems. Signifi effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the

Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a

3 exponenfia/ a/gorifhms: TSP

54

Pokemon Go Traveling salesperson problem

Given the locations of n Pokémon, find shortest tour to collect them all. TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length<D?

can view as a complete graph

Map: Where to catch
123 Pokémon in
San Francisco

BY ADAM BRINKLOW | OCT 4, 2016, 6:33AM PDT

13,509 cities in the United States

5 http:/ /www.math.uwaterloo.ca/tsp 0

Traveling salesperson problem TSP books, apps, and movies

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length<D?

The Traveling
Salesman Problem
e v
-2 y

Carrior = 12:33 PM -

< Home Bounds

%

legate,
RobertE Bt byVa§ ek Chtal,
and Willam J. Co

Moats: 85882.6 (Gap 1.464%) é%i v I! l i i
DE POTESTATE IDEAM EST VIRTUTEM DEI

) %% ég%%é %%% Run Load O]

11,849 holes to drill in a programmed logic array
http:/ /www.math.uwaterloo.ca/tsp

59 60

Hamilton cycle reduces to traveling salesperson problem Intractability Ill: quiz 4 |)\

TSP. Given a set of n cities and a pairwise distance function d(u, v), What is complexity of TSP? Choose the best answer.
is there a tour of length<D?

. .) o)

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle that visits every node exactly once?

w >

O0*(1.657")
O*(zﬂ)

Theorem. HAMILTON-CYCLE <, TSP.
Pf. :

» Given an instance G = (V, E) of HAMILTON-CYCLE, create n = | V| cities) T
O* hides poly(n) terms

o N

O*(n!)

with distance function
1 if (u,v) € E

d(u,v) 2 if (wv) ¢ E

A

* TSP instance has tour of length < » iff G has a Hamilton cycle. =

61

Exponential algorithm for TSP: dynamic programming Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(»?2") time. Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(»? 2") time.

HAMILTON-CYCLE is a special case

Pf. [dynamic programming] pick node s arbitrarily

» Subproblems: c(s,v,X) = cost of cheapest path between s and v#s
that visits every node in X exactly once (and uses only nodes in X).
* Goal: mi‘r/l c(s,v, V) +c(v, s)
ve

A DYNAMIC PROGRAMMING APPROACH TO

Dynamic Programming Treatment of the
SEQUENCING PROBLEMS* Y 2! 'z . n .
ICHADS, HELDY sso MIGHARD M. KARPS Travelling Salesman Problem* There are <n 2" subproblems and they satisfy the recurrence:
INTRODUCTION RicHaRD BELLMAN
Many interesting and important optimization problems require the RAND Corporation, Santa Monica, California

determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
heduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of ree schemes
of the type associated with dynamie programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the ions to be performed. The dynamic
programming formulations are given in §1, together with
various extensions such as the inclusion of precedence constraints. In each

c(s,v) if | X| =2

min c(s,u, X \ {v}) + c(u,v) if | X|> 2.
Lo, u, X\ {0]) + cluv) i [X]

wn travelling salesman problem is the following: “A salesman is

once and only once each of n different cities starting from a base 0(37 v, X) =

ing to this city. What path minimizes the total distance travelled

ingenuity and li
whose experime:

icker and Zemlin (2],
ory did not produce

achieved in cases of
cities. The p of this note is

. hat this problem can o
mulated in dynamic programming terms [3], and resolved computa-

for up to 17 cities. For larger numbers, the method presented below, . A R .
each having the same structure as the original one. This procedure of suc- ined with various simple manipulatio e used to obtain quick The values c(s,v,X) can be com puted In Increasing

cessive approximations is developed in detail in h specific reference solutions. Results of this nature were independently obtained by

to the traveling-salesman problem, and §3 summarizes computational ex- : 1% M. Karp, who are i the processof pubiiding some extesions order of the cardinality of X. =

perience with an TBM 7090 program using the procedure.

all-integer program of C
though some s

case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,

63 64

22-city TSP instance takes 1,000 years

The Washington Post

222=4,194304
22! =1,124,000,727,777,607,680,000 ~ 10*!

65

Euclidean traveling salesperson problem

Euclidean TSP. Given n points in the plane and a real number L, is there a
tour that visit every city exactly once that has distance < L?

Fact. 3-SAT <, EUCLIDEAN-TSP. V5 VB VIS < VIt Vi3e Vi3
Remark. Not known to be in NP. 8.928198407 < 8.928203230

THE EUCLIDEAN TRAVELING SALESMAN PROBLEM
IS NP-COMPLETE*

using rounded weights
Christos H. PAPADIMITRIOU
Center for Research in Computing Technology, Harvard University, Cambridge, MA 02138,
US.A.

Communicated by Richard Karp
Received August 1975
Revised July 1976

Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if iis instances are
restricted to be realizable by sets of poinis on the Euclidean plane.

13509 cities in the USA and an optimal tour o7

Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby—Chvatal-Cook]
+ Linear programming + branch-and-bound + polyhedral combinatorics.
» Greedy heuristics, including Lin-Kernighan.
* MST, Delaunay triangulations, fractional »-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

largest instance has 85,900 cities!

 ATET 1242PM =

The Traveling
Salesman Problem

David L Applegate,
Robert E. Bixby, Vasek Chvtal,
and William J. Cook

Euclidean traveling salesperson problem

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any
constant £ > 0: there exists a poly-time algorithm to find a tour whose length
is at most (1 +) times that of the optimal tour.

Pf recipe. Structure theorem + divide-and-conquer + dynamic programming.

Polynomial Time Approximation Schemes for GUILLOTINE SUBDIVISIONS APPROXIMATE POLYGONAL

Euclidean Traveling Salesman and other Geometric SUBDIVISIONS: A SIMPLE POLYNOMIAL-TIME
APPROXIMATION SCHEME FOR GEOMETRIC TSP, K-MST, AND

Problems RELATED PROBLEMS

Sanjeev Arora JOSEPH S. B. MITCHELL*

Princeton University

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA
Tel: (212) 555-1212; Fax: (212) 555-2000

on problem (TSP), and the k-MST prol

66

68

