PRIORITY QUEUES

PEARSON

Addison
Wesley

» binary heaps

» d-ary heaps

» binomial heaps
» Fibonacci heaps

|

\ ! :
‘\\‘\ JON KLEINBERG - EVA TARDOS
\

|

Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 7/25/17 11:07 AM

Priority queue applications

Applications.

A* search.

Heapsort.

Online median.

Huffman encoding.

Prim’s MST algorithm.

Discrete event-driven simulation.
Network bandwidth management.
Dijkstra’s shortest-paths algorithm.

http://younginc.sitel1.com/source/5895/fos0092.html

Priority queue data type

A min-oriented priority queue supports the following core operations:
* MAKE-HEAP(): create an empty heap.
* INSERT(H, x): insert an element x into the heap.
* EXTRACT-MIN(H): remove and return an element with the smallest key.
» DECREASE-KEY(H, x, k): decrease the key of element x to .

The following operations are also useful:
* IS-EMPTY(H): is the heap empty?
* FIND-MIN(H): return an element with smallest key.
* DELETE(H,x): delete element x from the heap.
* MELD(H\, Hz): replace heaps H; and H, with their union.

Note. Each element contains a key (duplicate keys are permitted)
from a totally-ordered universe.

PRIORITY QUEUES

» binary heaps

Algorithms

FOURTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

SECTION 2.4

Complete binary tree A complete binary tree in nature

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is |log; n].
Pf. Height increases (by 1) only when n is a power of 2. =

Binary heap Explicit binary heap

Binary heap. Heap-ordered complete binary tree. Pointer representation. Each node has a pointer to parent and two children.
* Maintain number of elements n.

Heap-ordered tree. For each child, the key in child = key in parent. » Maintain pointer to root node.
» Can find pointer to last node or next node in O(log n) time.

root

parent

last next

Implicit binary heap

Array representation. Indices start at 1.
+ Take nodes in level order.
* Parent of node at k is at |k/2].
* Children of node at k are at 2k and 2k + 1.

6 10 8 12 18 11 25 21 17 19

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element
with element in its parent until heap order is restored.

add key to heap
(violates heap order)

Binary heap demo

heap ordered

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly
exchange element in root with its smaller child until heap order is restored.

element to
remove

exchange
with root

sink down

violates

heap order

remove
from heap

Binary heap: decrease key Binary heap: analysis

Decrease key. Given a handle to node, repeatedly exchange element with Theorem. In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN,
its parent until heap order is restored. and DECREASE-KEY operations with n INSERT operations takes O(m log n) time.
Pf.

» Each heap op touches nodes only on a path from the root to a leaf;
the height of the tree is at most log, n.

decrease key of node x to 11
» The total cost of expanding and contracting the arrays is O(n). =

Theorem. In an explicit binary heap with n nodes, the operations INSERT,
DECREASE-KEY, and EXTRACT-MIN take O(log n) time in the worst case.

Binary heap: find-min Binary heap: delete

Find the minimum. Return element in the root node. Delete. Given a handle to a node, exchange element in node with last node;
either swim down or sink up the node until heap order is restored.

delete node x or y

root

Binary heap: meld

Meld. Given two binary heaps H, and H,, merge into a single binary heap.

Observation. No easy solution: Q(n) time apparently required.

H1 H2

Binary heap: heapify

Theorem. Given n elements, can construct a binary heap containing those n
elements in O(n) time.
Pf.

* There are at most [n/ 2] nodes of height A.

» The amount of work to sink a node is proportional to its height A.

» Thus, the total work is bounded by:

[loga] [loga]
Mo In/2" R < Y nh/2 P
h=0 h=0 Zizg_ﬁ_ !
2i 2/(', 27{71
i=1
< 2n . <9

Corollary. Given two binary heaps H, and H, containing n elements in total,
can implement MELD in O(n) time.

Binary heap: heapify

Heapify. Given n elements, construct a binary heap containing them.
Observation. Can do in O(n log n) time by inserting each element.

Bottom-up method. For i=nto 1, repeatedly exchange the element in node i
with its smaller child until subtree rooted at i is heap-ordered.

8 12 9 7 22 3 26 14 11 15 22
1 2 3 4 5 6 7 8 9 10 11

Priority queues performance cost summary

linked list binary heap

MAKE-HEAP o(1) o(l)

ISEMPTY o) o(l)
INSERT o(l) O(log n)
EXTRACT-MIN o(n) O(log n)
DECREASE-KEY o(l) O(log n)
DELETE o(l) O(log n)

MELD o) Oo(n)

FIND-MIN on) o(l)

20

Priority queues performance cost summary

Q. Reanalyze so that EXTRACT-MIN and DELETE take O(1) amortized time?

linked list binary heap binary heap t

MAKE-HEAP o)
ISEMPTY o(1)
INSERT o)
EXTRACT-MIN o(n)
DECREASE-KEY o(l)
DELETE o)
MELD o)
FIND-MIN o(n)

Complete d-ary tree

o(1)
o)
O(log n)
0(log n)
0(log n)
0(log n)
o)

o(1)

o(1)
o(1)
O(log n)
o)t
O(log n)
o)t
O(n)

o(l)

1t amortized

d-ary tree. Empty or node with links to d disjoint d-ary trees.

