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Decision problem.
* Problem X is a set of strings.

yes if se X

* Algorithm A solves problem X: A —
2 P (#) no ifsé¢ X

* |nstance s is one string. {
Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in < p(|s|) “steps,” where p() is some polynomial function.

I

length of s

Def. P = set of decision problems for which there exists a poly-time algorithm.

1

on a deterministic
Turing machine

problem PRIMES: {2,3,5,7,11,13,17,19,23,29,31,... }
instance s: 59233574454870285468 1
algorithm: Agrawal-Kayal-Saxena (2002)



Some problems in P

P. Decision problems for which there exists a poly-time algorithm.

poly-time
algorithm

problem description

grade-school

i ?
MULTIPLE Is x a multiple of y division 51, 17 51, 16
REL-PRIME Are x and y relatively prime ?  Euclid’s algorithm 34, 39 34, 51
Agrawal-Kayal-
PRIMES Is x prime ? J S y 53 51
axena

Is the edit distance between niether acgggt
EDIT-DISTANCE cand y less than 5 ? Needleman-Wunsch neither ttttta
_Ed d 0 1 1 4 1 0 0 1
L-SOLVE s ther_ea}vectorxthat Gausts Edmonds s 4 ol | Lol
satisfies Ax=57? elimination 0 3 15| |36 o 1 1l It

Is an undirected graph .
U-CONN G connected? depth-first search m Q<2 b@



NP

Def. Algorithm C(s, ) is a certifier for problem X if for every string s :
s € X iff there exists a string 7 such that C(s, 1) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.
* C(s,?) is a poly-time algorithm.
* Certificate ris of polynomial size: |¢| < p(|s|) for some polynomial p(").

\

“certificate” or “witness”

....................................................................................................................................................

problem COMPOSITES: {4,6,8,9,10,12, 14, 15,16, 18,20, ....}
instance s: 437669

certificate t: 54] <«— 437,669=541 x 809

certifier C(s, t): grade-school division



Certifiers and certificates: satisfiability

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in @ has at least one true literal.

.......................................................................................................................................................................

instances & = (xl vV X, vx3)/\(x1 vV X, vx3) /\(x1 vV X, vx4)

certificate t x| = tfrue, x» = true, x3 = false, x4 = false

Conclusions. SAT € NP, 3-SAT € NP.



Certifiers and certificates: Hamilton path

HAMILTON-PATH. Given an undirected graph G =(V, E), does there exist a
simple path P that visits every node?

Certificate. A permutation xt of the n nodes.

Certifier. Check that m contains each node in V exactly once,
and that G contains an edge between each pair of adjacent nodes.

instance s certificate t

Conclusion. HAMILTON-PATH € NP.



Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

description

poly-time
algorithm

L-SOLVE

COMPOSITES

FACTOR

SAT

HAMILTON-
PATH

Is there a vector x
that satisfies Ax =57

Is x composite ?

Does x have a nontrivial factor
less than y?

Given a CNF formula, does it have
a satisfying truth assignment?

Is there a simple path between
u and v that visits every node?

Gauss—-Edmonds
elimination

Agrawal-Kayal-
Saxena

299

© © ®

299

© © ®

292

51 53

(56159, 50) (55687, 50)

X1V X2V X3 X2
X1V7xXx2V X3 X1V X2
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Intractability: quiz 1

Which of the following graph problems are known to be in NP?

A.

m U O R

Is the length of the longest simple path <k ?
Is the length of the longest simple path > £ ?
Is the length of the longest simple path = k?
Find the length of the longest simple path.

All of the above.

10



Intractability: quiz 2

In complexity theory, the abbreviation NP stands for...

Nope.
No problem.
Not polynomial time.

Not polynomial space.

m o nNn ® »

Nondeterministic polynomial time.

11



Significance of NP

NP. Decision problems for which there exists a poly-time certifier.

“ NP captures vast domains of computational, scientific, and mathematical
endeavors, and seems to roughly delimit what mathematicians and scientists

have been aspiring to compute feasibly.” — Christos Papadimitriou

“In an ideal world it would be renamed P vs VP.” — Clyde Kruskal

12



P, NP, and EXP

P.  Decision prob
NP. Decision prob
EXP. Decision prob

ems for w
ems for w

NiC
NIC

ems for w

Proposition. P C NP.
Pf. Consider any problem X € P.

Nt
Nt

NIiC

nere exists a poly-time algorithm.
nere exists a poly-time certifier.

