
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/16/20 10:57 AM

8. INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard

3-SAT poly-time reduces to all of
these problems (and many, many more)

Recap

2

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e re
duces

to INDEPEN
DEN

T-S
ET

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

8. INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard

SECTION 8.3

P

Decision problem.

・Problem X is a set of strings.

・Instance s is one string.

・Algorithm A solves problem X :

Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in ≤ p(⎢s ⎢) “steps,” where p(⋅) is some polynomial function.

Def. P = set of decision problems for which there exists a poly-time algorithm.

4

length of s

 problem PRIMES: { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … }

 instance s: 592335744548702854681
 algorithm: Agrawal–Kayal–Saxena (2002)

A(s) =

�
v2b B7 s � X

MQ B7 s /� X
<latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit><latexit sha1_base64="upTjyVAoW+HGac/ZqQnsZjJdMk8=">AAACpnicbZFfa9swFMVlt1uz7F/aPe5FNN3IXoI9Ci2UQste9jRaWJpAFDJZvk5FZclI1yXBzQft6z7J5MQPTbILNoffPbpXPk4KJR1G0XMQ7u2/en3QetN+++79h4+dw6M7Z0orYCCMMnaUcAdKahigRAWjwgLPEwXD5OFH3R8+gnXS6N+4KGCS85mWmRQcPZp2nq577htlF/SyfrVZAjOpK+EnumXbE4Ywx4pBThee0K8NkBk9cZRJTUcnS8rYplWbHac2uDa3Gei0WTDtdKN+tCq6K+JGdElTN9PD4IilRpQ5aBSKOzeOowInFbcohQI/vHRQcPHAZzD2UvMc3KRaxbSkXzxJaWasfzTSFX15ouK5c4s88c6c473b7tXwf71xidn5pJK6KBG0WC/KSkXR0DpzmkoLAtXCCy6s9Hel4p5bLtD/mY0tq9kFiI0vqeallsKksEUVztHyOsV4O7Ndcfe9H0f9+Pa0e3Xe5Nkin8kx6ZGYnJEr8pPckAER5G/QCnzOYS/8FQ7C4doaBs2ZT2Sjwj//ACprzcM=</latexit>

on a deterministic
Turing machine

P. Decision problems for which there exists a poly-time algorithm.

problem description
poly-time
algorithm

yes no

MULTIPLE Is x a multiple of y ?
grade-school

division
51, 17 51, 16

REL-PRIME Are x and y relatively prime ? Euclid’s algorithm 34, 39 34, 51

PRIMES Is x prime ?
Agrawal–Kayal–

Saxena 53 51

EDIT-DISTANCE
Is the edit distance between

x and y less than 5 ?
Needleman–Wunsch

niether
neither

acgggt
ttttta

L-SOLVE
Is there a vector x that

satisfies Ax = b ?
Gauss–Edmonds

elimination

U-CONN
Is an undirected graph

G connected? depth-first search

Some problems in P

€

0 1 1
2 4 −2
0 3 15

$

%
%
%

&

'

(
(
(

 ,
4
2

36

$

%
%
%

&

'

(
(
(

€

1 0 0
1 1 1
0 1 1

"

$
$
$

%

&

'
'
'

 ,
1
1
1

"

$
$
$

%

&

'
'
'

5

NP

Def. Algorithm C(s, t) is a certifier for problem X if for every string s :
s ∈ X iff there exists a string t such that C(s, t) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.

・C(s, t) is a poly-time algorithm.

・Certificate t is of polynomial size: ⎢t ⎢ ≤ p(⎢s ⎢) for some polynomial p(⋅).

6

“certificate” or “witness”

 problem COMPOSITES: { 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, …. }

 instance s: 437669
 certificate t: 541
 certifier C(s, t): grade-school division

437,669 = 541 × 809

Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Conclusions. SAT ∈ NP, 3-SAT ∈ NP.

7

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()instance s

certificate t x1 = true, x2 = true, x3 = false, x4 = false

Certifiers and certificates: Hamilton path

HAMILTON-PATH. Given an undirected graph G = (V, E), does there exist a

simple path P that visits every node?

