13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography,
13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Contestion resolution in a distributed system

Contestion resolution. Given \(n \) processes \(P_1, \ldots, P_n \), each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.
Contestation resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t]$ = event that process i succeeds in accessing the database at time t. Then $1 / (e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n)$.

Pf. By independence, \[\Pr[S(i, t)] = p \cdot (1 - p)^{n-1}. \]

- Setting $p = 1/n$, we have \[\Pr[S(i, t)] = \frac{1}{n} \cdot (1 - 1/n)^{n-1}. \]

Useful facts from calculus. As n increases from 2, the function:
- $(1 - 1/n)^{n-1}$ converges monotonically from $1/4$ up to $1/e$.
- $(1 - 1/n)^{n-1}$ converges monotonically from $1/2$ down to $1/e$.
Contestion resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1/e$. After $e \cdot n (c \ln n)$ rounds, the probability $\leq n^{-c}$.

Pf. Let $F[i, t] = $ event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $\Pr[F[i, t]] \leq (1 - 1/(en))^t$.

- Choose $t = [e \cdot n]$:
 $$\Pr[F(i, t)] \leq (1 - \frac{1}{en})^{en} \leq (1 - \frac{1}{en})^e \leq \frac{1}{e}$$

- Choose $t = [e \cdot n \cdot c \ln n]$:
 $$\Pr[F(i, t)] \leq \left(\frac{1}{e} \right)^{c \ln n} = n^{-c}$$
Contestation resolution: randomized protocol

Claim. The probability that all processes succeed within \(2e \cdot n \ln n\) rounds is \(\geq 1 - 1/n\).

\textbf{Pf.} Let \(F[t] = \) event that at least one of the \(n\) processes fails to access database in any of the rounds 1 through \(t\).

\[
\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t] \right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^{t}
\]

- Choosing \(t = 2 \lceil en \rceil [c \ln n]\) yields \(\Pr[F[t]] \leq n \cdot n^{-2} = 1/n\). ■

\textbf{Union bound.} Given events \(E_1, \ldots, E_n\),

\[
\Pr\left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} \Pr[E_i]
\]
13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Global minimum cut

Global min cut. Given a connected, undirected graph $G = (V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s–t cut separating s from each other node $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.
Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_1 and v_1.
- Return the cut (all nodes that were contracted to form v_1).
Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_1 and v_1.
- Return the cut (all nodes that were contracted to form v_1).

Reference: Thore Husfeldt
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = $ size of min cut.
- In first step, algorithm contracts an edge in F^* probability $k / |E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq \frac{1}{2} kn \iff k / |E| \leq 2 / n$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n$.
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = \text{size of min cut}$.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \geq \frac{1}{2} k n' \Leftrightarrow k / |E'| \leq 2/n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let $E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j$.

\[
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\
\geq (1 - \frac{2}{n}) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\
= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\
= \frac{2}{n(n-1)} \\
\geq \frac{2}{n^2}
\]
Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1 / n^2$.

Pf. By independence, the probability of failure is at most

$$
\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left(\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2} n^2}\right)^{2 \ln n} \leq \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}
$$

with independent random choices,
Contraction algorithm: example execution

Reference: Thore Husfeldt
Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$. Faster than best known max flow algorithm or deterministic global min cut algorithm.
13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Expectation

Expectation. Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1 - p)^{j-1} p = \frac{p}{1 - p} \sum_{j=0}^{\infty} j (1 - p)^j = \frac{p}{1 - p} \cdot \frac{1 - p}{p^2} = \frac{1}{p}$$

$$\sum_{j=0}^{\infty} j x^j = \frac{x}{(1 - x)^2}$$
Expectation: two properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Benefit. Decouples a complex calculation into simpler pieces.
Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1 / n + \ldots + 1 / n = 1$. ■

↑ linearity of expectation
Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n - (i - 1))$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n)$.

\[\ln(n+1) < H(n) < 1 + \ln n\]

\[\text{linearity of expectation}\]
Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

Pf.

- Phase \(j \) = time between \(j \) and \(j + 1 \) distinct coupons.
- Let \(X_j \) = number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \ldots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

- prob of success = \((n - j) / n \)
- \(\Rightarrow \) expected waiting time = \(n / (n - j) \)
13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
\begin{align*}
C_1 & = x_2 \lor \overline{x}_3 \lor \overline{x}_4 \\
C_2 & = x_2 \lor x_3 \lor x_4 \\
C_3 & = \overline{x}_1 \lor x_2 \lor x_4 \\
C_4 & = \overline{x}_1 \lor \overline{x}_2 \lor x_3 \\
C_5 & = x_1 \lor x_2 \lor x_4
\end{align*}
\]

Remark. \textbf{NP}-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2} \), independently for each variable.
Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(\frac{7k}{8} \).