Nt

* By definition, there exists a poly-time algorithm A(s) that solves X.

* Certificate r=¢, certifier C(s,7) = A(s). =

Proposition. NP C

EXP.

Pf. Consider any problem X & NP.

* By definition, there exists a poly-time certifier C(s, 1) for X,

where certificate r satisfies || < p(|s|) for some polynomial p().

* To solve instance s, run C(s, 1) on all strings r with |7] < p(|s|).

* Return yes iff C(s, 7) returns yes for any of these potential certificates. =

Fact. P # EXP = either P # NP, or NP = EXP, or both.

nere exists an exponential-time algorithm.

13



The main question: P vs. NP

Q. How to solve an instance of 3-SAT with »n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

_ J
Y

“intractable”

Consra‘,’u'a*ions, .
i€ only took you
65299 seconds /

14



The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
Is the decision problem as easy as the certification problem?

NP

o

If P=NP If P+ NP

If yes... Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, ...

If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, ...

Consensus opinion. Probably no.

15



Reductions: quiz 3

Suppose P # NP. Which of the following are still possible?

O(n?) algorithm for factoring n-bit integers.
0O(1.657") time algorithm for HAMILTON-CYCLE.

O(n'egleglogmy glgorithm for 3-SAT.

o N w »

All of the above.

16



Intractability: quiz 4

Does P =NP?

A. Yes.
B. No.

C. None of the above.

17



Possible outcomes

P+ NP

“ I conjecture that there is no good algorithm for the traveling salesman
problem. My reasons are the same as for any mathematical conjecture:

(i) It is a legitimate mathematical possibility and (ii) I do not know.”

— Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the
answer to any of these questions. If I had to bet now, I would bet that
P is not equal to NP. I estimate the half-life of this problem at 25-50

more years, but [ wouldn’t bet on it being solved before 2100. ”
— Bob Tarjan (2002)

18



Possible outcomes

P+ NP

“ We seem to be missing even the most basic understanding of the
nature of its difficulty. ... All approaches tried so far probably (in
some cases, provably) have failed. In this sense P =NP is different
from many other major mathematical problems on which a gradual
progress was being constantly done (sometimes for centuries)

whereupon they yielded, either completely or partially. ”
— Alexander Razborov (2002)

19



Possible outcomes

P= NP

“ I think that in this respect I am on the loony fringe of the mathematical
community: I think (not too strongly!) that P=NP and this will be
proved within twenty years. Some years ago, Charles Read and 1
worked on it quite bit, and we even had a celebratory dinner in a

good restaurant before we found an absolutely fatal mistake. ”

— Béla Bollobds (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just
that we came late to this theory, and haven'’t yet developed any

techniques for proving computations to be hard. Eventually, it will

just be a footnote in the books.”  — John Conway

20



Other possible outcomes

P = NP, but only Q®'") algorithm for 3-SAT.

P = NP, but with O(#'°¢"") algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

“ It will be solved by either 2048 or 4096. I am currently somewhat
pessimistic. The outcome will be the truly worst case scenario:
namely that someone will prove P = NP because there are only

finitely many obstructions to the opposite hypothesis; hence there
exists a polynomial time solution to SAT but we will never know

its complexity! 7 — Donald Knuth

21



Millennium prize

Millennium prize. $1 million for resolution of P +# NP problem.

M- Clay Mathematics Institute

‘ » | Dedicated to increasing and disseminating mathematical knowledge

ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

» Birch and Swinnerton-Dyer

Millennium Problems Coniecture

In order to celebrate mathematics in the new millennium, The Clay » Hodge Conjecture
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven » Navier-Stokes Equations
Prize Problems. The Scientific Advisory Board of CMI selected these problems, »P vs NP

focusing on important classic questions that have resisted solution over the » Poincaré Conijecture
years. The Board of Directors of CMI designated a $7 million prize fund for the » Riemann Hypothesis

solution to these problems, with $1 million allocated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for » Rules

the general public, while John Tate and Michael Atiyah spoke on the problems. » Millennium Meeting Videos
The CMI invited specialists to formulate each problem.

» Yang-Mills Theory

Wanted for ortanes aguinst (Be 350w Binee. He be R S
hh.—-hh-‘-ﬁm-’lu y
o appeearhed wEh cuntice

$1,000,000
REwanD




P vs. NP and pop culture

Some writers for the Simpsons and Futurama.
 J. Steward Burns. M.S. in mathematics (Berkeley ’93).

