Coping with NP-completeness

Q. Suppose | need to solve an NP-hard optimization problem.

11. APPROXIMATION ALGORITHMS What should | do?

[

Addison
Wesley
» load ba/ancing A. Sacrifice one of three desired features.

i. Runs in polynomial time.
ii. Solves arbitrary instances of the problem.

» center selection

» pricing method: weighted vertex cover

» LP rounding: weighted vertex cover

» generalized load balancing p-approximation algorithm.

* Runs in polynomial time.
JON KLEINBERG - EVA TARDOS 3 /(napsac/(prob/em . .
» Solves arbitrary instances of the problem

« Finds solution that is within ratio p of optimum.

Lecture slides by Kevin Wayne
R Challenge. Need to prove a solution’s value is close to optimum,

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

without even knowing what is optimum value.

Last updated on 2/26/20 11:14 AM

Load balancing

Input. m identical machines; n=m jobs, job j has processing time ;.

11. APPROXIMATION ALGORITHMS * Job j must run contiguously on one machine.

» A machine can process at most one job at a time.

» load balancing
Def. Let S[i] be the subset of jobs assigned to machine i.
The load of machine i is L[i] = Z;c g 1;-

Def. The makespan is the maximum load on any machine L = max; L[i].

Load balancing. Assign each job to a machine to minimize makespan.

\ Ignmhm Uesign

JON KLEINBERG - EVA TARDOS

SECTION 11.1
machine 1 a d f

machine 2 b © e g

0 L[1] L[2] time

Load balancing on 2 machines is NP-hard Load balancing: list scheduling

Claim. Load balancing is hard even if m =2 machines. List-scheduling algorithm.
Pf. PARTITION <, LOAD-BALANCE. * Consider n jobs in some fixed order.
\ * Assign job j to machine i whose load is smallest so far.

NP-complete by Exercise 8.26

LIST-SCHEDULING (m, n, ti, t2, ..., ty)

a4 b ¢ d FOR i=1TOm
L[i] <= 0. «— load on machine i
e f [¢]
S[i] <= &. «<— jobs assigned to machine i
length of job f FORrR j =1TOn
< argmin « LIk]. <«— machine i has smallest load
S[i] < S[i] U {J } <«— assign job j to machine i
machine 1 a d f L[i] < L[i] + ¢ <— update load of machine i
o RETURN S[11, S[21, ..., S[m]
machine 2 b [« e g ’ v '
| Il
I I
0 L time ; Implementation. O(nlog m) using a priority queue for loads L[k].
Load balancing: list scheduling analysis Load balancing: list scheduling analysis
Theorem. [Graham 1966] Greedy algorithm is a 2-approximation. Theorem. Greedy algorithm is a 2-approximation.
+ First worst-case analysis of an approximation algorithm. Pf. Consider load L[i] of bottleneck machine i. <«— mavsi':‘hnﬁitghhae‘;'?g:d“p
* Need to compare resulting solution with optimal makespan L*. * Let j be last job scheduled on machine i.

* When job j assigned to machine i, i had smallest load.
Its load before assignment is L[i] — 45 hence L[i] - 1 < L[k] forall 1 <k<m.
Lemma 1. For all k: the optimal makespan L* > ¢,.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* > %Ztk . blue jobs scheduled before j
Pf. 3 |

* The total processing time is X, 7, .

* One of m machines must do at least a 1/m fraction of total work. =

7 0 L[i]- ¢ L = L[i] time

Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L[i] of bottleneck machine i. <«— machine thatends up
with highest load
* Letj be last job scheduled on machine i.
* When job j assigned to machine i, i had smallest load.
Its load before assignment is L[i] — 45 hence L[i] - 1 < Lk] forall 1 <k<m.

* Sum inequalities over all k and divide by m:

1
Lji —t; < — L[k
[i] -t < Ek [K]
1
= *E t
m % k
lemma2 — < [*,

« Now, L = L[i] = (Lli]—t;) + t; < 2L* .
H_/ ——
<L <L’

f f

above inequality Lemma 1

Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m (m — 1) jobs have length 1, last job has length m.

optimal makespan = 10 = m

Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m (m —1) jobs have length 1, last job has length m.

list scheduling makespan =19 =2m -1

machine 2 idle

machine 3 idle

machine 4 idle

m =10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing
times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m, n, t1, t2, ..., tn)

\%

SORT jobs and renumber so that#; = & = ... = f5.

