T 11. APPROXIMATION ALGORITHMS

PEARSON
e

Addison
Wesley

» load balancing
» center selection
» pricing method: weighted vertex cover

» LP rounding: weighted vertex cover

» generalized load balancing

\‘\\ JON KLEINBERG - EVA TARDOS » knapsack problem

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/26/20 11:14 AM

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard optimization problem.
What should | do?

A. Sacrifice one of three desired features.
i. Runs in polynomial time.
ii. Solves arbitrary instances of the problem.

p-approximation algorithm.
* Runs in polynomial time.
« Solves arbitrary instances of the problem
 Finds solution that is within ratio p of optimum.

Challenge. Need to prove a solution’s value is close to optimum,
without even knowing what is optimum value.

11. APPROXIMATION ALGORITHMS

» load balancing

/~\Ig i Uesir
r\\ JON KLEINBERG - EVA TARDOS

SECTION 11.1

Load balancing

Input. m identical machines; n>m jobs, job j has processing time ¢,.
* Job j must run contiguously on one machine.
« A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i.
The load of machine iis L[i] =X c g; t-

Def. The makespan is the maximum load on any machine L = max, L[i].

Load balancing. Assign each job to a machine to minimize makespan.

machine 1 a d f

machine 2 b C e g

| i f >
0 L[1] L[2] time

Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if m =2 machines.
Pf. PARTITION <, LOAD-BALANCE.

\

NP-complete by Exercise 8.26

Y
length of job f

machine 1 a d f

yes
machine 2 b C e g

0 L time

Load balancing: list scheduling

List-scheduling algorithm.
* Consider n jobs in some fixed order.
* Assign job j to machine i whose load is smallest so far.

[LIST-SCHEDULING (m, n, t1, t2, ..., tn)

FOR i=1TOm
L[i] <= 0. <«— load on machine

S[i] <= &. <«— jobs assigned to machine i

FOR j=1TOn

[«— argmin I L[k]. <— machine i has smallest load

S[i] <= S[i] U {j}. <— assignjobjto machinei

Lli] < L[i] + . <— yupdate load of machine i

RETURN S[1], S[2], ..., S[m].

Implementation. O(nlog m) using a priority queue for loads L[k].

Load balancing: list scheduling analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.
 First worst-case analysis of an approximation algorithm.
* Need to compare resulting solution with optimal makespan L*.

Lemma 1. For all k: the optimal makespan L* > ¢,.
Pf. Some machine must process the most time-consuming job. =

: 1
Lemma 2. The optimal makespan L* > —) ¢ .
m
Pf. k
* The total processing time is %, ¢, .
* One of m machines must do at least a 1 /m fraction of total work. =

Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L[i] of bottleneck machine i. <«— machine thatends up
with highest load
* Let j be last job scheduled on machine ..
* When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] — s hence L[i] - t; < L[k] for all 1 <k <m.

blue jobs scheduled before j

!

0 L[i] - ¢ L = L[i] time

Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L[i] of bottleneck machine i. <«— machine thatends up
with highest load
* Let j be last job scheduled on machine ..
* When job j assigned to machine i, i had smallest load.
Its load before assignment is L[i] — s hence L[i] - t; < L[k] for all 1 <k <m.

* Sum inequalities over all k and divide by m:

Ll —t; < — S LK

™
1
:Ezk:tk

Lemma2 — < [*.

» Now, L = L[i] = (L[{j—t;) + t; < 2L* .
\ v = ——
<L* <L*

1

above inequality Lemma 1

Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m im - 1) jobs have length 1, last job has length m.

list scheduling makespan =19 =2m -1

machine 2 idle

machine 3 idle

machine 4 idle

m= 10

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

19

10

Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m im - 1) jobs have length 1, last job has length m.

optimal makespan = 10 = m

m= 10

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing
times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m, n, t1, t2, ..., tn)

SORT jobs and renumber so that#y = 1 = ...

\%
N

FOR i=1TO m
L|i] <= 0. <«— load on machine i

S[i] <= . «— |jobs assigned to machine i

FOR j=1TOn

| <— argmin ¢ L[k]. <— machine i has smallest load
S[i] < S[i] U {j}. <«— assignjobto machine

Lli] < L[i] + ¢, <— update load of machine i

RETURN S[1], S[2], ..., S[m].

