13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography, ...

Contention resolution in a distributed system

Contention resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability $p = 1/n$.

Claim. Let $S[i, t] = \text{event that process } i \text{ succeeds in accessing the database at time } t$. Then $1 / (e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n)$.

Pf. By independence, $\Pr[S(i, t)] = p \cdot (1 - p)^{n-1}$.

- Setting $p = 1/n$, we have $\Pr[S(i, t)] = 1/n \cdot (1 - 1/n)^{n-1}$.

Useful facts from calculus. As n increases from 2, the function:

- $(1 - 1/n)^n$ converges monotonically from 1/4 up to 1/e.
- $(1 - 1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.

Contention resolution: randomized protocol

Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at most $1 - 1/n$.

Pf. Let $F[i, t] = \text{event that at least one of the } n \text{ processes fails to access database in any of the rounds } 1 \text{ through } t$.

$$\Pr[F[i, t]] = \Pr\left[\bigcup_{i=1}^{n} F[i, t]\right] \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \cdot \left(1 - \frac{1}{2n}\right)^t$$

- Choosing $t = 2 [e \cdot n] \cdot \ln n$ yields $\Pr[F[i, t]] \leq n \cdot n^{-2} = 1/n$.

Union bound. Given events $E_1, ..., E_n$,

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} \Pr[E_i]$$

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Global minimum cut

Global min cut. Given a connected, undirected graph \(\overline{G} = (V, E) \), find a cut \((A, B)\) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge \((u, v)\) with two antiparallel edges \((u, v)\) and \((v, u)\).
- Pick some vertex \(s\) and compute \(s-v\) cut separating \(s\) from each other node \(v \in V\).

False intuition. Global min-cut is harder than min \(s-t\) cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
- Pick an edge \(e = (u, v)\) uniformly at random.
- Contract edge \(e\).
 - replace \(u\) and \(v\) by single new super-node \(w\)
 - preserve edges, updating endpoints of \(u\) and \(v\) to \(w\)
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes \(u_1\) and \(v_1\).
- Return the cut (all nodes that were contracted to form \(v_1\)).

Claim. The contraction algorithm returns a min cut with prob \(\geq 2 / n^2\).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G\).
- Let \(F^*\) be edges with one endpoint in \(A^*\) and the other in \(B^*\).
- Let \(k = |F^*| = \text{size of min cut.}\)
- In first step, algorithm contracts an edge in \(F^*\) probability \(k / |E|\).
- Every node has degree \(\geq k\) since otherwise \((A^*, B^*)\) would not be a min-cut \(\Rightarrow |E| \geq \frac{1}{2}k n \Leftrightarrow k / |E| \leq 2 / n\).
- Thus, algorithm contracts an edge in \(F^*\) with probability \(\leq 2 / n\).
Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.
- Let F^* be edges with one endpoint in A^* and the other in B^*.
- Let $k = |F^*| = \text{size of min cut}$.
- Let G' be graph after j iterations. There are $n' = n - j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \geq \frac{1}{2} k n' \iff k / |E'| \leq 2 / n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n'$.
- Let E_j = event that an edge in F^* is not contracted in iteration j.

$$
\Pr[E_1 \cap E_2 \cap \ldots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 | E_1] \times \ldots \times \Pr[E_{n-2} | E_1 \cap E_2 \cap \ldots \cap E_{n-3}]
= \left(1 - \frac{2}{n}
ight) \left(1 - \frac{2}{n'}\right) \ldots \left(1 - \frac{2}{n-1}\right)
= \frac{2}{n}
\geq \frac{1}{n^2}
$$

Contraction algorithm: example execution

trial 1
trial 2
trial 3
trial 4
trial 5
(finds min cut)
trial 6

Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^3 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^2 n)$,

faster than best known max flow algorithm or deterministic global min cut algorithm
13. **Randomized Algorithms**

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Expectation

Expectation. Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \cdot Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^j = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$$

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_i = 1$ if ith prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$.

Benefit. Decouples a complex calculation into simpler pieces.
Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.
- Let $X_i = 1$ if ith prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n - (i - 1))$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n)$.

\[
\ln(n+1) < H(n) < 1 + \ln n
\]

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.