FOR i=1TOm
L[i] <= 0. <«— load on machine i

S[i] < (J. <— jobs assigned to machine i

FOrR j=1TOn
i< argmin x L[k]. <«— machine i has smallest load
S[i] <= S[i] U {j}. <— assignjob jto machinei

L[i] < L[] +¢. <«— update load of machine i

RETURN S[1], S[21, ..., S[m].

Load balancing: LPT rule

Observation. If bottleneck machine i has only 1 job, then optimal.
Pf. Any solution must schedule that job. =

Lemma 3. If there are more than m jobs, L* = 2¢,,,.
Pf.
« Consider processing times of first m+1 jobs #, = ,= ... > t,,,.
- Each takes at least t,,,, time.
* There are m+1 jobs and m machines, so by pigeonhole principle,
at least one machine gets two jobs. =

Theorem. LPT rule is a 3/2-approximation algorithm.
Pf. [similar to proof for list scheduling]

» Consider load L[i] of bottleneck machine i.) o)
assuming machine i has at least 2 jobs,
* Let j be last job scheduled on machine i. «— wehavej =m+1
L=If=@H-4)+t4 < oI,
—
as before —» <L* < L* <— Lemma 3 (since 1, = 1;)

Believe it or not

| RONALD GRAHAM
head of Bell Laboratories
mathematical Studies Center
- in Murray Hill, N.J., is |
- one of the world's foremost
| mathematicians, publishes
more than 12 math papers a
year and is on the editorial -
boards of 20 math journals —
‘yet is a highly skilled
trampolinist and juggler, and
has been elected president
of the International
Jugglers Association

Load balancing: LPT rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham’s 4/3 analysis tight?
A. Essentially yes.

Ex.
* m machines
* n=2m+1 jobs
» 2 jobs of length m,m+1,...,2m -1 and one more job of length m.
* Then, L/L*=(4m - 1)/ (3m)

11. APPROXIMATION ALGORITHMS

» center selection

\ Moot Desig

JON KLEINBERG - EVA TARDOS

SECTION 11.2

Center selection problem

Input. Set of n sites s, ..., s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance (C) from a site to nearest center is minimized.
rO)

o B

k = 4 centers

@ center
W site

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane,
dist(x,y) = Euclidean distance.

Remark: search can be infinite!

k = 4 centers

(@]

@ center
W site

L

Center selection problem

Input. Set of n sites sy, ..., s, and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum
distance (C) from a site to nearest center is minimized.

Notation.
* dist(x,y) = distance between sites x and y.
« dist(s;, C) = min . dist(s;, ¢) = distance from s, to closest center.
 r(C) = max, dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to ICI=k.

Distance function properties.
* dist(x,x)=0
* dist(x,y) = dist(y, x)
e dist(x,y) < dist(x, z) + dist(z,y)

[identity]
[symmetry]
[triangle inequality]

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a
single center, and then keep adding centers so as to reduce the covering
radius each time by as much as possible.

Remark: arbitrarily bad!

k = 2 centers

| |
H g | |
EE = Y LN |
guu EE N
guE greedy center 1 pu =
| | ..
@ center
W site

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

GREEDY-CENTER-SELECTION (k, n, s1, 82, ..., Sn)

C<—(.

REPEAT k times
Select a site s; with maximum distance dist(si, C).
C<CU s 1

site farthest
RETURN C. from any center

Property. Upon termination, all centers in C are pairwise at least (C) apart.
Pf. By construction of algorithm.

21

Center selection

Lemma. Let C* be an optimal set of centers. Then r(C) < 2r (C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still within
a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

23

Center selection: analysis of greedy algorithm

Lemma. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. [by contradiction] Assume r(C*) <% r(C).

