Coping with NP-completeness

Q. Suppose I need to solve an \textbf{NP}-complete problem. What should I do?
A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of \textbf{NP}-complete problems.

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

![Vertex cover example](image)
Finding small vertex covers

Q. VERTEX-COVER is NP-complete. But what if \(k \) is small?

Brute force. \(O(kn^{k+1}) \).
- Try all \(C(n, k) = O(n^k) \) subsets of size \(k \).
- Takes \(O(kn) \) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on \(k \), say to \(O(2^k kn) \).

Ex. \(n = 1,000, k = 10 \).

Brute. \(kn^{k+1} = 10^{34} \) \(\Rightarrow \) infeasible.

Better. \(2^k kn = 10^7 \) \(\Rightarrow \) feasible.

Remark. If \(k \) is a constant, then the algorithm is poly-time; if \(k \) is a small constant, then it’s also practical.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if \(G \) has a vertex cover of size \(\leq k \) in \(O(2^k kn) \) time.

```plaintext
Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains \( \geq \) kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.
- Correctness follows from previous two claims.
- There are \(\leq 2^{k+1} \) nodes in the recursion tree; each invocation takes \(O(kn) \) time. •

Finding small vertex covers: recursion tree

Claim. Let \((u, v)\) be an edge of \(G \). \(G \) has a vertex cover of size \(\leq k \) iff at least one of \(G - \{u\} \) and \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \).

Pf.
- Suppose \(G \) has a vertex cover \(S \) of size \(\leq k \).
 - \(S \) contains either \(u \) or \(v \) (or both). Assume it contains \(u \).
 - \(S - \{u\} \) is a vertex cover of \(G - \{u\} \).

Claim. If \(G \) has a vertex cover of size \(k \), it has \(\leq k(n - 1) \) edges.

Pf. Each vertex covers at most \(n - 1 \) edges. •
10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If \(v \) is a leaf, there exists a maximum size independent set containing \(v \).

Pf. (exchange argument)
- Consider a max cardinality independent set \(S \).
- If \(v \in S \), we’re done.
- If \(u \notin S \) and \(v \notin S \), then \(S \cup \{ v \} \) is independent \(\Rightarrow S \) not maximum.
- If \(u \in S \) and \(v \notin S \), then \(S \cup \{ v \} - \{ u \} \) is independent. □

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S ← φ
    while (F has at least one edge) {
        Let \( e = (u, v) \) be an edge such that \( v \) is a leaf
        Add \( v \) to \( S \)
        Delete from \( F \) nodes \( u \) and \( v \), and all edges incident to them.
    }
    return \( S \)
}
```

Pf. Correctness follows from the previous key observation. □

Remark. Can implement in \(O(n) \) time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights \(w_i > 0 \), find an independent set \(S \) that maximizes \(\sum_{i \in S} w_i \).

Observation. If \((u, v)\) is an edge such that \(v \) is a leaf node, then either \(OPT \) includes \(u \) or \(OPT \) includes all leaf nodes incident to \(u \).

Dynamic programming solution. Root tree at some node, say \(r \).
- \(OPT_{in}(u) = \max \) weight independent set of subtree rooted at \(u \), containing \(u \).
- \(OPT_{out}(u) = \max \) weight independent set of subtree rooted at \(u \), not containing \(u \).

\[
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
\]

\[
OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max \{ OPT_{in}(v), OPT_{out}(v) \}
\]

\[\text{children}(u) = \{ v, w, x \}\]
Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in \(O(n)\) time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node \(r\)
    foreach (node \(u\) of \(T\) in postorder) {
        if (\(u\) is a leaf) {
            \(M_{in}[u] = w_u\)
            \(M_{out}[u] = 0\)
        } else {
            \(M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[v]\)
            \(M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{in}[v], M_{out}[v])\)
        }
    }
    return \(\max(M_{in}[r], M_{out}[r])\)
}
```

This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Context

Independent set on trees.

This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

Graphs of bounded tree width.

Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM).

Allows \(m\) communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on \(n\) nodes.

Bad news.

NP-complete, even on rings.

Brute force. Can determine if \(k\) colors suffice in \(O(k^n)\) time by trying all \(k\)-colorings.

Goal. \(O(f(k) \cdot \text{poly}(m, n))\) on rings.
Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

- Weak duality: number of colors \(\geq \) depth.
- Strong duality does not hold.

Circular arc coloring

- Maximum number of streams at one location

(Circular arc coloring: dynamic programming algorithm)

Dynamic programming algorithm.
- Assign distinct color to each interval which begins at cut node \(v_0 \).
- At each node \(v_i \), some intervals may finish, and others may begin.
- Enumerate all \(k \)-colorings of the intervals through \(v_i \) that are consistent with the colorings of the intervals through \(v_{i-1} \).
- The arcs are \(k \)-colorable iff some coloring of intervals ending at cut node \(v_0 \) is consistent with original coloring of the same intervals.

(Almost) transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of \(n \) arcs with depth \(d \leq k \), can the arcs be colored with \(k \) colors?

- Equivalent problem. Cut the network between nodes \(v_i \) and \(v_j \). The arcs can be colored with \(k \) colors iff the intervals can be colored with \(k \) colors in such a way that “sliced” arcs have the same color.

Circular arc coloring: running time

Running time. \(O(k! \cdot n) \).
- The algorithm has \(n \) phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most \(k \) intervals through \(v_i \), so there are at most \(k! \) colorings to consider.

- Remark. This algorithm is practical for small values of \(k \) (say \(k = 10 \)) even if the number of nodes \(n \) (or paths) is large.
10. **EXTENDING TRACTABILITY**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Vertex cover

Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \leq k\), and for each edge \((u, v)\) either \(u \in S \) or \(v \in S \) or both?

Vertex cover and matching

Weak duality. Let \(M \) be a matching, and let \(S \) be a vertex cover. Then, \(|M| \leq |S|\).

Pf. Each vertex can cover at most one edge in any matching.

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

\[L_A = L \cap A, \quad L_B = L \cap B, \quad R_A = R \cap A, \quad R_B = R \cap B. \]

- Claim 1. $S = L_B \cup R_A$ is a vertex cover.
 - consider $(u, v) \in E$
 - $u \in L_A, v \in R_B$ impossible since infinite capacity
 - thus, either $u \in L_B$ or $v \in R_A$ or both

- Claim 2. $|M| = |S|$
 - max-flow min-cut theorem \(\Rightarrow |M| = \text{cap}(A, B)\)
 - only edges of form (s, u) or (v, t) contribute to $\text{cap}(A, B)$
 - $|M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|$.