12

Load balancing: LPT rule

Observation. If bottleneck machine i has only 1 job, then optimal.
Pf. Any solution must schedule that job. =

Lemma 3. If there are more than m jobs, L* = 2¢__,.
Pf.
- Consider processing times of first m+1 jobs ;= t,=> ...> ¢ _,,.
- Each takes at least ¢, time.
* There are m+1 jobs and m machines, so by pigeonhole principle,
at least one machine gets two jobs. =

Theorem. LPT rule is a 3/2-approximation algorithm.
Pf. [similar to proof for list scheduling]
* Consider load L[i] of bottleneck machine i.
* Letj be last job scheduled on machine i. «— wehavej =m+1
D=Ll = @lil-t;) +t < 5I",

2
—
as before —» <[L* <% L* <—— Lemma 3 (since 7, =1,)

assuming machine i has at least 2 jobs,

13

Load balancing: LPT rule

Q.

Is our 3/2 analysis tight?

A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

Pf.

Q.

More sophisticated analysis of same algorithm.

Is Graham’s 4/3 analysis tight?

A. Essentially yes.

EX.

m machines

n=2m+1 jobs

2 jobs of length m,m+1, ...,2m -1 and one more job of length m.
Then, L/L*=@m - 1)/ (3m)

14

Believe it or not

¥ BelicyveltioryNot!,

RONALD GRAHAM
head of Bell Laboratories
mathematical Studies Center
in Murray Hill, N.J., is
- one of the world’s foremost
- mathematicians, publishes
more than 12 math papers a
~year and is on the editorial
boards of 20 math journals —

IS AKlN TO DEAT 'yet is a highly skilled
trampolinist and ruggler and

E P \LIO, a horse race held each summer around the main =
y; sqaare of Siena, Italy, traditionally ends with the has ct’)fea?eell:tcéfgaggﬁ:ildent
,IMM’S holding a MOCK FUNERAL FOR THE lOSERS | 410 Jugglers Association

|

15

11. APPROXIMATION ALGORITHMS

» center selection

/~\Ig thm Design

r\ JON KLEINBERG - EVA TARDOS
\

SECTION 11.2

Center selection problem

Input. Set of n sites s,,...,s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance »(C) from a site to nearest center is minimized.

k = 4 centers

r(C)

@ center
Jl site

17

Center selection problem

Input. Set of n sites s,,...,s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance »(C) from a site to nearest center is minimized.

Notation.
* dist(x,y) = distance between sites x and y.
* dist(s;, C) = min . - - dist(s;, ¢) = distance from s, to closest center.
 r(C) = max, dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to IC|=k.

Distance function properties.

* dist(x,x)=0 | identity]
* dist(x,y) = dist(y, x) | symmetry]
* dist(x,y) < dist(x,z) +dist(z,y) [triangle inequality]

18

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane,
dist(x,y) = Euclidean distance.

Remark: search can be infinitel

k = 4 centers

r(C)

@ center
Jl site

19

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a
single center, and then keep adding centers so as to reduce the covering
radius each time by as much as possible.

Remark: arbitrarily bad!

k = 2 centers

|
ol
H |

HEH B O H
gl = EE E
g HE greedy center | pu N

| g

@ center

[site

20

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION (k, n, s1, 82, ..., Sn)

C <.
REPEAT k times

Select a site s; with maximum distance dist(si, C).

C<CU s !

site farthest
RETURN C. from any center

Property. Upon termination, all centers in C are pairwise at least »(C) apart.
Pf. By construction of algorithm.

21

Center selection: analysis of greedy algorithm

Lemma. Let C* be an optimal set of centers. Then r(C) < 2r(C¥).

Pf. [by contradiction] Assume r(C*) < % r(C).

- For each site ¢; € C, consider ball of radius % »(C) around it.
Exactly one ¢ in each ball; let ¢, be the site paired with ¢
Consider any site s and its closest center ¢* € C*.
dist(s, C) =< dist(s, c;) < dist(s, c;*) + dist(c;*, c;) < 2r(C*).