David X. Cohen. M.S. in computer science (Berkeley ’92).

Al Jean. B.S.in mathematics. (Harvard ’81).

Ken Keeler. Ph.D.in applied mathematics (Harvard ’90).

Jeff Westbrook. Ph.D.in computer science (Princeton ’89).

. .,'
Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox
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Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any
instance x of X, we can construct an instance y of Y such that x is a yes
instance of X iff y is a yes instance of Y. T

we require |y| to be of size polynomial in | x|

Note. Polynomial transformation is polynomial reduction with just one call
to oracle for Y, exactly at the end of the algorithm for X. Almost all previous
reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

T

we abuse notation <, and blur distinction

27



NP-complete

NP-complete. A problem Y & NP with the property that for every
problem X& NP, X<,7.

Proposition. Suppose Y & NP-complete. Then, Y € P iff P = NP.
Pf. <= If P = NP, then Y& P because Y & NP.
Pf. = Suppose Y € P.
* Consider any problem X € NP. Since X<pY, we have X € P.
* This implies NP C P.
* We already know P C NP. Thus P = NP. =

Fundamental question. Are there any “natural” NP-complete problems?

28



The “first” NP-complete problem

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced'" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some fixed, large, finite alphabet .
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-
ministic recognition devices, unless
the contrary is explicitly stated.

1. Tautologies and Polynomial Re-
Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on . Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of I
followed by a number in binary
notation to distinguish that
symbol. Thus.a formula of length
n can only have about n/logn
distinct function and predicate
symbols. The logical connectives
are § (and), v (or), and " (not).

The set of tautologies
(denoted by { tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an '"oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [1].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguished states called
the query state, yes state, and no
state, respectively. If M is a
query machine and T 1is a set of
strings, then a T-computation of M
is a computation of M 1in which
initially M is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if ueT and the no state
if uéfT. We think of an '"oracle',
which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(|w|) steps
(]w] is the length of w), and ends
in an accepting state iff) weS.

It is not hard to see that
P-reducibility is a transitive re-
lation. - Thus the relation E on

Theorem. [Cook 1971, Levin 1973] SAT € NP-complete.

ODIPOBJEMBI NEPEJAYN NHOOPMAIINN

Tom IX 1973 Bovn. 3

REPATRHAE COOBITEH U A

YAK 519.14
YHUBEPCAJIBHBIE 3AJAYN IEPEBOPA
J. A, JLesun

B cratse paccMaTpuBaeTCsA HECKOJbKO UM3BECTHBIX MAacCCOBBIX 3aja4d
«nepeﬁopﬁoro THOA» X JOKAa3bIBAaeTCA, 9YTO 39TH 3aja9u MOKHO pelraTh JUIIb
3a Taroe BpeMsd, 3a KOTOpOe MOKHO periaTh BOO(’)I.U‘Q n0061e 3a/la9yu yKasaH-
HOI0 THIa.

Iloce yTOYHEHHs HOHATHA AICOPHTMa OBLIA JOKA3aHA AJrOPUTMHYECKAs Hepaspe-
AMUMOCTH Psifla KIACCHMYECKHX MAacCOBBIX mpobiaeM (HampuMep, mpoGjeM TOMKEECTBA dile-
MEHTOB TPYII, FOMEOMOP(HOCTH MHOI000pa3Mil, paspeiiuMocTy AM0QaHTOBBIX ypaBHEHHMIT
u apyrux). Tem caMBIM OBl CHAT BONIPOC 0 HaXOKJCHUM IPAKTHYECKOTO cIOCODA MX pe-
mennsi. OJQHAKO CyI[eCTBOBaHHME QJrOPUTMOB /s pelleHMs APYTHX 3ajad He CHUMaeT
JUIS HUX QHQJOTMYHOIO BOIPOCA M3-32 (PAHTACTHYEeCKU 60JbHIOro o0’beMa pPabOoTHI, IPeAi-
CBIBAE€MOI0 STHMH aaroputMaMu. TakoBa cUTyanHs ¢ TaK Ha3bIBaeMBIMH HEePefODPHBIME 3a-
JaYaMu: MUHHMH3AUUH OyJeBBIX (QYHKIMII, IIOUCKA JIOKA3aTeJbCTB OrPAHMYCHHON JIIHHBI,
BbIsACHeHHs n3oMopdHocTH rpadoB U ApyruMu. Bee 9TH 3aaYd PeIAOTCSA TPUBHAILHBIMH
QITOPUTMAaMHU, COCTOAILIMMY B mepeGope BceX BO3MOKHOCTel. O[HAKO 3TH aJrOPUTMBI Tpe-
OYIOT 9KCHOHEHIMAJBHOTO BpeMeH: paloThl M y MaTEMAaTHKOB CIOKRHIIOCH yOemAeHHe, 4T
6oJiee IPOCTbIe AJTOPUTMBI JJIsi HUX HEBO3MOKHBI. BB HOJydYeH PsJ cephe3HbIX apryMeH-
TOB B IOJB3Y ero copaBefiauBocTH (cM.[! 2]), ojgHaKo KoKas3aTh BTO yTBEp/KAeHUe HE yAA-
Jocy nukomy. (HampuMmep, 7o cHX mop He JOKa3aHO, YTO JJIA HAXOKIEHUA MaTeMaTHYeCKAX
JIOKa3aTeasCTB HYKHO (O0lblIe BpeMEHH, YeM I UX IPOBEPKIL)