For each site ¢; € C, consider ball of radius % r(C) around it.
Exactly one ¢;* in each ball; let ¢; be the site paired with ¢
Consider any site s and its closest center ¢;* € C*.

dist(s, C) =< dist(s, c;) < dist(s, c;*) + dist(c;*, c;) < 2r(C*).

Thus, r(C) = 2r(C*).I- ~N S

< r(C*) since ¢;* is closest center

A-inequality

@ C
W site

Dominating set reduces to center selection

Theorem. Unless P = NP, there no p-approximation for center selection
problem for any p < 2.

Pf.

We show how we could use a (2 - ¢) approximation algorithm for

CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

Let G=(V,E), k be an instance of DOMINATING-SET.

Construct instance G’ of CENTER-SELECTION with sites V and distances
- dist(u,v)=1if (u,v) EE

- dist(u,v)=2if (u,v) ¢ E

Note that G’ satisfies the triangle inequality.

G has dominating set of size k iff there exists k centers C* with r(C*) = 1.

Thus, if G has a dominating set of size k, a (2 — ¢)-approximation
algorithm for CENTER-SELECTION would find a solution C* with r(C*) =1
since it cannot use any edge of distance 2. =

22

24

Weighted vertex cover

Definition. Given a graph G =(V, E), a vertex cover is a set SC V such that

11. APPROXIMATION ALGORITHMS each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a vertex
cover of minimum weight.

» pricing method: weighted vertex cover

\ lgorithm Design

JON KLEINBERG - EVA TARDOS

SECTION 11.4
weight =2 +2 + 4 weight = 11
26
Pricing method Pricing method
Pricing method. Each edge must be covered by some vertex. Set prices and find vertex cover simultaneously.
Edge e = (i, j) pays price p.>0 to use both vertex i and j.
Fairness. Edges incident to vertex i should pay <w; in total. WEIGHTED- VERTEX-COVER (G, w)
S<—@.
for each vertexi: Y p, =w, rorpacte €L E Pe =i
3 = e = Wy Pe 0. e=(i,))

l

WHILE (there exists an edge (i, j) such that neither i nor j is tight)

Select such an edge e = (i, j).

Fairness lemma. For any vertex cover S and any fair prices p.: S.p. < w(S). Increase pe as much as possible until 7 or j tight.
S < set of all tight nodes.
Pf. egE Pe TS ,-gs e%j)Pe T ,gs T 2 e RETURN S.
each edge e covered by sum faimess inequalities

at least one node in S for each node in S

27 28

Pricing method example Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER.
Pf.

a a
° ° » Algorithm terminates since at least one new node becomes tight after
each iteration of while loop.
o Q 9 ° e e * Let S=set of all tight nodes upon termination of algorithm.
b c d

b: tight ¢ d Sis a vertex cover: if some edge (i,) is uncovered, then neither i nor j

(@ (b) L . .
is tight. But then while loop would not terminate.
a: tight a: tight
price of edge a-b °
* Let $* be optimal vertex cover. We show w(S) < 2 w(S*).
vertex weight
GH—G)r—5) wiS)= Iw; =3 ZP s ¥ YP=23Fp s 2wS.
brtight ¢ d brtight ¢ d: tight ies i S (ST ek D
© (@ all nodes in S are tight ScVv, each edge counted twice fairness lemma
prices = 0
29 30

Weighted vertex cover

Given a graph G =(V, E) with vertex weights w; =0, find a min-weight subset
11. APPROXIMATION ALGORITHMS of vertices S C V such that every edge is incident to at least one vertex in .

ik

A\ \ lgorithm Design

JON KLEINBERG - EVA TARDOS

» LP rounding: weighted vertex cover

© 6
© 0 0

SECTION 11.6

®
®

@

total weight =6 + 9 + 10 + 32 = 57

32

Weighted vertex cover: ILP formulation

Given a graph G =(V, E) with vertex weights w; =0, find a min-weight subset
of vertices S C V such that every edge is incident to at least one vertex in S.

Integer linear programming formulation.
« Model inclusion of each vertex i using a 0/1 variable x;.