Pf. Consider random variable

\[
Z_j = \begin{cases}
1 & \text{if clause } C_j \text{ is satisfied} \\
0 & \text{otherwise.}
\end{cases}
\]

\[E[Z] = \sum_{j=1}^{k} E[Z_j] \]

by linearity of expectation

\[= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] \]

\[= \frac{7}{8} k\]
The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. □

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!
Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a $7/8$-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least $1/(8k)$.

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

\[
\frac{7}{8}k = E[Z] = \sum_{j \geq 0} j p_j
\]
\[
= \sum_{j < 7k/8} j p_j + \sum_{j \geq 7k/8} j p_j
\]
\[
\leq \left(\frac{7k}{8} - \frac{1}{8} \right) \sum_{j < 7k/8} p_j + k \sum_{j \geq 7k/8} p_j
\]
\[
\leq \left(\frac{7}{8} k - \frac{1}{8} \right) \cdot 1 + k p
\]

Rearranging terms yields $p \geq 1/(8k)$. □
Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson’s algorithm is a $7/8$-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability $\geq 1/(8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8k$. □
Maximum satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max \textit{weighted} set of satisfied clauses.

\textbf{Theorem}. [Asano–Williamson 2000] There exists a 0.784-approximation algorithm for \textsc{Max-Sat}.

\textbf{Theorem}. [Karloff–Zwick 1997, Zwick+computer 2002] There exists a $7/8$-approximation algorithm for version of \textsc{Max-3-Sat} in which each clause has at most 3 literals.

\textbf{Theorem}. [Håstad 1997] Unless $\mathbf{P} = \mathbf{NP}$, no ρ-approximation algorithm for \textsc{Max-3-Sat} (and hence \textsc{Max-Sat}) for any $\rho > 7/8$.

very unlikely to improve over simple randomized algorithm for \textsc{Max-3-Sat}
Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.
RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.

- If the correct answer is *no*, always return *no*.
- If the correct answer is *yes*, return *yes* with probability \(\geq \frac{1}{2} \).

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. \(P \subseteq ZPP \subseteq RP \subseteq NP \).

Fundamental open questions. To what extent does randomization help?

Does \(P = ZPP \)? Does \(ZPP = RP \)? Does \(RP = NP \)?
13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- `create()`: initialize a dictionary with $S = \emptyset$.
- `insert(u)`: add element $u \in U$ to S.
- `delete(u)`: delete u from S (if u is currently in S).
- `lookup(u)`: is u in S?

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.
Hashing

Hash function. \(h : U \rightarrow \{ 0, 1, \ldots, n - 1 \} \).

Hashing. Create an array \(a \) of length \(n \). When processing element \(u \), access array element \(a[h(u)] \).

Collision. When \(h(u) = h(v) \) but \(u \neq v \).
\begin{itemize}
 \item A collision is expected after \(\Theta(\sqrt{n}) \) random insertions.
 \item Separate chaining: \(a[i] \) stores linked list of elements \(u \) with \(h(u) = i \).
\end{itemize}
Ad-hoc hash function