O[HAKO ecd IPEAIIoN0KUTE, YTO BOOOIIe CYI{ecTByeT KaKasa-HUOYAb (XOTsa OBl HCKYyC-
CTBCHHO IIOCTPOEHHAs) MaccoBas 3ajada IepeGOPHOr0 THIA, HepaspellnMasg IPOCTHIMU
(B cMbicie 00beMa BBIYMCJICHHI) aJATOPUTMAMM, TO MOKHO IIOKa3aTb, YTO ITHM e CBOI-
CTBOM 00J1a1aJ0T W MHOTHE (KJacCHYecKue» rmepe0opubie 3a7adl (B TOM YucJe 3a7ada M-
HEMH3alNH, 3a7ada DOMCKA JI0KA3aTeJbCTB M JP.). B 8TOM M COCTOAT OCHOBHBIE Pe3y.lb-
TaThl CTATHIL.

Oyuruun f(r) u g(n) GygeM HasbpIBATH CPAaBHUMBIMH, €CJIU IIPH HEKOTOPOM k

f(r) < (g(n) +2)* u g(n) < (f(n) +2)~
AHaN0r4HO Oy/ieM IOHUMATh TePMHH «MeNbIIe WIH CPABHIMO).

Onpepgenenue. 3agadeill mepebopHOro THma (WM HPOCTO HepeGOPHOM 3ajaueii)
OyjmeM Ha3bIBATL 3aj1a4y BUMA (II0 TAHHOMY Z HAWTU KaKoe-HUOYAL y MJIMHBI, CPAaBHAMONK
¢ JJMHOI z, Takoe, 4To BeImoaHseTcst A(z, y)», rae A(z, y) — Kakoe-HHOYAb CBOMCTBO,
IpoBepsaeMOe aarOpUTMOM, BpeMs pafoThl KOTOPOTO cpaBHMMO ¢ mauHoit z. (Ilog aaro-
PUTMOM 3J{eCh MOKHO IIOHMMAaTh, HampHMep, aJroputTMsl Koamoroposa — VCreHCKOTo M
ManmBEbl ThIODHHIa, MM HOPMaJbHBIE AJrOPUTMBI; Z, Y — ABOMYHBIe cjaoBa). HBasume-
peGopHoii 3ajjaueil OyaeM HasbIBaTh 3a/{auy BLIACHEHMs, CYIIECTBYET JiI TaKoe .

MBI paccMOTPHM IIecTh 3afiad STHX THIOB, PaccMaTpuBaeMble B HEX OOBEKTHI KOXH-
PYIOTCSL €CTeCTBEHHBIM 00pa3oM B BHJE JABOHYHEIX CJ0B. Ilpum 5TOM BBIGOD ecTECTBEHHOIT
KOJUPOBKN He CyIIecTBeH, TaK KaK Bce OHM [Jal0T CPaBHHMBIC JUIMHBI KOJOB.

dadaua 1. 3a[@aHBI COMCKOM KOHEYHOE MHOJKECTBO M IOKPHITHE ero 500-aieMeHTHBIME
noAMHOKecTBaMU. HallTH HOJNOKPHITHE 3aaHHON MOIHOCTH (COOTBETCTBEHHO BBHIACHUTH
CYIIeCTBYET JIU OHO).

