[

» contention resolution
» global min cut
» linearity of expectation
» max 3-satisfiability
» universal hashing
JON KLEINBERG - EVA TARDOS > Chernoff bOUnds
» load balancing

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 1/5/22 12:31 PM

13. RANDOMIZED ALGORITHMS

13. RANDOMIZED ALGORITHMS

» contention resolution

\ Ignmhm Uesign

JON KLEINBERG - EVA TARDOS

Randomization

Algorithmic design patterns.
» Greedy.
» Divide-and-conquer.
» Dynamic programming.
» Network flow.

« Randomization.
in practice, access to a pseudo-random number generator

v/

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing,
load balancing, closest pair, Monte Carlo integration, cryptography,

Contention resolution in a distributed system

Contention resolution. Given n processes Py, ..., P,, each competing for
access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time ¢ with
probability p = 1/n.

Claim. Let S[i, 7] = event that process i succeeds in accessing the database at
time . Then 1/(e-n) < Pr[SG, 0] < 1/2n).

Pf. By independence, Pr[SGi,N]= p(1-p)»-1.
process i requests access none of remaining n-1 processes request access
* Setting p = 1/n, we have Pr[S(i,H)] = 1/n(1—1/n)n-1. =
—_—

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
* (1-1/n)» converges monotonically from 1/4 up to 1/e.
* (1-1/n)n-1 converges monotonically from 1/2 down to 1/e.

Contention resolution: randomized protocol

Claim. The probability that all processes succeed within 2e -nInn rounds
is=1-1/n.

Pf. Let F[f] = event that at least one of the n processes fails to access
database in any of the rounds 1 through 1.

< SPAFliA] < n(1-L1)

T = T en

union bound previous slide

P F[t]] = Pr[(j Flit]

i=1

* Choosing t=2[en] [cInn] yields Pr[F[f]l<n-n2=1/n. =

%Union bound. Given events E,, ..., E,, PrLl Ei] = ElPr[Ei]

Contention resolution: randomized protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/e. After e - n(c Inn) rounds, the probability <n—.

Pf. Let F[i, 1] = event that process i fails to access database in rounds 1
through t. By independence and previous claim, we have
Pr[F[i,f]] < (1 - 1/(en)).

+ Choose r=Ten]: Pr[F(i,1)] = (1—5)[8"] < (1-4)" <!

» Choose t=[e-n][cInnl: Pr[F(i,1)] = (%)““” = e

13. RANDOMIZED ALGORITHMS

» global min cut

qorithm Design

JON KLEINBERG - EVA TARDOS

Global minimum cut

Global min cut. Given a connected, undirected graph G =(V, E),
find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
* Replace every edge (u,v) with two antiparallel edges («,v) and (v, u).

* Pick some vertex s and compute min s—v cut separating s from each
other node vE V.

False intuition. Global min-cut is harder than min s-¢ cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u,v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
+ Repeat until graph has just two nodes u, and v,.
« Return the cut (all nodes that were contracted to form v,).

BREEEDY
PREEFFII

Reference: Thore Husfeldt

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u,v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
+ Repeat until graph has just two nodes u, and v,.
« Return the cut (all nodes that were contracted to form v;).

N N\, /

c : a b C
d 9 contract u-v \y
e

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/#r2.

Pf. Consider a global min-cut (4*, B*) of G.
* Let F* be edges with one endpoint in A* and the other in B*.
* Let k = IF*| = size of min cut.
* In first step, algorithm contracts an edge in F* probability k/IEI.
* Every node has degree > k since otherwise (A*, B*¥) would not be
amin-cut = |Elz%kn < k/I1El <2/n.
* Thus, algorithm contracts an edge in F* with probability < 2/n.

B*

A*

F*

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2 /2.