Pf.
- Phase j = time between j and $j + 1$ distinct coupons.
- Let $X_j = \text{number of steps you spend in phase } j$.
- Let $X = \text{number of steps in total} = X_0 + X_1 + \ldots + X_{n-1}$.

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{j=0}^{n-1} \frac{1}{i} = n H(n)
\]

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
C_1 = x_3 \lor \overline{x_3} \lor \overline{x_4}
C_2 = x_2 \lor x_3 \lor \overline{x_4}
C_3 = \overline{x_1} \lor x_2 \lor x_4
C_4 = x_1 \lor x_2 \lor x_3
C_5 = x_1 \lor \overline{x_2} \lor \overline{x_4}
\]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.
Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(7k/8 \).

Pf. Consider random variable \(Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \)

- Let \(Z = \) number of clauses satisfied by random assignment.

 \[
 E[Z] = \sum_{j=1}^{k} E[Z_j] = \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] = \frac{7}{8} k
 \]

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a \(7/8 \) fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. •

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies \(\geq 7k/8 \) clauses is at least \(1/(8k) \).

Pf. Let \(p_j \) be probability that exactly \(j \) clauses are satisfied; let \(p \) be probability that \(\geq 7k/8 \) clauses are satisfied.

\[
\frac{7}{8} k = E[Z] = \sum_{j=0}^{\infty} j p_j
= \sum_{j<7k/8} j p_j + \sum_{j \geq 7k/8} j p_j
\leq \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j<7k/8} p_j + k \sum_{j \geq 7k/8} p_j
\leq \left(\frac{7}{8} k - \frac{7}{8}\right) \cdot 1 + kp
\]

Rearranging terms yields \(p \geq 1/(8k) \). •

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq 7k/8 \) clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability \(\geq 1/(8k) \). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most \(8k \). •
Maximum satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano–Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff–Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3-SAT in which each clause has at most 3 literals.

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability ≥ ½.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. P ⊆ ZPP ⊆ RP ⊆ NP.

Fundamental open questions. To what extent does randomization help?
Does P = ZPP? Does ZPP = RP? Does RP = NP?

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- $\text{create}()$: initialize a dictionary with $S = \emptyset$.
- $\text{insert}(u)$: add element $u \in U$ to S.
- $\text{delete}(u)$: delete u from S (if u is currently in S).
- $\text{lookup}(u)$: is u in S?

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h : U \rightarrow \{0, 1, \ldots, n-1\}$.

Hashing. Create an array a of length n. When processing element u, access array element $a[h(u)]$.

Collision. When $h(u) = h(v)$ but $u \neq v$.
- A collision is expected after $\Theta(n)$ random insertions.
- Separate chaining: $a[i]$ stores linked list of elements u with $h(u) = i$.

Ad-hoc hash function

Ad-hoc hash function.

```java
int hash(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}  
```

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per lookup in worst-case.

Q. But isn’t ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?
- Obvious situations: aircraft control, nuclear reactor, pace maker,
- Surprising situations: denial-of-service (DOS) attacks.

Real world exploits. [Crosby–Wallach 2003]
- Linux 2.4.20 kernel: save files with carefully chosen names.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
Hashing performance

Ideal hash function. Maps m elements uniformly at random to n hash slots.
- Running time depends on length of chains.
- Average length of chain $= \alpha = m/n$.
- Choose $n = m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Challenge. Hash function h that achieves $O(1)$ per operation.
Approach. Use randomization for the choice of h.

adversary knows the randomized algorithm you’re using, but doesn’t know random choice that the algorithm makes

- Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a universe U to the set $\{0, 1, \ldots, n - 1\}$; let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n; and let $u \notin S$.
Then, the expected number of items in S that collide with u is at most 1.

Pf. For any $s \in S$, define random variable $X_s = 1$ if $h(s) = h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1$$

linearity of expectation \hspace{1cm} X_s is a 0–1 random variable \hspace{1cm} universal

Q. OK, but how do we design a universal class of hash functions?

Universal hashing (Carter–Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0, 1, \ldots, n - 1\}$ such that
- For any pair of elements $u \neq v$: $\Pr_{h \in H}[h(u) = h(v)] \leq 1/n$.
- Can select random h efficiently.
- Can compute $h(u)$ efficiently.