Complete tree. Perfectly balanced, except for bottom level.

Fact. The height of a complete d-ary tree with n nodes is < [logsn].

21

23

PRIORITY QUEUES

» d-ary heaps

Algorithms

OURTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

SECTION 2.4

d-ary heap

d-ary heap. Heap-ordered complete d-ary tree.
Heap-ordered tree. For each child, the key in child > key in parent.

24

d-ary heap: insert d-ary heap: extract the minimum

Insert. Add node at end; repeatedly exchange element in child with element Extract min. Exchange root node with last node; repeatedly exchange
in parent until heap order is restored. element in parent with element in largest child until heap order is restored.
Running time. Proportional to height = O(logs n). Running time. Proportional to d x height = O(d loga n).

25

d-ary heap: decrease ke Priority queues performance cost summar
V4 P Y Y q P Yy

Decrease key. Given a handle to an element x, repeatedly exchange it with
its parent until heap order is restored.

. . . . operation linked list binary heap d-ary heap
Running time. Proportional to height = O(logs n).

MAKE-HEAP o) o(1) o)
ISEMPTY o(1) o(l) o)
INSERT o(1) 0O(log n) O(loga n)
EXTRACT-MIN o(n) O(log n) O(d loga n)
DECREASE-KEY o) O(log n) O(loga n)
DELETE o(l) O(log n) O(d loga n)
MELD o) O(n) O(n)

FIND-MIN o(n) o(l) o)

27

Priority queues performance cost summary

PRIORITY QUEUES v ,
operation linked list binary heap d-ary heap

-
~ MAKE-HEAP o() o(1) o)
[J
ISEMPTY o(1) o(1) o(1)
\\ ‘ 4 binomia/ heaps INSERT o(1) O(log n) O(loga n)

= ‘\‘ EXTRACT-MIN Oo(n) O(log n) O(d loga n)

INTRODUCTION TO

DECREASE-KEY o(1) O(log n) O(loga n)
ALGORITHMS
DELETE o(1) O(log n) O(d loga n)
MELD o(l) @ .@
CHAPTER 6 (2"° EDITION) -
FIND-MIN O(n) o(l) o(1)

Goal. O(log n) INSERT, DECREASE-KEY, EXTRACT-MIN, and MELD.

mergeable heap

Binomial heaps Binomial tree

Def. A binomial tree of order k is defined recursively:
* Order 0: single node.
* Order k: one binomial tree of order k-1 linked to another of order k- 1.

Programming S.L. Graham, R.L. Rivest

Techniques Editors

A Data Structure for Bo By
Manipulating Priority °

Queues

Jean Vuillemin
Université de Paris-Sud

A data structure is described which can be used for
representing a collection of priority queues. The
primitive operations are insertion, deletion, union,

update, and search for an item of earliest priority.
Key Words and Phrases: data structures,
implementation of set operations, priority queues,
mergeable heaps, binary trees
CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1
([] I {I
B, B, B, B,

31

50

Binomial tree properties

Properties. Given an order k binomial tree B,,
* Its height is %.
* It has 2¢ nodes.
* It has (f) nodes at depth i.
* The degree of its root is «.
 Deleting its root yields k binomial trees B, i, ..., B,.

Pf. [by induction on k]

33

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing
from left to right.

6 3 18 6 3 18
(\\
‘0
&
© 6 « ® g - &
A
k\, -~
2 ‘9'5,.
ww ¢ ©
50 31 17 44

binomial heap leftist power-of-2 heap representation
35

Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:

» Each tree is heap-ordered.

* There is either 0 or 1 binomial tree of order .

6 3 18
8 29 10 44 37
30 23 22 48 31 17
45 32 24 50
>3 B, B, B,
Binomial heap properties
Properties. Given a binomial heap with n nodes:
« The node containing the min element is a root of B;, By, ..., 0or B,.
« It contains the binomial tree B, iff b,= 1, where b, b, b, b, is binary
representation of n.
« It has < [log, n] + 1 binomial trees.
« Its height < |log, n|.
6 3 18
8 29 10 44 37
n=19
trees = 3
30 23 22 48 31 17 height = 4
binary = 10011
45 32 24 50
>3 B, B, B,

34

36

Binomial heap: meld

Meld operation. Given two binomial heaps H, and H», (destructively)

replace with a binomial heap H that is the union of the two.

Warmup. Easy if H; and H, are both binomial trees of order k.

» Connect roots of H; and H..

* Choose node with smaller key to be root of H.

8 29

A

/30 23" 22 48 3
|| |
45’ 32 24 50

55

6
29 10 44

48 31

]
I

17
50
H2
37
- Y— 18
37
15 eemeeeeees yAR— 12
28 33 25
41

6 3 18
8%4 37
A |
30 23/22 48 31 17
/1 | | — — 12
45" 32 24 50 |
5|5 28 33 25
|
4
6) — 18
8%4 37
A
30 23/22 48 31 17
A | | — AN 12
45" 32 24 50 |
l 28 33 25
55 |
a1

! !