Certificate. A permutation π of the n nodes.

Certifier. Check that π contains each node in V exactly once,

and that G contains an edge between each pair of adjacent nodes.

Conclusion. HAMILTON-PATH ∈ NP.

instance s certificate t

8

NP. Decision problems for which there exists a poly-time certifier.

problem description poly-time
algorithm

yes no

L-SOLVE
Is there a vector x

that satisfies Ax = b ?
Gauss–Edmonds

elimination

COMPOSITES Is x composite ?
Agrawal–Kayal–

Saxena
51 53

FACTOR
Does x have a nontrivial factor

less than y ?
(56159, 50) (55687, 50)

SAT
Given a CNF formula, does it have

a satisfying truth assignment?

¬ x1 ∨ ¬ x2 ∨ ¬ x3
¬ x1 ∨ ¬ x2 ∨ ¬ x3
¬ x1 ∨ ¬ x2 ∨ ¬ x3

¬ x1 ∨ ¬ x2
¬ x1 ∨ ¬ x2
¬ x1 ∨ ¬ x2

HAMILTON-
PATH

Is there a simple path between
u and v that visits every node?

Some problems in NP

€

0 1 1
2 4 −2
0 3 15

$

%
%
%

&

'

(
(
(

 ,
4
2

36

$

%
%
%

&

'

(
(
(

€

1 0 0
1 1 1
0 1 1

"

$
$
$

%

&

'
'
'

 ,
1
1
1

"

$
$
$

%

&

'
'
'

9

Intractability: quiz 1

Which of the following graph problems are known to be in NP?

A. Is the length of the longest simple path ≤ k ?

B. Is the length of the longest simple path ≥ k ?

C. Is the length of the longest simple path = k ?

D. Find the length of the longest simple path.

E. All of the above.

10

Intractability: quiz 2

In complexity theory, the abbreviation NP stands for…

A. Nope.

B. No problem.

C. Not polynomial time.

D. Not polynomial space.

E. Nondeterministic polynomial time.

11

Significance of NP

NP. Decision problems for which there exists a poly-time certifier.

12

“ NP captures vast domains of computational, scientific, and mathematical

 endeavors, and seems to roughly delimit what mathematicians and scientists

 have been aspiring to compute feasibly. ” — Christos Papadimitriou

“ In an ideal world it would be renamed P vs VP. ” — Clyde Kruskal

P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.

NP. Decision problems for which there exists a poly-time certifier.

EXP. Decision problems for which there exists an exponential-time algorithm.

Proposition. P ⊆ NP.

Pf. Consider any problem X ∈ P.

・By definition, there exists a poly-time algorithm A(s) that solves X.

・Certificate t = ε, certifier C(s, t) = A(s). ▪

Proposition. NP ⊆ EXP.

Pf. Consider any problem X ∈ NP.

・By definition, there exists a poly-time certifier C(s, t) for X,

where certificate t satisfies ⎢t ⎢ ≤ p(⎢s ⎢) for some polynomial p(⋅).

・To solve instance s, run C(s, t) on all strings t with ⎢t ⎢ ≤ p(⎢s ⎢).

・Return yes iff C(s, t) returns yes for any of these potential certificates. ▪

Fact. P ≠ EXP ⇒ either P ≠ NP, or NP ≠ EXP, or both.
13

The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

14

“intractable”

The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes… Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, …

If no… No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, …

Consensus opinion. Probably no.

EXP NP

P

If P ≠ NPIf P = NP

EXP

P = NP

15

Reductions: quiz 3

Suppose P ≠ NP. Which of the following are still possible?

A. O(n3) algorithm for factoring n-bit integers.

B. O(1.657n) time algorithm for HAMILTON-CYCLE.

C. O(nlog log log n) algorithm for 3-SAT.

D. All of the above.

16

Intractability: quiz 4

Does P = NP?