{ 0 if vertex i is not in vertex cover
. =

1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieV:x;=1}.

« Objective function: minimize =;w,x;.

- For every edge (i, j), must take either vertex i or j (or both): x;+x; = 1.

33

Integer linear programming

Given integers a;, b;, and ¢;, find integers x; that satisfy:

i

. T n
min c'z min) ¢z,
st. Ax > b J=1
n

x Z 0 s.t. Z A5 5 2 bl 1 S 7 S m
a8 integral j=1

zj > 0 1<j<n

0 integral 1<j5<n

Observation. Vertex cover formulation proves that INTEGER-PROGRAMMING
is an NP-hard optimization problem.

35

Weighted vertex cover: ILP formulation

Weighted vertex cover. Integer linear programming formulation.

(ILP) min Y w;x;

iev
st x4z > 1 (t,j) € E
z, € {0,1} eV

Observation. If x* is optimal solution to ILP, then S={i€EV:x*=1}
is a min-weight vertex cover.

34

Linear programming

Given integers a;, b;, and ¢;, find real numbers x; that satisfy:

ij?

. T n
min c'z min) ¢z,
st. Az > b J=1
n
5oz 0 s.t. Z A5 5 2 bz 1 S 1 <m
i=1
z; > 0 1<j<n

Linear. No x?, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachiyan 1979] Can solve LP in poly-time.
Interior point algorithms. [Karmarkar 1984, Renegar 1988, ...]
Can solve LP both in poly-time and in practice.

36

LP feasible region Weighted vertex cover: LP relaxation

LP geometry in 2D. Linear programming relaxation.
X, =0 (LP) min > w;x;
iV
The region satisfying the inequalities ¢ o
\ 520,120 st. zi+ax; > 1 (i,j)€eFE
6 X1+ 2x,26 .
20+ %26 xX; Z 0 i1eV

Observation. Optimal value of LP is < optimal value of ILP.

Note. LP solution x* may not correspond to a vertex cover.

Pf. LP has fewer constraints.

(even if all weights are 1) O
%

é\ Q. How can solving LP help us find a low-weight vertex cover?
X; + 2%, =6

A. Solve LP and round fractional values in x*.

2X; + X, =6

37 38

Weighted vertex cover: LP rounding algorithm Weighted vertex cover inapproximability
Lemma. If x* is optimal solution to LP, then S={i€V :x =% }isa Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation algorithm
vertex cover whose weight is at most twice the min possible weight. for WEIGHTED-VERTEX-COVER for any p < 1.3606 (even if all weights are 1).
Pf. [Sis a vertex cover]

+ Consider an edge (i,)) EE. On the Hardness of Approximating Minimum Vertex Cover

* Since x;* +xf = 1, either x*= 5 or Xtz (or both) = (i,j) covered.

Trit Dinur* Samuel Safral

May 26, 2004

Pf. [S has desired weight]
* Let $* be optimal vertex cover. Then

Abstract

" We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
1 a factor of 1.3606, extending on previous PCP and hardness of approximation tect . T
Wz YW = 5 YW, it e, o e 10 develop & new. proof famework, aixd bottow and extend ideos fom
=% T ieES T iES several fields.
LP is a relaxation xit = W
Theorem. The rounding algorithm is a 2-approximation algorithm.
Pf. Lemma + fact that LP can be solved in poly-time. Open research problem. Close the gap.

39 40

Weighted vertex cover inapproximability

Theorem. [Kohot-Regev 2008] If Unique Games Conjecture is true, then no
2 — g approximation algorithm for WEIGHTED-VERTEX-COVER for any ¢ > 0.

11. APPROXIMATION ALGORITHMS

!_f)u RNAL oF
OMPUTER
AN SYSTEM
SCIENCES

ELSEVIER
Journal of Computer and System Sciences 74 (2008) 335-349

Vertex cover might be hard to approximate to within 2 — ¢

Subhash Khot *!, Oded Regev ***

\ AI H 0 mhm ”HS| gﬂ » generalized load balancing

JON KLEINBERG - EVA TARDOS

Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [S. Khot, On the power of unique
2-Prover | in: Proc. 34th ACM Symp. on Theory of Computing, STOC, May 2002, pp. 767-775), we show that
vertex cov imate within any constant factor better than 2. We actually show a stronger result, namely, based on
the er on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

e same c e. vertex cov
© 2007 Elsevier Inc. All rights reserved. SECTION 11.7

Keywords: Hardness of approximation; Vertex cover; Unique games conjecture

Open research problem. Prove the Unique Games Conjecture.

