10. **EXTENDING TRACTABILITY**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

![Graph Diagram](image)

$S = \{3, 6, 7, 10\}$ is a vertex cover of size $k = 4$
Finding small vertex covers

Q. VERTEX-COVER is **NP**-complete. But what if \(k \) is small?

Brute force. \(O(kn^{k+1}) \).
- Try all \(C(n,k) = O(n^k) \) subsets of size \(k \).
- Takes \(O(kn) \) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on \(k \), say to \(O(2^k \cdot kn) \).

Ex. \(n = 1,000, k = 10 \).
- Brute. \(k^{n+1} = 10^{34} \) \(\Rightarrow \) infeasible.
- Better. \(2^k \cdot kn = 10^7 \) \(\Rightarrow \) feasible.

Remark. If \(k \) is a constant, then the algorithm is poly-time; if \(k \) is a small constant, then it’s also practical.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if \(G \) has a vertex cover of size \(\leq k \) in \(O(2^k \cdot kn) \) time.

```pseudo
Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains \( \geq kn \) edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - \{u\}, k-1)
    b = Vertex-Cover(G - \{v\}, k-1)
    return a or b
}
```

Pf.
- Correctness follows from previous two claims.
- There are \(\leq 2^{k+1} \) nodes in the recursion tree; each invocation takes \(O(kn) \) time.
10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S = ∅
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes u and v, and all edges incident to them.
    }
    return S ∪ {isolated vertices in F}
}
```

Pf. Correctness follows from the previous key observation. ●

Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $OPT_{in}(u) = \max$ weight independent set of subtree rooted at u, containing u.
- $OPT_{sw}(u) = \max$ weight independent set of subtree rooted at u, not containing u.

```
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{sw}(v)
OPT_{sw}(u) = \max_{v \in \text{children}(u)} \{OPT_{in}(v), OPT_{sw}(v)\}
```

children(u) = {v, w, x}

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)
- Consider a max cardinality independent set S.
- If $v \notin S$, we’re done.
- If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum.
- If $u \in S$ and $v \notin S$, then $S \cup \{v\} - \{u\}$ is independent. ●
Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in $O(n)$ time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node r
    foreach (node u of T in postorder) {
        if (u is a leaf) {
            $M_{in}[u] = w_u$
            $M_{out}[u] = 0$
        } else {
            $M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[v]$
            $M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{in}[v], M_{out}[v])$
        }
    }
    return max($M_{in}[r], M_{out}[r]$)
}
```

Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O(k^n)$ time by trying all k-colorings.

Goal. $O(f(k) \cdot \text{poly}(m, n))$ on rings.
Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

- Weak duality: number of colors \geq depth.
- Strong duality does not hold.

Circular arc coloring:
- Given a set of n arcs with depth $d \leq k$, can the arcs be colored with k colors?
- Equivalence problem. Cut the network between nodes v_i and v_{i+1}. The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that “sliced” arcs have the same color.

Circular arc coloring: dynamic programming algorithm

Dynamic programming algorithm.
- Assign distinct color to each interval which begins at cut node v_0.
- At each node v_i, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1}.
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

Circular arc coloring: running time

Running time. $O(k! \cdot n)$.
- The algorithm has n phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_i, so there are at most $k!$ colorings to consider.

Remark. This algorithm is practical for small values of k (say $k = 10$) even if the number of nodes n (or paths) is large.
10. **EXTENDING TRACTABILITY**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover.

Then, $|M| \leq |S|$.

Pf. Each vertex can cover at most one edge in any matching.

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

\begin{align*}
\text{Claim 1. } \quad & S = L_B \cup R_A 	ext{ is a vertex cover.} \\
& \text{consider } (u, v) \in E \\
& \quad u \in L_A, v \in R_B \text{ impossible since infinite capacity} \\
& \quad \text{thus, either } u \in L_B \text{ or } v \in R_A \text{ or both}
\end{align*}

\begin{align*}
\text{Claim 2. } \quad & |M| = |S| \\
& \text{max-flow min-cut theorem } \Rightarrow |M| = \text{cap}(A, B) \\
& \text{only edges of form } (s, u) \text{ or } (v, t) \text{ contribute to } \text{cap}(A, B) \\
& \quad |M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|. \quad \blacksquare
\end{align*}