10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs
Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.
10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs
Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

$S = \{3, 6, 7, 10\}$ is a vertex cover of size $k = 4$
Finding small vertex covers

Q. VERTEX-COVER is \textbf{NP}-complete. But what if k is small?

\textbf{Brute force.} $O(kn^{k+1})$.
\begin{itemize}
 \item Try all $C(n, k) = O(n^k)$ subsets of size k.
 \item Takes $O(kn)$ time to check whether a subset is a vertex cover.
\end{itemize}

\textbf{Goal.} Limit exponential dependency on k, say to $O(2^kn)$.

\textbf{Ex.} $n = 1,000, k = 10$.

\textbf{Brute.} $kn^{k+1} = 10^{34} \Rightarrow$ infeasible.

\textbf{Better.} $2^kn = 10^7 \Rightarrow$ feasible.

\textbf{Remark.} If k is a constant, then the algorithm is poly-time; if k is a small constant, then it’s also practical.
Finding small vertex covers

Claim. Let \((u, v)\) be an edge of \(G\). \(G\) has a vertex cover of size \(\leq k\) iff at least one of \(G - \{u\}\) and \(G - \{v\}\) has a vertex cover of size \(\leq k - 1\).

\[\text{Pf. } \Rightarrow\]
\[
\begin{itemize}
 \item Suppose \(G\) has a vertex cover \(S\) of size \(\leq k\).
 \item \(S\) contains either \(u\) or \(v\) (or both). Assume it contains \(u\).
 \item \(S - \{u\}\) is a vertex cover of \(G - \{u\}\).
\end{itemize}

\[\text{Pf. } \Leftarrow\]
\[
\begin{itemize}
 \item Suppose \(S\) is a vertex cover of \(G - \{u\}\) of size \(\leq k - 1\).
 \item Then \(S \cup \{u\}\) is a vertex cover of \(G\). \(\blacksquare\)
\end{itemize}

Claim. If \(G\) has a vertex cover of size \(k\), it has \(\leq k(n - 1)\) edges.
\[\text{Pf. } \text{Each vertex covers at most } n - 1 \text{ edges. } \blacksquare\]
Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

```plaintext
Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains $\geq kn$ edges) return false

    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $O(kn)$ time.

▪
Finding small vertex covers: recursion tree

\[T(n, k) \leq \begin{cases}
 c & \text{if } k = 0 \\
 cn & \text{if } k = 1 \\
 2T(n, k-1) + ckn & \text{if } k > 1
\end{cases} \quad \Rightarrow \quad T(n, k) \leq 2^k ckn \]
10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs
Independent set on trees

Independent set on trees. Given a *tree*, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. *(exchange argument)*
- Consider a max cardinality independent set S.
- If $v \in S$, we’re done.
- If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum.
- If $u \in S$ and $v \notin S$, then $S \cup \{v\} - \{u\}$ is independent. \blacksquare

![Tree diagram](image-url)
Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S ← ∅
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes u and v, and all edges incident to them.
    }
    return S ∪ { isolated vertices in F }
}
```

Pf. Correctness follows from the previous key observation. □

Remark. Can implement in $O(n)$ time by considering nodes in postorder.
Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $OPT_{in}(u) = \max$ weight independent set of subtree rooted at u, containing u.
- $OPT_{out}(u) = \max$ weight independent set of subtree rooted at u, not containing u.

$$OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)$$

$$OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max \{ OPT_{in}(v), OPT_{out}(v) \}$$

$\text{children}(u) = \{ v, w, x \}$
Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in \(O(n)\) time.

```plaintext
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node \(r\)
    foreach (node \(u\) of \(T\) in postorder) {
        if (\(u\) is a leaf) {
            \(M_{in}[u] = w_u\)
            \(M_{out}[u] = 0\)
        }
        else {
            \(M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[v]\)
            \(M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{in}[v], M_{out}[v])\)
        }
    }
    return \(\max(M_{in}[r], M_{out}[r])\)
}
```
Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:

- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.
10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- *circular arc coverings*
- vertex cover in bipartite graphs
Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^m)$ time by trying all k-colorings.

Goal. $O(f(k)) \cdot \text{poly}(m, n)$ on rings.
Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

![Diagram of interval coloring]

Circular arc coloring.
- Weak duality: number of colors \geq depth.
- Strong duality does not hold.
Almost transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of \(n \) arcs with depth \(d \leq k \), can the arcs be colored with \(k \) colors?

Equivalent problem. Cut the network between nodes \(v_1 \) and \(v_n \). The arcs can be colored with \(k \) colors iff the intervals can be colored with \(k \) colors in such a way that “sliced” arcs have the same color.

Colors of \(a', b', \) and \(c' \) must correspond to colors of \(a'', b'', \) and \(c'' \).
Circular arc coloring: dynamic programming algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v_0.
- At each node v_i, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1}.
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.
Running time. \(O(k! \cdot n) \).

- The algorithm has \(n \) phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most \(k \) intervals through \(v_i \), so there are at most \(k! \) colorings to consider.

Remark. This algorithm is practical for small values of \(k \) (say \(k = 10 \)) even if the number of nodes \(n \) (or paths) is large.
10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs
Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

vertex cover $S = \{3, 4, 5, 1', 2'\}$
Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq |S|$.

Pf. Each vertex can cover at most one edge in any matching.

![Diagram showing vertex cover and matching]

matching M: 1–1', 2–2', 3–4', 4–5'
Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

Matching M: 1–1', 2–2', 3–4', 4–5'

Vertex cover $S = \{3, 4, 5, 1', 2'\}$
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

• Suffices to find matching M and cover S such that $|M| = |S|$.
• Formulate max flow problem as for bipartite matching.
• Let M be max cardinality matching and let (A, B) be min cut.
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$, $R_B = R \cap B$.

- **Claim 1.** $S = L_B \cup R_A$ is a vertex cover.
 - consider $(u, v) \in E$
 - $u \in L_A$, $v \in R_B$ impossible since infinite capacity
 - thus, either $u \in L_B$ or $v \in R_A$ or both

- **Claim 2.** $|M| = |S|$.
 - max-flow min-cut theorem $\Rightarrow |M| = \text{cap}(A, B)$
 - only edges of form (s, u) or (v, t) contribute to $\text{cap}(A, B)$
 - $|M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|$.