Priority Queues

- Binary heaps
- D-ary heaps
- Binomial heaps
- Fibonacci heaps

Priority queue data type

A min-oriented priority queue supports the following core operations:

- **Make-Heap(H)**: create an empty heap.
- **Insert(H, x)**: insert an element x into the heap.
- **Extract-Min(H)**: remove and return an element with the smallest key.
- **Decrease-Key(H, x, k)**: decrease the key of element x to k.

The following operations are also useful:

- **Is-Empty(H)**: is the heap empty?
- **Find-Min(H)**: return an element with smallest key.
- **Delete(H, x)**: delete element x from the heap.
- **Meld(H1, H2)**: replace heaps H1 and H2 with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.

Priority queue applications

Applications.

- A* search.
- Heapsort.
- Online median.
- Huffman encoding.
- Prim's MST algorithm.
- Discrete event-driven simulation.
- Network bandwidth management.
- Dijkstra's shortest-paths algorithm.
- ...

Priority Queues

- Binary heaps
- D-ary heaps
- Binomial heaps
- Fibonacci heaps

Section 2.4
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

![Complete binary tree](image1.png)

Property. Height of complete binary tree with \(n \) nodes is \(\lceil \log_2 n \rceil \).

Pf. Height increases (by 1) only when \(n \) is a power of 2. •

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child \(\geq \) key in parent.

![Binary heap](image2.png)

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
- Maintain number of elements \(n \).
- Maintain pointer to root node.
- Can find pointer to last node or next node in \(O(\log n) \) time.

![Explicit binary heap](image3.png)

A complete binary tree in nature

![A complete binary tree in nature](image4.png)
Implicit binary heap

Array representation. Indices start at 1.
- Take nodes in level order.
- Parent of node at k is at $\lceil k / 2 \rceil$.
- Children of node at k are at $2k$ and $2k + 1$.

![Binary heap diagram](image)

Binary heap demo

Heap ordered

![Heap ordered diagram](image)

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

![Binary heap insert](image)

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.

![Binary heap extract](image)
Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

```plaintext
decrease key of node x to 11
```

Theorem. In an implicit binary heap, any sequence of m \textsc{insert}, \textsc{extract-min}, and \textsc{decrease-key} operations with n \textsc{insert} operations takes $O(m \log n)$ time.

Proof.
- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is $O(n)$.

Binary heap: analysis

Theorem. In an explicit binary heap with n nodes, the operations \textsc{insert}, \textsc{decrease-key}, and \textsc{extract-min} take $O(\log n)$ time in the worst case.

Binary heap: find-min

Find the minimum. Return element in the root node.

```plaintext
find-min
```

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

```plaintext
delete node x or y
```

Theorem. In an explicit binary heap with n nodes, the operations \textsc{insert}, \textsc{decrease-key}, and \textsc{extract-min} take $O(\log n)$ time in the worst case.
Binary heap: meld

Meld. Given two binary heaps H_1 and H_2, merge into a single binary heap.

Observation. No easy solution: $\Omega(n)$ time apparently required.

\[
\begin{align*}
H_1 & : \begin{array}{ccc}
7 & & \\
12 & 8 & \\
21 & 17 & 9 \\
\end{array} \\
H_2 & : \begin{array}{ccc}
10' & & \\
11 & 25 & \\
\end{array}
\end{align*}
\]

Binary heap: heapify

Heapify. Given n elements, construct a binary heap containing them.

Observation. Can do in $O(n \log n)$ time by inserting each element.

Bottom-up method. For $i = n$ to 1, repeatedly exchange the element in node i with its smaller child until subtree rooted at i is heap-ordered.

\[
\begin{align*}
& \quad \begin{array}{ccc}
8 & & \\
12 & 2 & \\
4 & 7 & 10 \\
14 & 11 & \\
15 & 22 & \\
6 & 3 & 7 \\
8 & 26 & \\
\end{array} \\
& \quad \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & \\
\end{array}
\end{align*}
\]

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Theorem. Given n elements, can construct a binary heap containing those n elements in $O(n)$ time.

Pf.
- There are at most $\lfloor n / 2^h + 1 \rfloor$ nodes of height h.
- The amount of work to sink a node is proportional to its height h.
- Thus, the total work is bounded by:

\[
\sum_{h=0}^{\lfloor \log_2 n \rfloor} \lfloor n / 2^{h+1} \rfloor \cdot h \leq \sum_{h=0}^{\lfloor \log_2 n \rfloor} n \cdot h / 2^h \leq 2n \cdot \sum_{i=1}^{\lfloor \log_2 n \rfloor} \frac{k}{2^i} = 2 - \frac{k}{2^i} - \frac{1}{2^i} \leq 2
\]

Corollary. Given two binary heaps H_1 and H_2 containing n elements in total, can implement MELD in $O(n)$ time.
Priority queues performance cost summary

Q. Reanalyze so that \texttt{EXTRACT-MIN} and \texttt{DELETE} take $O(1)$ amortized time?

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binary heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized

Complete d-ary tree

\textbf{d-ary tree.} Empty or node with links to d disjoint d-ary trees.

\textbf{Complete tree.} Perfectly balanced, except for bottom level.

\textbf{Fact.} The height of a complete d-ary tree with n nodes is $\leq \lceil \log_d n \rceil$.