Ex. $U = \{a, b, c, d, e, f\}$, $n = 2$.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(x)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h(y)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h(z)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h(t)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h(u)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>h(v)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$H = \{h_1, h_2\}$

$$\Pr_{h \in H}[h(a) = h(b)] = 1/2$$

$$\Pr_{h \in H}[h(a) = h(c)] = 1$$

$$\Pr_{h \in H}[h(a) = h(d)] = 0$$

... $H = \{h_1, h_2, h_3, h_4\}$

$$\Pr_{h \in H}[h(a) = h(b)] = 1/2$$

$$\Pr_{h \in H}[h(a) = h(c)] = 1/2$$

$$\Pr_{h \in H}[h(a) = h(d)] = 1/2$$

$$\Pr_{h \in H}[h(a) = h(e)] = 1/2$$

$$\Pr_{h \in H}[h(a) = h(f)] = 0$$

... $H = \{h_1, h_2, h_3, h_4\}$

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element $a \in U$ with a base-p integer of r digits: $x = (x_1, x_2, \ldots, x_r)$.

Hash function. Let A = set of all r-digit, base-p integers. For each $a = (a_1, a_2, \ldots, a_r)$ where $0 \leq a_i < p$, define

$$h_a(x) = (\sum_{i=1}^r a_i x_i) \mod p \hspace{1cm} \text{maps universe } U \text{ to set } \{0, 1, \ldots, p - 1\}$$

Hash function family. $H = \{h_a : a \in A\}$.
Designing a universal family of hash functions

Theorem. \(H = \{ h_a : a \in A \} \) is a universal family of hash functions.

Pf. Let \(x = (x_1, x_2, \ldots, x_r) \) and \(y = (y_1, y_2, \ldots, y_r) \) be two distinct elements of \(U \). We need to show that \(\Pr[h_x(x) = h_y(y)] \leq 1/p \).

- Since \(x \neq y \), there exists an integer \(j \) such that \(x_j \neq y_j \).
- We have \(h_x(x) = h_y(y) \) iff
 \[
 a_j \left(\frac{y_j - x_j}{z} \right) \equiv \sum_{i \neq j} a_i(x_i - y_i) \mod p
 \]
- Can assume \(a \) was chosen uniformly at random by first selecting all coordinates \(a_i \), where \(i \neq j \), then selecting \(a_j \) at random. Thus, we can assume \(a_j \) is fixed for all coordinates \(i \neq j \).
- Since \(p \) is prime, \(a_jz = m \mod p \) has at most one solution among \(p \) possibilities.
- Thus \(\Pr[h_x(x) = h_y(y)] \leq 1/p. \)

Number theory fact

Fact. Let \(p \) be prime, and let \(z \neq 0 \mod p \). Then \(\alpha z = m \mod p \) has at most one solution \(0 \leq \alpha < p \).

Pf.

- Suppose \(0 \leq \alpha_1 < p \) and \(0 \leq \alpha_2 < p \) are two different solutions.
- \((\alpha_1 - \alpha_2)z = 0 \mod p \); hence \((\alpha_1 - \alpha_2)z \) is divisible by \(p \).
- Since \(z \neq 0 \mod p \), we know that \(z \) is not divisible by \(p \).
- It follows that \((\alpha_1 - \alpha_2) \) is divisible by \(p \).
- This implies \(\alpha_1 \equiv \alpha_2 \).

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid’s algorithm.

Universal hashing: summary

Goal. Given a universe \(U \), maintain a subset \(S \subseteq U \) so that insert, delete, and lookup are efficient.

Universal hash function family. \(H = \{ h_a : a \in A \} \).

\[
 h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

- Choose \(p \) prime so that \(m \leq p \leq 2m \), where \(m = |S| \).
- Fact: there exists a prime between \(m \) and \(2m \).

Consequence.

- Space used is \(\Theta(m) \).
- Expected number of collisions per operation is \(\leq 1 \)
 \(\Rightarrow O(1) \) time per insert, delete, or lookup.