3adaua 2. TabumaHo 3ajaHa yacTHgHas Oyiesa (PpyHxuus. Haiitm 3agaHHOrO pasmepa
JU3BIOHKTUBHYI0 HOPMaJbHyI0 (opMy, peasusyollyio Ty (PYHKIHUI B 00JacTH ompeje-
JIeHHs1 (COOTBETCTBEHHO BBIACHHTH CYI[ECTBYET JIH OHA).

Sadava 3. BEISCHUTH, BEIBOJIMA MJIM ONpPOBEeP:KMMa Jannas QopMya MCUNCICHHS BBI-
craspiBannil. (Mim, 4To TO 3Ke caMoe, paBHA JIM KOHCTaHTe JaHHas OyiaeBa gopmyia.)

Jadaua 4. Jlansl xBa rpada. Haiitu roMmoMopdusM 0JHOrO Ha APYroit (BBIACHUTH €ro
.CyI[eCTBOBAHUE) .

Sadaua 5. [lamsr gBa rpaga. Haiitm msomMopmaM ofHOro B Apyroif (Ha ero acrs).

dadaua 6. PaccMaTpuBaoOTCs MATPUILI M3 HedbiX duces or 1 go 100 u Hexoropoe ycio-
BHE O TOM, KaKpe 9UMcJa B HUX MOTYT COCEJCTBOBATH IO BEPTHKAJIM M KaKHe IO IOPM30H-
Taau. 3ajlaHbl YHMClAa HA TPaHMIeE M TpefyeTcs IPOJOJUKATH MX HA BCIO MATPHLY C CO-
OIM0IeHneM ycI0BUsA.

29



Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem,
others fall like dominoes.

Recipe. To prove that Y € NP-complete:
« Step 1. Show that Y & NP.
* Step 2. Choose an NP-complete problem X.
- Step 3. Prove that X<,Y.

Proposition. If X € NP-complete, Y€ NP, and X<, Y, then Y €& NP-complete.
Pf. Consider any problem W& NP. Then, both W<, X and X<,Y.
« By transitivity, W=<,Y. T T

by definition of by assumption
NP-complete

* Hence Y & NP-complete. =

30



Reductions: quiz 4 P

Suppose that X € NP-ComPLETE, Y € NP, and X <, Y. Which can you infer?

A. Y is NP-complete.
B. If Y&P, then P = NP.

C. If P = NP, then neither X nor Y is in P.

D. All of the above.

31



Implications of Karp

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

DIR-HAM-CYCLE

HAM-CYCLE

3-COLOR SUBSET-SUM

KNAPSACK

SAT poly-time reduces to all of

these problems (and many, many more)

32



Implications of Cook-Levin

X
$,‘-§5\&s
F <
S e
& @\e&\«" / 3-SAT\
N ¥
Q” <0
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems (and many, many more)
SET-COVER

poly-time reduce to SAT.

33



Implications of Karp + Cook-Levin

SN 3-SAT

INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM

VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems are NP-complete; they are
SET-COVER

manifestations of the same really hard problem.

34



I’'D TELL YOU ANOTHER

NP-COMPLETE JOKE,

BUT ONCE YOU’VE HEARD
ONE,

YOU’VE HEARD THEM
ALL.




Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.
- Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.
Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.
Sequencing problems: HAMILTON-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in P or NP-complete.

NP-intermediate? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ....

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that
are neither in P nor NP-complete.

On the Structure of Polynomial Time Reducibility

RICHARD E. LADNER

Unwersity of Washington, Seattle, Washington
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More hard computational problems

Garey and Johnson. Computers and Intractability.

* Appendix includes over 300 NP-complete problems.

« Most cited reference in computer science literature.

10.

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer* database as of January 17, 2013. This list is automatically generated and may contain errors. The list is generated in batch

mode and citation counts may differ from those currently in the CiteSeer* database, since the database is continuously updated.
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 ] 2011 | 2012 | 2013

. M R Garey, D S Johnson

Computers and Intractability. A Guide to the Theory of NP-Completeness 1979
8665

T Cormen, C E Leiserson, R Rivest

Introduction to Algorithms 1990

7210

V N Vapnik

The nature of statistical learning theory 1998 COMPUTERS AND INTRACTABILITY

6580 A Guide to the Theory of NP-Completeness
A P Dempster, N M Laird, D B Rubin

Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977
6082

T Cover, J Thomas

Elements of Information Theory 1991

6075

D E Goldberg

Genetic Algorithms in Search, Optimization, and Machine Learning, 1989

5998

J Pearl

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988
5582

E Gamma, R Helm, R Johnson, J Vlissides

Design Patterns: Elements of Reusable Object-Oriented Software 1995

4614

C E Shannon

A mathematical theory of communication Bell Syst. Tech. J, 1948

4118

J R Quinlan

C4.5: Programs for Machine Learning 1993

4018

Michael R. Garey / David S. Johnson
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More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ay, ..., a,, COMpute _Agﬂcros<a-19)xcos(aze)x---xcosmn@) df
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.
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Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]
* Prime intellectual export of CS to other disciplines.