Thus, (C) < 2r(C¥). T . N/

< r(C*) since ¢;* is closest center

A-inequality

® C
J site

22

Center selection

Lemma. Let C* be an optimal set of centers. Then r(C) < 2r (C%).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still within
a factor of 2 of best solution that is allowed to place centers anywhere.

N\

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

23

Dominating set reduces to center selection

Theorem. Unless P = NP, there no p-approximation for center selection

problem for any p < 2.

Pf. We show how we could use a (2 - ¢) approximation algorithm for
CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

Let G=(V,E), k be an instance of DOMINATING-SET.

Construct instance G' of CENTER-SELECTION with sites V and distances
- dist(u,v)=11f (u,v) €EE

- disttu,v)=21if (u,v) € E

Note that G’ satisfies the triangle inequality.

G has dominating set of size k iff there exists k centers C* with r(C*) =1.

Thus, if G has a dominating set of size k, a (2 — ¢)-approximation
algorithm for CENTER-SELECTION would find a solution C* with r(C*) =1
since it cannot use any edge of distance 2. =

24

11. APPROXIMATION ALGORITHMS

» pricing method: weighted vertex cover

\th i Dy

R JON KLEINBERG - EVA TARDOS

SECTION 11.4

Weighted vertex cover

Definition. Given a graph G =(V, E), a vertex cover is a set S C V such that
each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex
cover of minimum weight.

® ©

weight =2 + 2 + 4 weight = 11

26

Pricing method

Pricing method. Each edge must be covered by some vertex.
Edge e = (i,)) pays price p.>0 to use both vertex i and ;.

Fairness. Edges incident to vertex i should pay <w; in total.

@ @

for each vertexi: Y p, =w,
€=(i 7])

o 5

Fairness lemma. For any vertex cover S and any fair prices p.: 3. p. < w(S).

Pf. 2P = 2 2P = YW = wS).
e€E T i€S e=(i,)) T i€S
each edge e covered by sum fairness inequalities

at least one node in S for each node in S

Pricing method

Set prices and find vertex cover simultaneously.

WEIGHTED-VERTEX-COVER (G, w)

S .

FOREACH e €E E
0 cie E Pe =W,
peeo. e=(i,J)

l

WHILE (there exists an edge (i, j) such that neither i nor j 1s tight)
Select such an edge e = (i,)).

Increase p. as much as possible until i or j tight.

S < set of all tight nodes.

RETURN §.

Pricing method example

b: tight C d
(a) (b)
a: tight a: tight
price of edge a-b a

b: tight C d b: tight C d: tight
(c) (d)

29

Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.

Pf.
 Algorithm terminates since at least one new node becomes tight after

each iteration of while loop.

* Let S = set of all tight nodes upon termination of algorithm.
S is a vertex cover: if some edge (i,)) is uncovered, then neither i norj
is tight. But then while loop would not terminate.

* Let $* be optimal vertex cover. We show w(S) < 2 w(S%*).

w§)= Yw, = XpP. =) 2P =2Yyp = 2wS¥).
iES i€S e=(i,)) i€V e=(i,j) ¢eEE T

! ! !

all nodes in S are tight ScV, each edge counted twice fairness lemma
prices > 0

30

11. APPROXIMATION ALGORITHMS

» LP rounding: weighted vertex cover

\th i Dy

R JON KLEINBERG - EVA TARDOS

SECTION 11.6

Weighted vertex cover

Given a graph G =(V, E) with vertex weights w; >0, find a min-weight subset
of vertices S C V such that every edge is incident to at least one vertex in S.

® @ & G
® @ 0 ©

@

total weight =6 + 9 + 10 + 32 = 57

32

Weighted vertex cover: ILP formulation

Given a graph G =(V, E) with vertex weights w; >0, find a min-weight subset
of vertices S C V such that every edge is incident to at least one vertex in S.

Integer linear programming formulation.
- Model inclusion of each vertex i using a 0/1 variable x..

{ 0 if vertex i is not in vertex cover
x. —

1 1f vertex i 1s 1n vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={i€EV:x;=1}.

« Objective function: minimize = w,x,.

- For every edge (i, j), must take either vertex i or j (or both): x;+x; > 1.