41

Generalized load balancing Generalized load balancing: integer linear program and relaxation
Input. Set of m machines M; set of n jobs J. ILP formulation. x;=time machine i spends processing job .
+ Job jE€J must run contiguously on an authorized machine in M; C M.
* Job j€J has processing time t. (IP) min L
» Each machine can process at most one job at a time. st Sx; = foralljE€J
i
o= L forallie M
Def. Let J; be the subset of jobs assigned to machine i. ?x” = !
The load of machine iis L; =3¢, 1. x; € {0,1;} foralljEJandiEM;
x; =0 forallj€Jand i & M,
Def. The makespan is the maximum load on any machine = max; L,.
LP relaxation.
))]) . . (LP) min L
Generalized load balancing. Assign each job to an authorized machine to st Sx, = t; forallj€J
minimize makespan. i
Exij < L forallieM
j
X = 0 forallj€EJandi€EM,
x; = 0 foralljEJandi&M,;

43 44

Generalized load balancing: lower bounds

Lemma 1. The optimal makespan L* = max; .
Pf. Some machine must process the most time-consuming job. =

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan L*> L.
Pf. LP has fewer constraints than ILP formulation. =

45

Generalized load balancing: rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x)
at some arbitrary machine node r.

* If job jis a leaf node, assign j to its parent machine i.

» If job jis not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;>0. LP solution can only assign
positive value to authorized machines. =

H

S rr—
‘ Each internal job node is |

| assigned to an arbitrary child.

O sob
D machine Euch leaf is assigned |
m olsparent.

47

Generalized load balancing: structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
between machine i and job j if x;>0. Then G(x) is acyclic.

\

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn’t return such an x

Pf. (deferred)

x; > 0

G(x) acyclic G(x) cyclic

O job
D machine

46

Generalized load balancing: analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x; =1,
Pf.

« Since i is a leaf, x; =0 for all j # paren(i).
+ LP constraint guarantees X, x; =1, =

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i).

Fach internal job node is |
(assigned to an arbitrary child.

O job

D machine Euch leaf is assigned |

m its parent.

itk
48

Generalized load balancing: analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
+ Let J(i) be the jobs assigned to machine i.
» By LEMMA 6, the load L; on machine i has two components:

- |eaf nOdeS: Lemma 5 LP Lemma 2 (LP is a relaxation)
= k
Etj— Exij sExistsL
Jj € J@) Jj € J@) jEeJ
Jj is a leaf Jj is a leaf T
optimal value of LP
Lemma 1
- o %
parent: l‘parem(,-) < L

e Thus, the overall load L; < 2L*. =

49

Generalized load balancing: structure of solution

Lemma 3. Let (x,L) be solution to LP. Let G(x) be the graph with an edge
from machine i to job j if x;>0. We can find another solution (x', L) such that
G(x') is acyclic.

Pf. Let C be a cycle in G(x).
» Augment flow along the cycle C. «— flow conservation maintained
* At least one edge from C is removed (and none are added).
* Repeat until G(x') is acyclic. =

augment flow
along cycle C

30—34‘]\ 30—37:K
. G e d

1 5 5

4 (O=3 E/ 4 (O

G(x) G(x)
51

Generalized load balancing: flow formulation

Flow formulation of LP.

E,X"J' = 1 foralljE€J

Ex”. < L forallieM

J

X = 0 forallj€EJandi€EM,;
X = 0 forallj€Jandi¢ M,

Demand = Z]» t

Observation. Solution to feasible flow problem with value L are in
1-to-1 correspondence with LP solutions of value L.