« 6,000 citations per year (more than “compiler”, “OS”, “database”).
« Broad applicability and classification power.

NP-completeness can guide scientific inquiry.
« 1926: Ising introduces simple model for phase transitions.
* 1944: Onsager finds closed-form solution to 2D-ISING in tour de force.
« 19xx: Feynman and other top minds seek solution to 3D-ISING.

« 2000: Istrail proves 3D-ISING € NP-complete. \ a holy grail of
\ statistical mechanics

search for closed formula appears doomed
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-SAT.
« Can prove a CNF formula is satisfiable by specifying an assignment.
 How could we prove that a formula is not satisfiable?

[SAT. Given a CNF formula @, is there a satisfying truth assignment? j

[ UN-SAT. Given a CNF formula &, is there no satisfying truth assignment? ]
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 2. HAMILTON-CYCLE vs. NO-HAMILTON-CYCLE.
« Can prove a graph is Hamiltonian by specifying a permutation.
 How could we prove that a graph is not Hamiltonian?

HAMILTON-CYCLE. Given a graph G =(V, E), is there a simple
cycle T" that contains every node in V?

NO-HAMILTON-CYCLE. Given a graph G =(V, E), is there no
simple cycle I" that contains every node in V?

(" )

\_ Wy,

(" )
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAMILTON-CYCLE ?
* SAT € NP-complete and SAT =p UN-SAT.
* HAMILTON-CYCLE € NP-complete and HAMILTON-CYCLE =p NO-HAMILTON-CYCLE.
* But neither UN-SAT nor NO-HAMILTON-CYCLE are known to be in NP.
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NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAMILTON-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem
with the yes and no answers reversed.

Ex. X=1{4,6,8,9,10,12,14,15,... } anore 0 and 1
?:{2 3,5,7,11,13,17,23,29, ... } (neither prime nor composite)

co-NP. Complements of decision problems in NP.
Ex. UN-SAT, NO-HAMILTON-CYCLE, and PRIMES.
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NP = co-NP ¢

Fundamental open question. Does NP = co-NP?
* Do yes instances have succinct certificates iff no instances do?
« Consensus opinion: no.

Theorem. If NP = co-NP, then P = NP.
Pf idea.
* Pis closed under complementation.
* |f P= NP, then NP is closed under complementation.
* In other words, NP = co-NP.
« This is the contrapositive of the theorem.

46



Good characterizations

Good characterization. [Edmonds 1965] NP M co-NP.
* |f problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
« Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching?
* |If yes, can exhibit a perfect matching.

* If no, can exhibit a set of nodes S such that | neighbors(S)| < |ISI.

JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 69B, Nos. 1 and 2, January-June 1965

Minimum Partition of a Matroid Into Independent
Subsets'

Jack Edmonds

(December 1, 1964)

set M of elements with a family of subsets, called independent, such that

a
an independent set is independent, and (2) for every subset 4 of M, all maximal
I

ev
independent subsets of 4 have the same cardinality, called the rank rn(4) of 4. It is provec | that a
atroid can be partitioned into as few as k sets, each independent, if and only if every subset 4 has

cardinality at most & - r(4).
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Good characterizations

We seek a good characterization of the minimum
number of independent sets into which the columns
of a matrix of My can be partitioned. As the criterion
of ““good” for the characterization we apply the ““prin-
ciple of the absolute supervisor.” The good charac-
terization will describe certain information about the
matrix which the supervisor can require his assistant
to search out along with a minimum partition and
which the supervisor can then use with ease to verity
with mathematical certainty that the partition is in-
deed minimum. Having a good characterization does
not mean necessarily that there is a good algorithm.
The assistant might have to kill himself with work to
find the information and the partition.
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Good characterizations

Observation. PC NP N co-NP.
* Proof of max-flow min-cut theorem led to stronger result that max-flow
and min-cut are in P.
« Sometimes finding a good characterization seems easier than finding an
efficient algorithm.