Pf. Consider a global min-cut (4*, B*) of G.
* Let F* be edges with one endpoint in A* and the other in B*.
* Let k = IF*| = size of min cut.
* Let G’ be graph after j iterations. There are n' =n —j supernodes.
* Suppose no edge in F* has been contracted. The min-cut in G’ is still .
» Since value of min-cutis k, |[E'l=Y%kn' < k/IE'l <2/n.
* Thus, algorithm contracts an edge in F* with probability < 2/#'.
* Let E;= event that an edge in F* is not contracted in iteration j.

Pr[E, NE,--NE,,] = Pt[E]x Pr[E, 1E] x -

(1-2) (1-3) - (-3 (-3
- () 6=) - 3 Q)

2
n(n-1)

2
> 2
n2

\2

Contraction algorithm: example execution

x PrlE, , |ENE,--NE,]

- PRAZBRIZTRATB B
~ BOEPR00899344> >
~ GRBEELENAsIcarr/
- GRBIXALRRRCCALI
' Y3 S 93221
w FEDEB 2484 d0 e

Reference: Thore Husfeldt

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction

algorithm many times.
with independent random choices,

v

Claim. If we repeat the contraction algorithm »?In n times,
then the probability of failing to find the global min-cutis < 1/#2.

Pf. By independence, the probability of failure is at most

2 \.272Inn
2 n”lnn 2 3N o 2Inn 1
-2 =k*ﬁ)} =)

A=-1/x)x <1/e

Global min cut: context

Remark. Overall running time is slow since we perform ©(n?log n) iterations
and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n?log®n).
+ Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/v2 nodes remain.
* Run contraction algorithm until n/+v2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log?n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm

13. RANDOMIZED ALGORITHMS

» linearity of expectation

A’vlgnmhm Jesin

JON KLEINBERG - EVA TARDOS

Expectation: two properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf. EIX] =3 j-PrX=j] = éj-Pr[X=j] = PrX=1]
j=0 j=0

not necessarily independent

Y N\

Linearity of expectation. Given two random variables X and Y defined over
the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

Expectation

Expectation. Given a discrete random variable X, its expectation E[X]

is defined by: "
E[X]= Y jPr[X=j]

j=0

Waiting for a first success. Coin is heads with probability p and tails with
probability 1- p. How many independent flips X until first heads?

2 4 . 2 4 = 2 g 3 1- 1
EIX] = 3 PiX=jl = 3ja-p'p = L3 ja-p = L= - —
j=0 04 t 1-pjo I-p p p
j -1 tails 1 head [
oo o @
297 = Tap

Guessing cards

Game. Shuffle a deck of » cards; turn them over one at a time;
try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s
been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. [surprisingly effortless using linearity of expectation]
« Let X,=1 if i# prediction is correct and 0 otherwise.
» Let X = number of correct guesses =X, +... + X,.
« E[X]=PrX,=1] = 1/n.
« EX] = E[X,] + ... + EIX] = 1/n+...+1/n=1. =

f

linearity of expectation

20

Guessing cards

Game. Shuffle a deck of » cards; turn them over one at a time;

try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is ©(log n).

Pf.
« Let X,=1 if i# prediction is correct and 0 otherwise.

+ Let X= number of correct guesses =X, + ... + X,.

« E[X]=PrX,=1] = 1/(n—(i-1)).

c EX]=EX|]]+ ...+ EX]=1/n+...+41/2+1/1 = H(n). =
f f

linearity of expectation In(n+1)<Hn) <1+Inn

21

13. RANDOMIZED ALGORITHMS

Z » max 3-satisfiability

'\ Myt ey

JON KLEINBERG - EVA TARDOS

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to contain
each coupon, how many boxes before you have =1 coupon of each type?

Claim. The expected number of steps is ©(n log n).

Pf.
* Phase j = time between j and j + 1 distinct coupons.
+ Let X;= number of steps you spend in phase j.
« Let X = number of steps in total =X, + X, + ... + X, ;.

n-1 n-1
EIX] = SEX;]=3 " = n3- = nH®)

j=0 j=on-—j i

f

prob of success=(n-j) /n
= expected waiting time =n / (n - j)

s

~ | —

Maximum 3-satisfiability

exactly 3 literals per clause and
— each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

C, = X VX3 VX
C, = X VX3Vux,
C; = Vv
Ci = [VXV
C5=xlvx72va

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability %,
independently for each variable.