50

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
+ Job j takes 7; time if processed on machine i.
+ 2-approximation algorithm via LP rounding.
* If P = NP, then no no p-approximation exists for any p < 3/2.

cogramming 46 (1990) 259-271

APPROXIMATION ALGORITHMS FOR SCHEDULING
UNRELATED PARALLEL MACHINES

52

11. APPROXIMATION ALGORITHMS

v

N Ngoritm Desi

JON KLEINBERG - EVA TARDOS » /(napsac/(pr ob/em

SECTION 11.8

Knapsack problem

Knapsack problem.
» Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <— we assume w; =W for each i
» Knapsack has weight limit w.
» Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

55

Polynomialtime approximation scheme

PTAS. (1 +¢)-approximation algorithm for any constant € > 0.
» Load balancing. [Hochbaum-Shmoys 1987]
» Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution,
but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack is NP-complete

KNAPSACK. Given a set X, weights w; =0, values v; =0, a weight limit W, and a
target value V, is there a subset S C X such that:

Swo o= W
ies
Svi =V
ies

SUBSET-SUM. Given a set X, values u; =0, and an integer U, is there a subset
C X whose elements sum to exactly U?

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., us, U) of SUBSET-SUM, create KNAPSACK instance:

€S
V=W=U Su =

€S

Vi=W.=U. Eui = U
U

54

56

Knapsack problem: dynamic programming |

Def. OPT(i,w)= max value subset of items 1....,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w —w,.
* OPT selects best of 1, ...,i—1 using up to weight limit w—w;.

0 if i=0
OPT(i,w)=4{ OPT(i-1,w) if w,>w
max{ OPT(i-1,w), v,+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
* Not polynomial in input size.
» Polynomial in input size if weights are small integers.

57

Knapsack problem: dynamic programming Il

Theorem. Dynamic programming algorithm Il computes the optimal value
in O(n2 vmax) time, where vima is the maximum of any value.
Pf.

* The optimal value V* < n vmax.

» There is one subproblem for each item and for each value v < v*.

* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

59

Knapsack problem: dynamic programming Il

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value > v using a subset of items 1,...,i.

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1, ...,i—1 that achieves value > v.

Case 2. OPT selects item i.

+ Consumes weight w;, need to achieve value = v-v,.
* OPT selects best of 1,...,i—1 that achieves value = v—v,.

0 ifv<0
OPT(i,v) = { oo ifi=0and v>0
min {OPT(i — 1,v), w; + OPT(i —1,v —v;)} otherwise

58

Knapsack problem: polynomialtime approximation scheme

Intuition for approximation algorithm.
» Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
+ Return optimal items in rounded instance.

e | vatue | weiore SR e |_vaive | weip |
1 1 1 1

934221 1
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7

original instance (W = 11) rounded instance (W = 11)

60

Knapsack problem: polynomialtime approximation scheme

Round up all values:
* 0 <e=<1 =precision parameter.

largest value in original instance.

vmax

.
Il

scaling factor = e v, / 2n.
Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with .

Intuition. v close to v so optimal solution using v is nearly optimal;
? small and integral so dynamic programming algorithm Il is fast.

61

Knapsack problem: polynomialtime approximation scheme

Theorem. For any &> 0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢) factor of the optimum in O3/) time.

Pf.

* We have already proved the accuracy bound.
* Dynamic program Il running time is o(n* Vmax), Where

= [5] - [2]

63

Knapsack problem: polynomialtime approximation scheme

Theorem. If S is solution found by rounding algorithm and $*
is any other feasible solution, then (1+6Y v > > v

1€S i€S*
Pf. Let S* be any feasible solution satisfying weight constraint.

subset containing

E v < E U; always round up only the item
i€S* i€S* of largest value

o solve rounded
Z v instance optimally

choosing S* = { max }

IN

never round up

< Z(UL + 9) by more than 0 Vmax < Zui + % € Umax
€S i€S
1
< D> v+ nf ISI < n S D v+ g Umax
= thus €S
1 e £ 2 5
= Z Vi + 3 € Umax 0 =¢evp/2n " 1625 '
€S
< (1+e) va Vmax < 2 Zjes Vi

62