Fundamental open question. Does P= NP N co-NP?
- Mixed opinions.
« Many examples where problem found to have a nontrivial good
characterization, but only years later discovered to be in P.
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Linear programming is in NP N co-NP

LINEAR-PROGRAMMING. Given A€ R™" be R", ce N, and a € N, does there
exist xeN” such that Ax<bh, x=0 and cTx=a ?

Theorem. [Gale-Kuhn-Tucker 1948] LINEAR-PROGRAMMING & NP M co-NP.
Pf sketch. If (P) and (D) are nonempty, then max = min.

(P) maxc' x (D) miny'b
s.t. Ax

X

IA
S

s.t. Ay = ¢
Y

v
-

v

CuarreEr X1X

LINEAR PROGRAMMING AND THE THEORY OF GAMES!

By Davip GaLg, HaroLp W. Kunun, AND ALBERT W. TUCKER ?

The basic “scalar” problem of linear programming is 10 maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “vector’” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, I11]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the “‘scalar” and “vector”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.



Linear programming is in NP N co-NP

LINEAR-PROGRAMMING. Given A€ R™" be R", ce N, and a € N, does there
exist xeN” such that Ax<bh, x=0 and cTx=a ?

Theorem. [Khachiyan 1979] LINEAR-PROGRAMMING & P.

KYPHAJ : ,
BBIYUCIUTEIBHON MATEMATHRUN 1 MATEMATUYECKON ®U3WKHA

Tom 20 : fluBapsr 1980 ®empain N1

{
VIK 519.852

NOJIMHOMUAJBHBIE AJITOPUTMBI B JINHENHOM
INPOTPAMMUNPOBAHMHI

JA.T.XATHAH
(Mocxrea)

HOCTpOQHH TOYHBIE AJTOPHUTMBY JIVAERHQTO OporpaMMHAPOBaHEA, TPYAOEM-
KOCTh KOTOPBIX OTrpaHMYE€Ha IIOJIUHOMOM OT IUI]?IHI:I I[BOI/I‘IHOﬁ 3alonAcH 3aJadvH.
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Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP N co-NP.

SIAM J. Compur.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTY

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains

an open problem whether a prime n can be recognized in only log3 n operations of a Turing machine
for any fixed o.

The proof system used for certifying primes is as follows.

AXIOM. (X, y, 1).

INFERENCE RULES.
R,: (p,x,a),q+ (p,x,qa) provided x*~14 = 1 (mod p) and q|(p — 1).
R,: (p,x,p— 1)~ p provided x*~! = 1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem > p has a proof of [4 log, p] lines.
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Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP M co-NP.
Pf sketch. An odd integer s is prime iff there exists an integer 1 < r < s s.t.

5! = 1 (modys)
(VP 1 (mods)

for all prime divisors p of s-1

instances 437677 CERTIFIER ()
certificatet 17, 22x 3 x 36473 I

CHECK s—1=2x2x3x36473.

T CHECK 1751 =1 (mod s).
prime factorization of s—1
also need a recursive certificate CHECK 176-D72 = 437676 (mod s).

to assert that 3 and 36,473 are prime

CHECK 176-D/3 =329415 (mod s).
CHECK 176-D736473 = 305452 (mod s).

use repeated squaring
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Primality testing is in P

Theorem. [Agrawal-Kayal-Saxena 2004] PRIMES € P.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACTOR. Given two integers x and y, does x have a nontrivial factor <y ?

Theorem. FACTOR =p FACTORIZE.
Pf.
« <, trivial.
- >, binary search to find a factor; divide out the factor and repeat. =

Theorem. FACTOR € NP M co-NP.
Pf.
* Certificate: a factor p of x that is less than y.
* Disqualifier: the prime factorization of x (where each prime factor is
less than y), along with a Pratt certificate that each factor is prime. =
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Is factoring in P 2

Fundamental question. Is FACTOR € P ?

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589

43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)
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Exploiting intractability

Modern cryptography.
« Ex. Send your credit card number to Amazon.
- Ex. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.
* To use: generate two random n-bit primes and multiply.
* To break: suffices to factor a 2»-bit integer.

P £ & PRIANE
N=PQ
£D = | mvoD (P-Dia-h P~
C= " ANOD N

o
M= C" fMoD ¥

The RSA algorithm is the

most widely used method

of implementing public key

cryptography and has been
deployed in more than one

P § @ PRaME

N=PQ
£D 5 [ soD (P-Ixa-h
C» M MODN
M= C* pNODN

1S 08T AN Ao

billion applications
worlgwide.