\textbf{d-ary heap.} Heap-ordered complete d-ary tree.

\textbf{Heap-ordered tree.} For each child, the key in child \geq key in parent.
d-ary heap: insert

Insert. Add node at end; repeatedly exchange element in child with element in parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n)\).

d-ary heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange element in parent with element in largest child until heap order is restored.

Running time. Proportional to \(d \times \text{height} = O(d \log_d n)\).

d-ary heap: decrease key

Decrease key. Given a handle to an element \(x\), repeatedly exchange it with its parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n)\).

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>DELETE</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>MELD</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Priority Queues

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log_d n)</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(d log_d n)</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log_d n)</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(d log_d n)</td>
</tr>
<tr>
<td>MELD</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

Goal. O(log n) INSERT, DECREASE-KEY, EXTRACT-MIN, and MELD.

Binomial heaps

Def. A binomial tree of order k is defined recursively:
- Order 0: single node.
- Order k: one binomial tree of order k – 1 linked to another of order k – 1.
Binomial tree properties

Properties. Given an order \(k \) binomial tree \(B_k \),
- Its height is \(k \).
- It has \(2^k \) nodes.
- It has \(\binom{k}{i} \) nodes at depth \(i \).
- The degree of its root is \(k \).
- Deleting its root yields \(k \) binomial trees \(B_{k-1}, \ldots, B_0 \).

Pf. [by induction on \(k \)]

Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:
- Each tree is heap-ordered.
- There is either 0 or 1 binomial tree of order \(k \).

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.

Binomial heap properties

Properties. Given a binomial heap with \(n \) nodes:
- The node containing the min element is a root of \(B_0, B_1, \ldots, \) or \(B_k \).
- It contains the binomial tree \(B_i \) iff \(b_i = 1 \), where \(b_i b_{i-1} b_{i-2} \ldots b_0 \) is binary representation of \(n \).
- It has \(\leq \lfloor \log_2 n \rfloor + 1 \) binomial trees.
- Its height \(\leq \lfloor \log_2 n \rfloor \).
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Warmup. Easy if H_1 and H_2 are both binomial trees of order k.

- Connect roots of H_1 and H_2.
- Choose node with smaller key to be root of H.

Diagram:

1. Connect roots of H_1 and H_2.
2. Choose node with smaller key to be root of H.
3. Merge the trees.
19 + 7 = 26
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2(\lceil \log_2 n \rceil + 1)$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

19 + 7 = 26

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete.
- $H' \leftarrow$ broken binomial trees.
- $H \leftarrow$ MELD(H', H).

Running time. $O(\log n)$.

Binomial heap: decrease key

Decrease key. Given a handle to an element x in H, decrease its key to k.

- Suppose x is in binomial tree B_i.
- Repeatedly exchange x with its parent until heap order is restored.

Running time. $O(\log n)$.
Binomial heap: delete

Delete. Given a handle to an element \(x \) in a binomial heap, delete it.

- **DECREASE-KEY**\((H, x, -\infty)\).
- **DELETE-MIN**\((H)\).

Running time. \(O(\log n) \).

Binomial heap: insert

Insert. Given a binomial heap \(H \), insert an element \(x \).

- \(H' \leftarrow \text{MAKE-HEAP()} \).
- \(H' \leftarrow \text{INSERT}(H', x) \).
- \(H \leftarrow \text{MELD}(H', H) \).

Running time. \(O(\log n) \).

Binomial heap: sequence of insertions

Insert. How much work to insert a new node \(x \)?

- If \(n = \ldots 000 \), then only 1 credit.
- If \(n = \ldots 001 \), then only 2 credits.
- If \(n = \ldots 010 \), then only 3 credits.
- If \(n = \ldots 011 \), then only 4 credits.

Observation. Inserting one element can take \(\Omega(\log n) \) time.

Theorem. Starting from an empty binomial heap, a sequence of \(n \) consecutive \texttt{INSERT} operations takes \(O(n) \) time.

Pf. \((n/2) + (n/4)(2) + (n/8)(3) + \ldots \leq 2n \).

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of \texttt{INSERT} is \(O(1) \) and the worst-case cost of \texttt{EXTRACT-MIN} and \texttt{DECREASE-KEY} is \(O(\log n) \).

Pf. Define potential function \(\Phi(H_i) = \text{trees}(H_i) = \# \text{trees} \) in binomial heap \(H_i \).

- \(\Phi(H_0) = 0 \).
- \(\Phi(H_i) \geq 0 \) for each binomial heap \(H_i \).

Case 1. [\texttt{INSERT}]

- Actual cost \(c_i = \text{number of trees merged} + 1 \).
- \(\Delta\Phi = \Phi(H_i) - \Phi(H_{i-1}) = 1 - \text{number of trees merged} \).
- Amortized cost \(= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) \).
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 2. [DECREASE-KEY]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 0$.
- Amortized cost $= \hat{c}_i = c_i = O(\log n)$.

Case 3. [EXTRACT-MIN or DELETE]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) \leq \Phi(H_i) \leq \lceil \log_2 n \rceil$.
- Amortized cost $= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = O(\log n)$.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MLEFT</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Hopeless challenge. $O(1)$ INSERT, DECREASE-KEY and EXTRACT-MIN. Why?

Challenge. $O(1)$ INSERT and DECREASE-KEY, $O(\log n)$ EXTRACT-MIN.