13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Contention resolution in a distributed system

Contention resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contestation resolution: randomized protocol

Protocol. Each process requests access to the database at time \(t \) with probability \(p = 1/n \).

Claim. Let \(S[i, t] \) = event that process \(i \) succeeds in accessing the database at time \(t \). Then \(1 / (e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n) \).

Pf. By independence, \(\Pr[S(i, t)] = p (1 - p)^{n-1} \).

- Setting \(p = 1/n \), we have \(\Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1} \).

Useful facts from calculus. As \(n \) increases from 2, the function:
 - \((1 - 1/n)^n\) converges monotonically from 1/4 up to \(1/e \).
 - \((1 - 1/n)^{n-1}\) converges monotonically from 1/2 down to \(1/e \).

Contestation resolution: randomized protocol

Claim. The probability that all processes succeed within \(2e \cdot n \ln n \) rounds is \(\geq 1 - 1/n \).

Pf. Let \(F[i] \) = event that at least one of the \(n \) processes fails to access database in any of the rounds 1 through \(t \).

\[
\Pr[F[i]] = \Pr\left(\bigcup_{i=1}^{n} F[i, t] \right) \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t
\]

- Choosing \(t = 2 \cdot \left\lceil \ln n \right\rceil \) yields \(\Pr[F[i]] \leq n \cdot n^2 = 1/n \).

Union bound. Given events \(E_1, \ldots, E_n \),
\[
\Pr\left(\bigcup_{i=1}^{n} E_i\right) \leq \sum_{i=1}^{n} \Pr[E_i]
\]

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Global minimum cut

Global min cut. Given a connected, undirected graph $G = (V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s- v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_1 and v_1.
- Return the cut (all nodes that were contracted to form v_1).

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = $ size of min cut.
- In first step, algorithm contracts an edge in F^* probability $k / |E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq \frac{1}{2}k n \iff k / |E| \leq 2 / n$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n$.

Reference: Thore Husfeldt
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = \text{size of min cut}$.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| = \frac{1}{2} kn' \Rightarrow k/|E'| \leq 2/n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let $E_j = \text{event that an edge in } F^* \text{ is not contracted in iteration } j$.

$$
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 | E_1] \times \cdots \times \Pr[E_{n-2} | E_1 \cap E_2 \cdots \cap E_{n-3}]
\geq (1 - \frac{2}{n}) (1 - \frac{2}{n-1}) \cdots (1 - \frac{2}{n-j})
= \left(\frac{n-2}{n} \right) \left(\frac{n-3}{n-1} \right) \cdots \left(\frac{n-j}{n-j+1} \right)
= \frac{2}{n^j}
\geq \frac{2}{n^2}
$$

Global min cut: context

Remark. Overall running time is slow since we perform $\Omega(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$, faster than best known max flow algorithm or deterministic global min cut algorithm.

Contraction algorithm: example execution

Reference: Thore Husfeldt
13. **Randomized Algorithms**

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Expectation

Expectation. Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1 - p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j] = \sum_{j=0}^{\infty} j (1 - p)^j p = \frac{p}{1 - p} \sum_{j=0}^{\infty} j (1 - p)^j - \frac{p}{1 - p} \frac{1 - p}{p^2} = \frac{1}{p}$$

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$.

Expectation: two properties

- **Useful property.** If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

 Pf.

 $$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]$$

- **Linearity of expectation.** Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

- **Benefit.** Decouples a complex calculation into simpler pieces.
Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.

\[
E[X_i] = \Pr[X_i = 1] = 1 / (n - (i - 1)).
\]

\[
E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n).
\]

\[\ln(n+1) < H(n) < 1 + \ln n\]

(linearity of expectation)

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.

Pf.
- Phase j = time between j and $j + 1$ distinct coupons.
- Let X_j = number of steps you spend in phase j.
- Let $X = \text{number of steps in total} = X_0 + X_1 + \ldots + X_{n−1}$.

\[
E[X] = \sum_{j=0}^{n−1} E[X_j] = \sum_{j=0}^{n−1} \frac{n}{n−j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

\[\text{prob of success} = (n−j) / n\]

\[\Rightarrow \text{expected waiting time} = n / (n−j)\]

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
C_1 = x_2 \lor \overline{x}_3 \lor \overline{x}_4
\]

\[
C_2 = x_2 \lor x_3 \lor \overline{x}_4
\]

\[
C_3 = \overline{x}_1 \lor x_2 \lor x_4
\]

\[
C_4 = \overline{x}_1 \lor x_2 \lor \overline{x}_3
\]

\[
C_5 = x_1 \lor x_2 \lor x_4
\]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.
Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(7k/8 \).