22

24

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with & clauses, the expected number of
clauses satisfied by a random assignment is 7k /8.

Pf. Consider random variable Z; =

1 if clause C ; is satisfied
0 otherwise.

* Let Z= number of clauses satisfied by random assignment.

M=

E[Z] = E[Z]

.
=T

linearity of expectation Pr[clause C.is satisfied]
J

I
=SS 5
~ =

25

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies > 7k / 8 clauses
is at least 1/ (8k).

Pf. Let p; be probability that exactly j clauses are satisfied;
let p be probability that = 7k /8 clauses are satisfied.

sk = E[Z] 2 Jjp;

j=z0

> jp; + 2 ip;

j<Tk/8 j=Tk/8

Tk _ 1
-3 2 p; + k > P
j<7k/8 j=7k/8

Qk-H -1 + kp

A

A

Rearranging terms yields p = 1/(8). =

27

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. [Paul Erd6s] Prove the existence
of a non-obvious property by showing that a random
construction produces it with positive probability!

THE 2N
PROBABILISTIC| "%
METHOD ~

Third Edition .

Noga Alon [~
Joel H. Spencer i

26

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until
one of them satisfies > 7k / 8 clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability > 1/ (8k).

By the waiting-time bound, the expected number of trials to find the
satisfying assignment is at most 8k. =

28

Maximum satisfiability

Extensions.
« Allow one, two, or more literals per clause.
» Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for Max-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-
approximation algorithm for version of Max-3-SAT in which each clause has
at most 3 literals.

Theorem. [Hastad 1997] Unless P = NP, no p-approximation algorithm for
Max-3-SAT (and hence Max-SAT) for any p > 7/8.

f

very unlikely to improve over simple randomized
algorithm for MAx-3-SAT

29

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

. can decrease probability of false negative
One-sided error. to 2-100 by 100 independent repetitions

* If the correct answer is no, always return no. /
* If the correct answer is yes, return yes with probability > 15.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

running time can be unbounded,
but fast on average

Theorem. P C ZPP C RP C NP.

Fundamental open questions. To what extent does randomization help?
Does P=ZPP? Does ZPP=RP? Does RP=NP?

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s Max-3-SAT algorithm.

stop algorithm
after a certain point

7

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method (in general) to convert the other way.

13. RANDOMIZED ALGORITHMS

» universal hashing

’ \ Mot Desigr

JON KLEINBERG - EVA TARDOS

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset
§ C U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
* create(): initialize a dictionary with S =@.
* insert(u): add elementu€ Uto S.
* delete(u): delete u from S (if u is currently in S).
* lookup(u): iSsuinS?

Challenge. Universe U can be extremely large so defining an array of
size |Ul is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P
networks, associative arrays, cryptography, web caching, etc.

Ad-hoc hash function

Ad-hoc hash function.

int hash(String s, int n) {
int hash = 0;
for (int i = 0; i < s.lengthQ); i++)
hash = (31 * hash) + s[i];
return hash % n;

¥ hash function a la Java string library

Deterministic hashing. If IUI = n?, then for any fixed hash function &,
there is a subset S C U of n elements that all hash to same slot.
Thus, ©(n) time per lookup in worst-case.

Q. Butisn’t ad-hoc hash function good enough in practice?

Hashing

Hash function. » : U— {0,1,...,n—1}.