Ad-hoc hash function.

```java
int hash(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

hash function à la Java string library

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per lookup in worst-case.

Q. But isn’t ad-hoc hash function good enough in practice?
Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?

- Obvious situations: aircraft control, nuclear reactor, pace maker,
- Surprising situations: denial-of-service (DOS) attacks.

malicious adversary learns your ad-hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby–Wallach 2003]

- Linux 2.4.20 kernel: save files with carefully chosen names.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
Hashing performance

Ideal hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $= \alpha = m / n$.
- Choose $n \approx m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Challenge. Hash function h that achieves $O(1)$ per operation.

Approach. Use randomization for the choice of h.

adversary knows the randomized algorithm you’re using, but doesn’t know random choice that the algorithm makes
Universal hashing (Carter–Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0, 1, \ldots, n-1\}$ such that

- For any pair of elements $u \neq v$: $\Pr_{h \in H} \left[h(u) = h(v) \right] \leq 1/n$
- Can select random h efficiently.
- Can compute $h(u)$ efficiently.

Ex. $U = \{a, b, c, d, e, f\}$, $n = 2$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_1(x)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$h_2(x)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$H = \{h_1, h_2\}$

- $\Pr_{h \in H} [h(a) = h(b)] = 1/2$
- $\Pr_{h \in H} [h(a) = h(c)] = 1$
- $\Pr_{h \in H} [h(a) = h(d)] = 0$

... not universal

$H = \{h_1, h_2, h_3, h_4\}$

- $\Pr_{h \in H} [h(a) = h(b)] = 1/2$
- $\Pr_{h \in H} [h(a) = h(c)] = 1/2$
- $\Pr_{h \in H} [h(a) = h(d)] = 1/2$
- $\Pr_{h \in H} [h(a) = h(e)] = 1/2$
- $\Pr_{h \in H} [h(a) = h(f)] = 0$

... universal
Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a universe U to the set $\{0, 1, \ldots, n-1\}$; let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n; and let $u \notin S$. Then, the expected number of items in S that collide with u is at most 1.

Pf. For any $s \in S$, define random variable $X_s = 1$ if $h(s) = h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1$$

\[\text{linearity of expectation} \quad \text{X}_s \text{ is a 0–1 random variable} \quad \text{universal}\]

Q. OK, but how do we design a universal class of hash functions?
Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, \ldots, x_r)$.

Hash function. Let A = set of all r-digit, base-p integers. For each $a = (a_1, a_2, \ldots, a_r)$ where $0 \leq a_i < p$, define

$$h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p$$

maps universe U to set $\{0, 1, \ldots, p-1\}$

Hash function family. $H = \{ h_a : a \in A \}$.
Designing a universal family of hash functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal family of hash functions.

Pf. Let $x = (x_1, x_2, \ldots, x_r)$ and $y = (y_1, y_2, \ldots, y_r)$ be two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff

$$a_j \left(y_j - x_j\right) \equiv \sum_{i \neq j} a_i (x_i - y_i) \mod p$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j z \equiv m \mod p$ has at most one solution among p possibilities. \[\text{see lemma on next slide}\]
- Thus $\Pr[h_a(x) = h_a(y)] \leq 1 / p$. □
Number theory fact

Fact. Let p be prime, and let $z \not\equiv 0 \mod p$. Then $\alpha z \equiv m \mod p$ has at most one solution $0 \leq \alpha < p$.

Pf.
- Suppose $0 \leq \alpha_1 < p$ and $0 \leq \alpha_2 < p$ are two different solutions.
- Then $(\alpha_1 - \alpha_2) z \equiv 0 \mod p$; hence $(\alpha_1 - \alpha_2) z$ is divisible by p.
- Since $z \not\equiv 0 \mod p$, we know that z is not divisible by p.
- It follows that $(\alpha_1 - \alpha_2)$ is divisible by p.
- This implies $\alpha_1 = \alpha_2$.

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

Pf idea. Euclid’s algorithm.
Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

Universal hash function family. $H = \{ h_a : a \in A \}$.

$$h_a(x) = \left(\sum_{i=1}^{r} a_i x^i \right) \mod p$$

- Choose p prime so that $m \leq p \leq 2m$, where $m = |S|$.
- Fact: there exists a prime between m and $2m$. [can find such a prime using another randomized algorithm (!)]

Consequence.

- Space used = $\Theta(m)$.
- Expected number of collisions per operation is ≤ 1.
 \Rightarrow $O(1)$ time per insert, delete, or lookup.
13. **Randomized Algorithms**

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- **Chernoff bounds**
- load balancing
Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right]^\mu$$

Pf. We apply a number of simple transformations.

- For any $t > 0$,

$$\Pr[X > (1+\delta)\mu] = \Pr\left[e^{tX} > e^{t(1+\delta)\mu} \right] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

 - $f(x) = e^{tx}$ is monotone in x
 - Markov's inequality: $\Pr[X > a] \leq E[X] / a$

- Now

$$E[e^{tX}] = E[e^{t \sum_i X_i}] = \prod_i E[e^{tX_i}]$$

 - definition of X
 - independence
Chernoff Bounds (above mean)

Pf. [continued]

- Let $p_i = \Pr [X_i = 1]$. Then,

$$E[e^{tX_i}] = p_ie^t + (1 - p_i)e^0 = 1 + p_i(e^t - 1) \leq e^{p_i(e^t - 1)}$$

for any $\alpha \geq 0$, $1 + \alpha \leq e^\alpha$

- Combining everything:

$$\Pr[X > (1 + \delta)\mu] \leq e^{-(1+\delta)\mu} \prod_i E[e^{tX_i}] \leq e^{-(1+\delta)\mu} \prod_i e^{p_i(e^t - 1)} \leq e^{-(1+\delta)\mu} e^{\mu(e^t - 1)}$$

- Finally, choose $t = \ln(1 + \delta)$.
Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.
13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on m identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\left\lfloor \frac{m}{n} \right\rfloor$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned “too many” jobs?
Load balancing

Analysis.

- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}]=1/n$.
- Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$

- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e \gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

- Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e \gamma(n) = \Theta(\log n / \log \log n)$ jobs.

Bonus fact: with high probability, some processor receives $\Theta(\log n / \log \log n)$ jobs
Load balancing: many jobs

Theorem. Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.

- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

 \[
 \Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n \ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2}
 \]

 \[
 \Pr\left[X_i < \frac{1}{2}\mu\right] < e^{-\frac{1}{2} \left(\frac{1}{2}\right)^2 16n \ln n} = \frac{1}{n^2}
 \]

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$. □