Pf. Consider random variable

\[
Z_j = \begin{cases}
1 & \text{if clause } C_j \text{ is satisfied} \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(Z = \) number of clauses satisfied by random assignment.

\[
E[Z] = \sum_{j=1}^{k} E[Z_j] = \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] = \frac{7}{8}k
\]

Q. Can we turn this idea into a 7/8-approximation algorithm?

A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies \(\geq 7k/8 \) clauses is at least \(1/(8k) \).

Pf. Let \(p_j \) be probability that exactly \(j \) clauses are satisfied; let \(p \) be probability that \(\geq 7k/8 \) clauses are satisfied.

\[
\frac{7}{8}k = E[Z] = \sum_{j=0}^{7k/8} j p_j \\
= \sum_{j<7k/8} j p_j + \sum_{j \geq 7k/8} j p_j \\
\leq \frac{7k}{8} - \frac{1}{2} \sum_{j<7k/8} p_j + k \sum_{j \geq 7k/8} p_j \\
\leq \left(\frac{7}{8}k - \frac{1}{2} \right) \cdot 1 + k p
\]

Rearranging terms yields \(p \geq 1/(8k) \).

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq 7k/8 \) clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability \(\geq 1/(8k) \). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most \(8k \).
Maximum satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano–Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff–Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3-SAT in which each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless \(P = NP \), no \(\rho \)-approximation algorithm for MAX-3-SAT (and hence MAX-SAT) for any \(\rho > 7/8 \).

very unlikely to improve over simple randomized algorithm for MAX-3-SAT

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability \(\geq 1/2 \).

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

running time can be unbounded, but fast on average

Theorem. \(P \subseteq \text{ZPP} \subseteq \text{RP} \subseteq \text{NP} \).

Fundamental open questions. To what extent does randomization help?
Does \(P = \text{ZPP} \)?
Does \(\text{ZPP} = \text{RP} \)?
Does \(\text{RP} = \text{NP} \)?

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- **create()**: initialize a dictionary with $S = \emptyset$.
- **insert(u)**: add element $u \in U$ to S.
- **delete(u)**: delete u from S (if u is currently in S).
- **lookup(u)**: is u in S?

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h : U \to \{0, 1, \ldots, n - 1\}$.

Hashing. Create an array a of length n. When processing element u, access array element $a[h(u)]$.

Collision. When $h(u) = h(v)$ but $u \neq v$.
- A collision is expected after $\Theta(\sqrt{n})$ random insertions.
- Separate chaining: $a[i]$ stores linked list of elements u with $h(u) = i$.

Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?
- Obvious situations: aircraft control, nuclear reactor, pace maker,
- Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby–Wallach 2003]
- Linux 2.4.20 kernel: save files with carefully chosen names.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
Hashing performance

Ideal hash function. Maps \(m \) elements uniformly at random to \(n \) hash slots.
- Running time depends on length of chains.
- Average running time of chain = \(\alpha = m / n \).
- Choose \(n = m \implies \text{expect } O(1) \) per insert, lookup, or delete.

Challenge. Explicit hash function \(h \) that achieves \(O(1) \) per operation.
Approach. Use randomization for the choice of \(h \).

Universal hashing: analysis

Proposition. Let \(H \) be a universal family of hash functions mapping a universe \(U \) to the set \(\{ 0, 1, \ldots, n-1 \} \); let \(h \in H \) be chosen uniformly at random from \(H \); let \(S \subseteq U \) be a subset of size at most \(n \); and let \(u \notin S \).

Then, the expected number of items in \(S \) that collide with \(u \) is at most \(1 \).

Pf. For any \(s \in S \), define random variable \(X_s = 1 \) if \(h(s) = h(u) \), and \(0 \) otherwise. Let \(X \) be a random variable counting the total number of collisions with \(u \).

\[
E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1
\]

Designing a universal family of hash functions

Modulus. We will use a prime number \(p \) for the size of the hash table.

Integer encoding. Identify each element \(u \in U \) with a base-\(p \) integer of \(r \) digits: \(x = (x_1, x_2, \ldots, x_r) \).

Hash function. Let \(A \) be set of all \(r \)-digit, base-\(p \) integers. For each \(a = (a_1, a_2, \ldots, a_r) \) where \(0 \leq a_i < p \), define

\[
h_a(x) = \left(\sum_{j=1}^r a_j x_j \right) \mod p \quad \text{maps universe } U \text{ to set } \{ 0, 1, \ldots, p-1 \}
\]

Hash function family. \(H = \{ h_a : a \in A \} \).
Designing a universal family of hash functions

Theorem. \(H = \{ h_a : a \in A \} \) is a universal family of hash functions.