Hashing. Create an array a of length n. When processing element u,
access array element alh(u)).
birthday paradox
Collision. When h(u) = h(v) but u = v.
* A collision is expected after ®(vn) random insertions.
* Separate chaining: a[i] stores linked list of elements u with h(u) =i.

a[0] l jocularly }—»

a[1] null

a[2] l suburban }—b

seriously ‘

untravelled }—b{ considerating

Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?
» Obvious situations: aircraft control, nuclear reactor, pace maker,
» Surprising situations: denial-of-service (DOS) attacks.

malicious adversary learns your ad-hoc hash function
(e.g., by reading Java API) and causes a big pile-up
in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
» Linux 2.4.20 kernel: save files with carefully chosen names.
» Perl 5.8.0: insert carefully chosen strings into associative array.
» Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

Hashing performance

Ideal hash function. Maps m elements uniformly at random to n hash slots.
* Running time depends on length of chains.
* Average length of chain= o = m/n.
* Choose n =~ m = expect O(1) per insert, lookup, or delete.

Challenge. Hash function k that achieves O(1) per operation.
Approach. Use randomization for the choice of 4.

\

adversary knows the randomized algorithm you’re using,
but doesn’t know random choice that the algorithm makes

Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a
universe U to the set {0,1,....,n—1}; let € H be chosen uniformly at
random from H; let S C U be a subset of size at most »; and let u & S.
Then, the expected number of items in S that collide with u is at most 1.

Pf. For any s €S, define random variable X, = 1 if i(s) = h(u), and 0 otherwise.
Let X be a random variable counting the total number of collisions with u.

EnenlX] = El3esX,] = BesElX,] = ZesPrlX, =1 = 3o = 1517 =1

linearity of expectation Xs is a 0-1 random variable universal

Q. OK, but how do we design a universal class of hash functions?

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n—1 } such that

* For any pair of elements u=v: Pr,cy [h(u) = h(v)]s 1/n

+ Can select random # efficiently. \

* Can compute h(u) efﬁciently. chosen uniformly at random

Ex. U={a,b,c,d,e,f}, n=2. H={hy, by}
={h,,

h nunﬂ :/XEH{ZEZ;:ZEI)E - not universal
,(x) 01 0 1 0 1 new =h(c
[00

I 1]
=

WO 0 0 0 1 1 1 Pr, ey [h(a) = h(d))]

H={hy,hy, hy, hy}

Pr,cy[h(a) =h(b)] = 172

(MM 0 1 0 1 0 1 Pr, < s [h(@) = h(©)] = 112 universal
Pr)cy[h(@) =h(d)] = 172

0
[h:00 CHCERECES Prye s [hi@) = he)] = 172
0

Pr cy [h(a) =h(f)] = 0

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Uniquely identify each element u € U with a base-p
integer of r digits: x=(x;,x,, ..., x,).

distinct elements have
different encodings

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(a,,a,...,a,) Where 0 < q; < p, define

P
ha(x) = (2 aixi) modp <«— maps universe Uto set {0,1,....p—1}
i=1

Hash function family. H={h,:a€A}.

40

Designing a universal family of hash functions

Theorem. H={h,:a€ A} is a universal family of hash functions.

Pf. Let x=(x;,x,,...,x,) and y=(y;,,, ..., ,) encode two distinct elements of U.
We need to show that Pr[A,(x) = h,(y)] < 1/p.
* Since x#y, there exists an integer j such that x; = y,.
« We have h,(x) = h,(y) iff
a; (y;-x;) = Ya;(x;-y;) modp
— i=j

z .
m

* Can assume a was chosen uniformly at random by first selecting all
coordinates g; where i # j, then selecting g; at random. Thus, we can
assume g, is fixed for all coordinates i # .

+ Since p is prime, a;z=mmod p has at most one solution among p
possibilities. «— seelemma on next slide

« Thus Pr{h,(x)=h,()] < 1/p. =

4

Universal hashing: summary

Goal. Given a universe U, maintain a subset S C U so that insert, delete,
and lookup are efficient.

Universal hash function family. H={h,:a€A}.

h,(x) = (i aixi) mod p
i=1

* Choose p prime so that m < p < 2m, where m=151.

. . can find such a prime usin
* Fact: there exists a prime between m and 2m. <— _,oiher randomize% a.gorithﬁ 0

Consequence.
* Space used = O(m).
* Expected number of collisions per operation is < 1
= O(1) time per insert, delete, or lookup.