RSA sold
RSA algorithm for $2.1 billion or design a t-shirt
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Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n’) steps
on a “‘quantum computer.”

SIAM REVIEW (© 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 303-332

Polynomial-Time Algorithms for
Prime Factorization and
Discrete Logarithms on a
Quantum Computer*

Peter W. Shor'

2

Abstract. A digital computer is generally believed to be an efficient universal computing device; that
is, it is believed to be able to simulate any physical computing device with an increase in

@
W ;K

computation time by at most a polynomial factor. This may not be true when quantum
mechanics is taken into consideration. This paper considers factoring integers and finding
discrete logarithms, two problems that are generally thought to be hard on classical com-
puters and that have been used as the basis of several proposed cryptosystems. Efficient
randomized algorithms are given for these two problems on a hypothetical quantum com-
puter. These algorithms take a number of steps polynomial in the input size, for example,
the number of digits of the integer to be factored.

2001. Factored 15 =3 x5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x7.

Fundamental question. Does P =BQP ?

\ quantum analog of P
(bounded error quantum polynomial time)

58



8. INTRACTABILITY I

( )
SIGACT

acm NEWS

———

» NP-hard




A note on terminology

SIGACT News 12 January 1974

A TERMINOLOGICAIL PROPOSAL
D. F. Xnuth

While preparing a book on combinatorial algorithms, I felt a strong
need for a new technical term, a word which is essentially a one-sided
version of polynomial complete. A great many problems of practical interest
have the property that they are at least as difficult to solve in polynomial
time as those of the Cook-Karp class NP. I needed an adjective to convey
such a degree of difficulty, both formally and informally; and since the
range of practical applications is so broad, I felt it would be best to
establish such a term as soon as possible.

The goal is to find an adjective x that sounds good in sentences
like this:

The covering problem is x .

It is x to decide whether a given graph has a Hamiltonian circuit.
It is unknown whether or not primality testing is an x problem.

Note. The term x does not necessarily imply that a problem is in NP,
just that every problem in NP poly-time reduces to x.
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A note on terminology

Knuth’s original suggestions.

e Hard. so common that it is unclear whether
D — it is being used in a technical sense
- Tough.
 Herculean.
 Formidable.
 Arduous.
X
X
X
X X
X X X X
X X X X X
X X X X X X
X X X X X X X X X
X X X X X X X X X X X X
X X X X X X X X X XX XXXX X XXX X X
X X X XXXXXXX X XXXXXXXXXxX X XXXxXX
0123456789A 0123456789A 0l1l23k456
Herculean ~ formidable arduous

assign a real number between 0 and 1 to each choice

g

QO Prs

\O ™

=
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A note on terminology

Some English word write-ins.
* Impractical.
« Bad.

* Heavy.

* Tricky.

* |Intricate.

* Prodigious.
 Difficult.

* Intractable.
« Costly.

« Obdurate.
« Obstinate.
- Exorbitant.
* Interminable.



A note on terminology

Hard-boiled. [Ken Steiglitz] In honor of Cook.
Hard-ass. [Al Meyer] Hard as satisfiability.
Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Donald Knuth] Ulysses was known for his persistence.

“ creative research workers are as full of ideas for new terminology

as they are empty of enthusiasm for adopting it. ”

— Donald Knuth
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A note on terminology: acronyms

PET. [Shen Lin] Probably exponential time.
* |f P + NP, provably exponential time.
* If P = NP, previously exponential time.

GNP. [Al Meyer] Greater than or equal to NP in difficulty.
- And costing more than the GNP to solve.
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A note on terminology: made-up words

Exparent. [Mike Paterson] Exponential + apparent.
Perarduous. [Mike Paterson] Throughout (in space or time) + completely.
Supersat. [Al Meyer] Greater than or equal to satisfiability.

Polychronious. [Ed Reingold] Enduringly long; chronic.
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A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time

reduces to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A problem such that every problem in NP poly-time reduces to it.

One final criticism (which applies to all the terms suggested) was
stated nicely by Vaughan Pratt: "If the Martians know that P = NP for
Turing Machines and they kidnap me, I would lose face calling these
problems 'formidable'." Yes; if P = NP , there's no need for any term
at all. But I'm willing to risk such an embarrassment, and in fact I'm
willing to give a prize of one live turkey to the first person who proves

that P = NP .
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