Pf. Let \(x = (x_1, x_2, \ldots, x_r) \) and \(y = (y_1, y_2, \ldots, y_r) \) be two distinct elements of \(U \).

We need to show that \(\Pr[h(x) = h(y)] \leq 1 / p \).

- Since \(x \neq y \), there exists an integer \(j \) such that \(x_j \neq y_j \).
- We have \(h(x) = h(y) \) iff
 \[
 \sum_{i=1}^{r} a_i(x_i - y_i) \equiv 0 \pmod{p}
 \]

Can assume \(a \) was chosen uniformly at random by first selecting all coordinates \(a_i \) where \(i \neq j \), then selecting \(a_j \) at random. Thus, we can assume \(a_j \) is fixed for all coordinates \(i \neq j \).

- Since \(p \) is prime, \(a_jz \equiv m \pmod{p} \) has at most one solution among \(p \) possibilities. \(\iff \) see lemma on next slide
- Thus \(\Pr[h(x) = h(y)] \leq 1 / p \).

Universal hashing: summary

Goal. Given a universe \(U \), maintain a subset \(S \subseteq U \) so that insert, delete, and lookup are efficient.

Universal hash function family. \(H = \{ h_a : a \in A \} \).

\[
h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

- Choose \(p \) prime so that \(m \leq p \leq 2m \), where \(m = |S| \).
- Fact: there exists a prime between \(m \) and \(2m \). \(\iff \) can find such a prime using another randomized algorithm (\(\Theta \))

Consequence.

- Space used = \(\Theta(m) \).
- Expected number of collisions per operation is \(\leq 1 \)
 \(\Rightarrow \) \(O(1) \) time per insert, delete, or lookup.

Number theory fact

Fact. Let \(p \) be prime, and let \(z \equiv 0 \pmod{p} \). Then \(\alpha z \equiv m \pmod{p} \) has at most one solution \(0 \leq \alpha < p \).

Pf.

- Suppose \(0 \leq \alpha_1 < p \) and \(0 \leq \alpha_2 < p \) are two different solutions.
- Then \((\alpha_1 - \alpha_2) z \equiv 0 \pmod{p} \); hence \((\alpha_1 - \alpha_2) z \) is divisible by \(p \).
- Since \(z \equiv 0 \pmod{p} \), we know that \(z \) is not divisible by \(p \).
- It follows that \((\alpha_1 - \alpha_2) \) is divisible by \(p \).
- This implies \(\alpha_1 \equiv \alpha_2 \).

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid’s algorithm.

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Chernoff Bounds (above mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \leq E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1 + \delta)\mu] < \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right]^n.$$

Pf. We apply a number of simple transformations.
- For any $t > 0$,
 $$\Pr[X > (1 + \delta)\mu] = \Pr\left[e^{tX} > e^{t(1+\delta)\mu}\right] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$
- $f(x) = e^x$ is monotone in x
- Markov’s inequality: $\Pr[X > a] = E[X] / a$

- Now
 $$E[e^{tX}] = E[e^{tX_1} \cdot ... \cdot e^{tX_n}] = \prod_{i=1}^n E[e^{tX_i}]$$
- Definition of X
- Independence

Combining everything:

$$\Pr[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \prod_{i=1}^n E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} e^{\mu \left(e^{t} - 1\right)}$$

- Previous slide
- Inequality above
- $\sum p_i = E[X] = \mu$

- Finally, choose $t = \ln(1 + \delta)$.

Chernoff Bounds (below mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}.$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on m identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lfloor m/n \rfloor$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned “too many” jobs?

Load balancing: many jobs

Theorem. Suppose the number of jobs $m = 16 n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.
- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

$$
\Pr[X_i > 2\mu] < \left(\frac{e}{4} \right)^{16n \ln n} < \left(\frac{1}{e} \right)^{\ln n} = \frac{1}{n^2}
$$

$$
\Pr[X_i < \frac{1}{2} \mu] < e^{-\frac{1}{2} \left(\frac{1}{2} \right)^2 16n \ln n} = \frac{1}{n^2}
$$

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1 - 2/n$.

Load balancing

Analysis.
- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$.
- Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^{c-1}}$

Let $\gamma(n)$ be number x such that $xe = n$, and choose $c = e^{\gamma(n)}$.

$$
\Pr[X_i > c] < \frac{e^{c-1}}{c^{c-1}} < \left(\frac{e}{c} \right)^{\gamma(n)} < \left(\frac{1}{\gamma(n)} \right)^{2\gamma(n)} = \frac{1}{n^2}
$$

- Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e^{\gamma(n)} = \Theta(\log n / \log \log n)$ jobs.

Bonus fact: with high probability, some processor receives $\Theta(\log n / \log \log n)$ jobs.