43

Number theory fact

Fact. Let p be prime, and let z = 0 mod p. Then a.z=m mod p has
at most one solution 0 <a < p.

Pf.
* Suppose 0 <a; <p and 0 < a, < p are two different solutions.
* Then (a1 — 02) z=0 mod p; hence (o — a) z is divisible by p.
* Since z = 0 mod p, we know that z is not divisible by p.
* It follows that (a1 — ap) is divisible by p.

ic i : ~ ,
* This |mpl|es oAl =0p. = here’s wh.ere we
use that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.
Pf idea. Euclid’s algorithm.

13. RANDOMIZED ALGORITHMS

N Aot Desi

JON KLEINBERG - EVA TARDOS 4 Chernoff bounc/s

42

Chernoff Bounds (above mean)

Theorem. Suppose X, ..., X, are independent 0-1 random variables. Let X =
X, + ... + X,,. Then for any u = E[X] and for any & > 0, we have

& !
Pr{X >(1+d)u] < [(“_6)“6]

sum of independent 0-1 random variables
is tightly centered on the mean

Pf. We apply a number of simple transformations.
* Foranyt>0,

Pr[X > (1+8)u] = Pr[e’X > e’(“a)“] < "ML Ee™X]

f(x) = etXis monotone in x Markov’s inequality: Pr[X >a] <E[X]/a
X ty. X, X.
. Now Ele™1 = E[e'>%] = [],E[e™]

T

definition of X independence

45

Chernoff Bounds (below mean)

Theorem. Suppose X, ..., X, are independent 0-1 random variables.
Let X=X, +... +X,. Then for any u <E [X] and for any 0 <d < 1, we have

PX < (1-8)u] < /2
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider d < 1.

47

Chernoff Bounds (above mean)

Pf. [continued]
* Let p,=Pr[X;=1]. Then,

1
E[¢"] = pe+(1-p)e” = l+p(e'-1) = "
forany a=0,1+a < e*

» Combining everything:

—t(1+d)u tX; —1(1+d)p p;(e'-1) —t(1+d)u _u(e'-1)
Pr[X>1+d)u] =< e [LEle™] = e [Le < e e

f

previous slide T;pi=EX] = p

inequality above

* Finally, choose r=1In(1 +9). =

13. RANDOMIZED ALGORITHMS

qorthm Design

JON KLEINBERG - EVA TARDOS

» load balancing

46

Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be
processed immediately on m identical processors. Find an assignment that
balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor
receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
How likely is it that some processor is assigned “too many” jobs?

49

Load balancing: many jobs

Theorem. Suppose the number of jobs m =16 n1nn. Then on average,
each of the n processors handles p=16Inn jobs. With high probability,
every processor will have between half and twice the average load.

Pf.
. Let X,,Y; be as before.

L)

* Applying Chernoff bounds with 6 =1 yields

@ 16ninn 1 Inn 1
Pr[X; > 2 £ - = =
< ()7 < () - &

Pr [XL<%/4 < e—%(%)QIGnlnn _ %

« Union bound = every processor has load between half and
twice the average with probability > 1 -2/n. =

Load balancing

Analysis.

Let X, = number of jobs assigned to processor i.

Let ¥; =1 if job j assigned to processor i, and 0 otherwise.
We have E[Y;] = I/n.

Thus, X;=3,Y;;, and u=E[X]] = 1.

Applying Chernoff bounds with § =c -1 yields Pr[X, >c] < ¢
C

c-1

Let y(n) be number x such that xx=n, and choose ¢ = e y(n).
c-1 c ey (n) 2y (n)
Pr[X; >c] < € — < (E_ = (1\— < (1\— = iz
c)] \v(m) v(n)) n

c
Union bound = with probability = 1 — 1/n no processor receives more
than e y(n) = O(log n / log log n) jobs.

Bonus fact: with high probability,
some processor receives O(logn / log log n) jobs