6) — 18 6 B)-........ 18
8%4 37 8%4 37
A /1] A /1]
30723 22 48 31 17 30723 22 48 31 a7
/1 | | — yAN— 12 /1 | | — yAN— 12
45" 32 24 50 | 45" 32 24 50 |
| 28 33 25 | 28 33 25
55 55
| + |
41 41
(2 (3) (2)

6 B).......r 18 6 3 18
8%4 37 8%4 37
ANVl |
30723 22 4§ 31 a7 30723 22 4§ 31 a7
| | | - — 7 12 /1 | | - — ... 12
45" 32 24 50 | 45" 32 24 50 |
| 26 33 25 | 26 33 25
55 55
| + |
41 41
6 (3) a2

(8 29 (9 @) 15 @ @ 9
7@ @ @9 6D @ 9 63 @ 19+7=26 + o

@5 32 @9 (50) @) 1 1 0o 1 0
69

o o

Binomial heap: meld

Meld operation. Given two binomial heaps H: and H,, (destructively)
replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. O(log n).

Pf. Proportional to number of trees in root lists < 2 (|log, n] + 1).

19+7 =26

o o

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.

* Find root x with min key in root list of H, and delete.

* H < broken binomial trees.
* H < MELD(H', H).

Running time. O(log n).

.. 44

37

45

47

Binomial heap: extract the minimum

Binomial heap: decrease key

Extract-min. Delete the node with minimum key in binomial heap H.
* Find root x with min key in root list of H, and delete.

46

Running time. O(log n).

e

Decrease key. Given a handle to an element x in H, decrease its key to k.
« Suppose x is in binomial tree B,.
* Repeatedly exchange x with its parent until heap order is restored.

37

17

48

Binomial heap: delete

Delete. Given a handle to an element x in a binomial heap, delete it.
* DECREASE-KEY(H, x, -0).
* DELETE-MIN(H).

Running time. O(log n).

3 emeemeenes [18
297 10 44 37
/3lo 2|3 22 4|8 31 17 .
45 32 24 50

55

Binomial heap: sequence of insertions

Insert. How much work to insert a new node x?

s Ifn= ... 0, then only 1 credit. 3
s fn= ... 01, then only 2 credits.
cIfn= .. 011, then only 3 credits. ® © @

cUfn= ... 0111, then only 4 credits. e

50

Observation. Inserting one element can take Q(log n) time.
ifn=11...111
Theorem. Starting from an empty binomial heap, a sequence of n

consecutive INSERT operations takes O(n) time.

Pf. (n/2)()+ /D2 +@/8)3B)+... <2n. =

Binomial heap: insert

Insert. Given a binomial heap H, insert an element x.
* H < MAKE-HEAP().
* H' < INSERT(H', x).
* H < MELD(H', H).

Running time. O(log n).

3
8%4 37 H’
A /T
30 23 22 48 31

/1 l

24 50
l

55
49

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the

° worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H;) = trees(H;) = # trees in binomial heap H..
« ®(Ho) = 0.
* ®(H;) = 0 for each binomial heap H..

Case 1. [INSERT]
* Actual cost ¢; = number of trees merged + 1.
* A® = O(H)-P(H-1) =1-number of trees merged.
* Amortized cost = ¢ = ¢ + ®(H;) - D(Hi) =2.

51

50

52

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the
worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H;) = trees(H;) = # trees in binomial heap H..
« O(Ho) = 0.
* ®(H;) = 0 for each binomial heap H..

Case 2. [DECREASE-KEY]
* Actual cost ¢; = O(log n).

o AD = OH) - D(Hi1) = 0.
* Amortized cost = ¢ = ¢; = O(log n).

53

Priority queues performance cost summary

linked list binary heap binomial heap binomial heap

MAKE-HEAP o(l) o(1) o(l) o(l)
ISEMPTY o(l) o(l) o(l) o(l)
INSERT o(1) O(log n) O(log n) o)t
EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
DECREASE-KEY o(1) O(log n) O(log n) O(log n)
DELETE o(l) O(log n) O(log n) O(log n)
homework
MELD o(l) O(n) O(log n) o)t
FIND-MIN O(n) o(l) O(log n) o(l)
t amortized

Hopeless challenge. O(1) INSERT, DECREASE-KEY and EXTRACT-MIN. Why?
Challenge. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

55

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the
worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H;) = trees(H;) = # trees in binomial heap H..
« O(Ho) = 0.
* ®(H;) = 0 for each binomial heap H..

Case 3. [EXTRACT-MIN or DELETE]
* Actual cost ¢; = O(log n).
« AD = O(H) - P(Hi1) < O(H) < |log, n).
* Amortized cost = ¢ = ¢; + ®(H;) — ©(H-1) = O(logn). =

54