33

Weighted vertex cover: ILP formulation

Weighted vertex cover. Integer linear programming formulation.

eV

S.t. x;, +xTr; =2 1 (Z,]) cl
r, € {{0,1} 1€V

Observation. If x* is optimal solution to ILP, then S={i€V:x*=1}
IS a min-weight vertex cover.

34

Integer linear programming

Given integers a;;, b;, and c;, find integers x; that satisfy:

i’

. T n
min ¢ x min Z CjTj
st. Ax > b 7=1
n

L 2 O S.t. Z YRR Z bz 1 S 1 S m
x integral j=1

zj = 0 l<j=n

75 integral 1 <45 <n

Observation. Vertex cover formulation proves that INTEGER-PROGRAMMING
is an NP-hard optimization problem.

35

Linear programming

Given integers a;;, b;, and c;, find real numbers x; that satisfy:

i’

c T n
min c'x min) ¢;x;
st. Ax > b g=1
mn
z =z 0 s.t. > airy > b 1<i<m
J=1
zj = 0 l<j=n

Linear. No x?, xy, arccos(x), x (1 —x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachiyan 1979] Can solve LP in poly-time.
Interior point algorithms. [Karmarkar 1984, Renegar 1988, ...]
Can solve LP both in poly-time and in practice.

36

LP feasible region

LP geometry in 2D.

(- . o . e)
The region satisfying the inequalities
X1 > O, X> >0
X1+ 2x, 206

2X1+ X, 26

37

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(LP) min > w;x;
=%

IV
p—t

(i,5) € E
0 2€eV

S.t. X, —I—Zlﬁj

|V

Lj

Observation. Optimal value of LP is < optimal value of ILP.

Note. LP solution x* may not correspond to a vertex cover.

Pf. LP has fewer constraints.

(even if all weights are 1) Q
%)

Q. How can solving LP help us find a low-weight vertex cover?
A. Solve LP and round fractional values in x*.

38

Weighted vertex cover: LP rounding algorithm

Lemma. If x*is optimal solution to LP, then S={i€V :x*>%}is a
vertex cover whose weight is at most twice the min possible weight.

Pf. [Sis a vertex cover]
* Consider an edge (i,j) EE.
* Since x;" +x* = 1, either x> % or x*>% (or both) = (i,j) covered.

Pf. [S has desired weight]
* Let S* be optimal vertex cover. Then

DW= EWﬁ

1
= 3 > W
ASING T ASINY T ASINY
LP is a relaxation xi = 1

Theorem. The rounding algorithm is a 2-approximation algorithm.
Pf. Lemma + fact that LP can be solved in poly-time.

39

Weighted vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation algorithm
for WEIGHTED-VERTEX-COVER for any p < 1.3606 (even if all weights are 1).

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safral

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

Open research problem. Close the gap.

40

Weighted vertex cover inapproximability

Theorem. [Kohot-Regev 2008] If Unigue Games Conjecture is true, then no
2 — e approximation algorithm for WEIGHTED-VERTEX-COVER for any ¢ > 0.

JOURNAL oF
COMPUTER
AND SYSTEM

SCIENCES

ELSEVIER

Journal of Computer and System Sciences 74 (2008) 335-349

Vertex cover might be hard to approximate to within 2 — ¢

Subhash Khot*!, Oded Regev >*2

& Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
b Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Received 28 May 2003; received in revised form 25 April 2006
Available online 13 June 2007

Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [S. Khot, On the power of unique
2-Prover 1-Round games, in: Proc. 34th ACM Symp. on Theory of Computing, STOC, May 2002, pp. 767-775], we show that
vertex cover is hard to approximate within any constant factor better than 2. We actually show a stronger result, namely, based on
the same conjecture, vertex cover on k-uniform hypergraphs is hard to approximate within any constant factor better than k.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Hardness of approximation; Vertex cover; Unique games conjecture

Open research problem. Prove the Unique Games Conjecture.

41

11. APPROXIMATION ALGORITHMS

\ A‘g h U g » generalized load balancing

R JON KLEINBERG - EVA TARDOS

SECTION 11.7

Generalized load balancing

Input. Set of m machines M; set of n jobs J.
» Job j€J must run contiguously on an authorized machine in M; C M.

* Job j& J has processing time ¢
« Each machine can process at most one job at a time.