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Chernoff Bounds (above mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$Pr[X > (1 + \delta)\mu] < \left(\frac{e^{\delta}}{(1 + \delta)^{\delta}}\right)^n$$

The sum of independent 0-1 random variables is tightly centered on the mean.

Pf. We apply a number of simple transformations.

- For any $t > 0$,
 $$Pr[X > (1 + \delta)\mu] = Pr\left[e^{tX} > e^{t(1+\delta)\mu}\right] \leq e^{-t(1+\delta)\mu} E[e^{tX}]$$
 \[\text{Markov's inequality: } Pr[X > a] = E[X]/a\]

- Now
 $$E[e^{tX}] = E[e^{t(\sum_i X_i)}] = \prod_i E[e^{tX_i}]$$
 \[\text{definition of } X \text{ independence}\]

\[\text{previous slide inequality above}\]

- Finally, choose $t = \ln(1 + \delta)$.

Chernoff Bounds (below mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$Pr[X < (1 - \delta)\mu] < e^{-\delta^2\mu/2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing
Load balancing

System in which \(m \) jobs arrive in a stream and need to be processed immediately on \(m \) identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\left\lfloor m/n \right\rfloor \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned “too many” jobs?

Load balancing: many jobs

Theorem. Suppose the number of jobs \(m = 16n \ln n \). Then on average, each of the \(n \) processors handles \(\mu = 16 \ln n \) jobs. With high probability, every processor will have between half and twice the average load.

Pf.
- Let \(X_i, Y_{ij} \) be as before.
- Applying Chernoff bounds with \(\delta = 1 \) yields
 \[
 \Pr[X_i > 2\mu] < \left(\frac{e}{4} \right)^{16n \ln n} < \left(\frac{1}{e} \right)^{\ln n} = \frac{1}{n^2}
 \]
 \[
 \Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}(\frac{1}{2})^2 16n \ln n} = \frac{1}{n^2}
 \]
- Union bound \(\Rightarrow \) every processor has load between half and twice the average with probability \(\geq 1 - 2/n \).

Load balancing

Analysis.
- Let \(X_i = \) number of jobs assigned to processor \(i \).
- Let \(Y_{ij} = 1 \) if job \(j \) assigned to processor \(i \), and 0 otherwise.
- We have \(\mathbb{E}[Y_{ij}] = 1/n \).
- Thus, \(X_i = \sum_j Y_{ij} \), and \(\mu = \mathbb{E}[X_i] = 1 \).
- Applying Chernoff bounds with \(\delta = c - 1 \) yields \(\Pr[X_i > c] < \frac{e^{c-1}}{c^c} \).
- Let \(\gamma(n) \) be number \(x \) such that \(x^n = n \), and choose \(c = e^{\gamma(n)} \).
 \[
 \Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c} \right)^c < \left(\frac{1}{\gamma(n)} \right)^{\gamma(n)} < \left(\frac{1}{\gamma(n)} \right)^{2\gamma(n)} = \frac{1}{n^2}
 \]
- Union bound \(\Rightarrow \) with probability \(\geq 1 - 1/n \) no processor receives more than \(e^{\gamma(n)} = \Theta((\log n) / \log \log n) \) jobs.

Bonus fact: with high probability, some processor receives \(\Theta(\log n / \log \log n) \) jobs

Load balancing: many jobs

Theorem. Suppose the number of jobs \(m = 16n \ln n \). Then on average, each of the \(n \) processors handles \(\mu = 16 \ln n \) jobs. With high probability, every processor will have between half and twice the average load.

Pf.
- Let \(X_i, Y_{ij} \) be as before.
- Applying Chernoff bounds with \(\delta = 1 \) yields
 \[
 \Pr[X_i > 2\mu] < \left(\frac{e}{4} \right)^{16n \ln n} < \left(\frac{1}{e} \right)^{\ln n} = \frac{1}{n^2}
 \]
 \[
 \Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}(\frac{1}{2})^2 16n \ln n} = \frac{1}{n^2}
 \]
- Union bound \(\Rightarrow \) every processor has load between half and twice the average with probability \(\geq 1 - 2/n \).