Def. Let J; be the subset of jobs assigned to machine i.
The load of machineiis L,=%,¢, t.

Def. The makespan is the maximum load on any machine = max, L,.

Generalized load balancing. Assign each job to an authorized machine to
minimize makespan.

43

Generalized load balancing: integer linear program and relaxation

ILP formulation. x;=time machine i spends processing job j.

(I[P) min L
s.t. Yx; = 1 foralljE€J
>x; = L forallie M
J
X; € {0,¢,} forallj€EJandiEM,
x; =0 forallj&€ Jandi & M,
LP relaxation.
(LP) min L

s.t. Yx; = t; foralljeJ

>Xx; = L forallieM

J

X;; = 0 foralljE€EJandi€E M,
x;; = 0 foralljEJandi& M,

44

Generalized load balancing: lower bounds

Lemma 1. The optimal makespan L* = max;¢.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan L*> L.
Pf. LP has fewer constraints than ILP formulation. =

45

Generalized load balancing: structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
between machine i and job j if x;>0. Then G(x) is acyclic.

\

Pf. (def d can transform x into another LP solution where
- (ererre) G(x) is acyclic if LP solver doesn’t return such an x

Xj; >0

Q/ Q\@ Q\O Q\@ Q\@

G(x) acyclic G(x) cyclic

@ job

machine

46

Generalized load balancing: rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x)
at some arbitrary machine node r.

* |f job jis a leaf node, assign j to its parent machine i.

* |If job jis not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;,>0. LP solution can only assign
positive value to authorized machines. =

{ o Each internal job node is
P assigned to an arbitrary child.
1 \
/ \
/ \
1 \
Q) ®
(O Job j

Mac h Ine Each leaf is 3551gned
@ to its parent.

Generalized load balancing: analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x, =1,

Pf.
» Since i is a leaf, x;; =0 for all j # parent(i).

» LP constraint guarantees 2, x;=1¢. =

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).

@ job

machine

N\
/7
N
/7 N
v N\
yl N
N\
4 \
// N
N\
{ > Each internal job node is
assigned to an arbitrary child.
N\
\
N\
\
\
N\
\

5 b ol
S B

Each leaf is a551gned
to its parent.

Generalized load balancing: analysis

Theorem. Rounded solution is a 2-approximation.

Pf.

« Let J(i) be the jobs assigned to machine i.

- By LEMMA 6, the load L, on machine i has two components:

- leaf nodes:

Lemma 5
E tj = E xij
J € J() J € J)
j 1s a leaf j is a leaf
Lemma 1
- . %
parent: toarent) = L

« Thus, the overall load L; < 2 L*.

LP Lemma 2 (LP is a relaxation)
< L < L*

T

optimal value of LP

< Exij
e J

49

Generalized load balancing: flow formulation

Flow formulation of LP.

Jobs

0 Machines

E.xif = t; forallj&€J
>x; = L forallieM _
; Supply = ¢(Jj L
X =z 0 forallj€JandiE€E M,
x;; = 0 foralljeJandi &M, .
> i v)Demand = ;¢

Observation. Solution to feasible flow problem with value L are in
1-to-1 correspondence with LP solutions of value L.

50

Generalized load balancing: structure of solution

Lemma 3. Let (x,L) be solution to LP. Let G(x) be the graph with an edge

from machine i to job j if x;>0. We can find another solution (x', L) such that
G(x') is acyclic.

Pf. Let C be a cycle in G(x).
° Augment flow alOng the Cycle (C. «<— flow conservation maintained

* At least one edge from C is removed (and none are added).
* Repeat until G(x') is acyclic. =

augment flow
along cycle C

» \, 30_3/\6
Ne ey >3 Ned

1

o (5 e

G(x) G(x")

51

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:

given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra—Shmoys-Tardos 1990]
- Job j takes 7, time if processed on machine i.
« 2-approximation algorithm via LP rounding.
* If P = NP, then no no p-approximation exists for any p < 3/2.

Mathematical Programming 46 (1990) 259-271 259
North-Holland

APPROXIMATION ALGORITHMS FOR SCHEDULING
UNRELATED PARALLEL MACHINES

Jan Karel LENSTRA

Eindhoven University of Technology, Eindhoven, The Netherlands, and
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

David B. SHMOYS and Eva TARDOS
Cornell University, Ithaca, NY, USA

52

11. APPROXIMATION ALGORITHMS

/~\Ig {hm Design

r\ JON KLEINBERG - EVA TARDOS) l(nGPSGCI(PI' Ob/em
\

SECTION 11.8

Polynomialtime approximation scheme

PTAS. (1 + ¢)-approximation algorithm for any constant € > 0.
- Load balancing. [Hochbaum-Shmoys 1987]
* Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution,
but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

54

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <— we assume w; < W for each i
* Knapsack has weight limit W.
« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

2 6 2
3 18 5
4 22 6
5 28 /

original instance (W = 11)

55

Knapsack is NP-complete

KNAPSACK. Given a set X, weights w; =0, values v; >0, a weight limit W, and a
target value V, is there a subset S C X such that:

Yw, = W
€S
Evi >)V
€S

SUBSET-SUM. Given a set X, values u; >0, and an integer U, is there a subset §
C X whose elements sum to exactly U?

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., u,, U) of SUBSET-SUM, create KNAPSACK instance:

V. =W, = U, Su = U
ieS
V=W=U Su, = U

ISR

Knapsack problem: dynamic programming |

Def. OPT(i,w) = max value subset of items 1.,...,i with weight limit w.

Case 1. OPT does not select item .
* OPT selects best of 1, ...,i—1 using up to weight limit w.

Case 2. OPT selects item ..
* New weight limit =w —w,.
* OPT selects best of 1,...,i—1 using up to weight limit w —w..

[0 if 1=0
OPT(i,w)=1 OPT(i-1,w) if w,>w
| max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
« Not polynomial in input size.
« Polynomial in input size if weights are small integers.

57

Knapsack problem: dynamic programming |l

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value = v using a subset of items 1...., .

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 that achieves value = v.

Case 2. OPT selects item i.

* Consumes weight w;, need to achieve value = v—v..
* OPT selects best of 1,...,i—1 that achieves value = v—v..

y

0 it v <0
OPT(i,v) =K o0 ifi=0and v >0
\min {OPT(i — 1,v), w; + OPT(i — 1,v —v;)} otherwise

58

Knapsack problem: dynamic programming |l

Theorem. Dynamic programming algorithm Il computes the optimal value
in O(n2 vmax) time, where v is the maximum of any value.
Pf.

* The optimal value V* < n vimax.

* There is one subproblem for each item and for each value v < V*.

* [t takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

59

Knapsack problem: polynomialtime approximation scheme

Intuition for approximation algorithm.
« Round all values up to lie in smaller range.
« Run dynamic programming algorithm Il on rounded/scaled instance.
« Return optimal items in rounded instance.

934221
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 / 5 28 /

original instance (W = 11) rounded instance (W = 11)

Knapsack problem: polynomialtime approximation scheme

Round up all values:
* 0 < e <1 =precision parameter.

max

Y = |largest value in original instance. Uy = {—W 0, v, = {—W
- 0 = scaling factor=¢v__ /2n.

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
vy small and integral so dynamic programming algorithm Il is fast.

61

Knapsack problem: polynomialtime approximation scheme

Theorem. If S is solution found by rounding algorithm and $*
is any other feasible solution, then (1 +e)) v > Y v

t€ES 1eES*
Pf. Let S* be any feasible solution satisfying weight constraint.

subset containing

E v; < E V; always round up only the item
icS* i€ S* of largest value
< } :777; _solve roundgd
instance optimally
1eS - %
choosing S$* ={ max }
never round up
= Z(U'L +0) by more than 6 Umax = Z v; + % € Umax
’LES ’iGS
2 : . 1
S v; + no IS < n < ZUZ T 5 Umax
€S thus €5
— E v; T 5 € Umax 0=¢ Viax | 21 ;
i€S
S (1"‘6) E V; Vimax = 22iESVi

62

Knapsack problem: polynomialtime approximation scheme

Theorem. For any € >0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢€) factor of the optimum in O3/ ¢) time.

Pf.
« We have already proved the accuracy bound.

* Dynamic program Il running time is O(n* V_..), Where

63