A. Yes.

B. No.

C. None of the above.

17

Possible outcomes

P ≠ NP

18

“ I conjecture that there is no good algorithm for the traveling salesman

 problem. My reasons are the same as for any mathematical conjecture:

(i) It is a legitimate mathematical possibility and (ii) I do not know.”

 — Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the

 answer to any of these questions. If I had to bet now, I would bet that

 P is not equal to NP. I estimate the half-life of this problem at 25–50

 more years, but I wouldn’t bet on it being solved before 2100. ”

 — Bob Tarjan (2002)

Possible outcomes

P ≠ NP

19

“ We seem to be missing even the most basic understanding of the

 nature of its difficulty…. All approaches tried so far probably (in

 some cases, provably) have failed. In this sense P =NP is different

 from many other major mathematical problems on which a gradual

 progress was being constantly done (sometimes for centuries)

 whereupon they yielded, either completely or partially. ”

 — Alexander Razborov (2002)

Possible outcomes

P = NP

20

“ I think that in this respect I am on the loony fringe of the mathematical

 community: I think (not too strongly!) that P=NP and this will be

 proved within twenty years. Some years ago, Charles Read and I

 worked on it quite bit, and we even had a celebratory dinner in a

 good restaurant before we found an absolutely fatal mistake. ”

 — Béla Bollobás (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just

 that we came late to this theory, and haven’t yet developed any

 techniques for proving computations to be hard. Eventually, it will

 just be a footnote in the books. ” — John Conway

Other possible outcomes

P = NP, but only Ω(n100) algorithm for 3-SAT.

P ≠ NP, but with O(nlog*n) algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

21

“ It will be solved by either 2048 or 4096. I am currently somewhat

 pessimistic. The outcome will be the truly worst case scenario:

 namely that someone will prove P = NP because there are only

 finitely many obstructions to the opposite hypothesis; hence there

 exists a polynomial time solution to SAT but we will never know

 its complexity! ” — Donald Knuth

Millennium prize

Millennium prize. $1 million for resolution of P ≠ NP problem.

22

Some writers for the Simpsons and Futurama.

・J. Steward Burns. M.S. in mathematics (Berkeley ’93).

・David X. Cohen. M.S. in computer science (Berkeley ’92).

・Al Jean. B.S. in mathematics. (Harvard ’81).

・Ken Keeler. Ph.D. in applied mathematics (Harvard ’90).

・Jeff Westbrook. Ph.D. in computer science (Princeton ’89).

P vs. NP and pop culture

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox

23

Princeton CS Building, West Wall, Circa 2001

24

Princeton CS Building, West Wall, Circa 2001

0
1

1
0

0

0

0

char ASCII binary

P 80 1010000

= 61 0111101

N 78 1001110

P 80 1010000

? 63 0111111

1
1

0
1

0

1

11
0

1
1

1

0

00
1

1
0

0

0

01
1

0
1

1

1

1

25

8. INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard

SECTION 8.4

Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary

instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any

instance x of X, we can construct an instance y of Y such that x is a yes
instance of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call

to oracle for Y, exactly at the end of the algorithm for X. Almost all previous

reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

we require ⎢y⎢ to be of size polynomial in ⎢x⎢

we abuse notation ≤ P and blur distinction
27

NP-complete

NP-complete. A problem Y ∈ NP with the property that for every

problem X ∈ NP, X ≤ P Y.

Proposition. Suppose Y ∈ NP-complete. Then, Y ∈ P iff P = NP.

Pf. ⇐ If P = NP, then Y ∈ P because Y ∈ NP.

Pf. ⇒ Suppose Y ∈ P.

・Consider any problem X ∈ NP. Since X ≤ P Y, we have X ∈ P.

・This implies NP ⊆ P.

・We already know P ⊆ NP. Thus P = NP. ▪

Fundamental question. Are there any “natural” NP-complete problems?

28

The “first” NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT ∈ NP-complete.

29

 IX 1973 . 3

 519.14

 » .

« » ,
 , -
 .

 -
 (, -
 , ,
). -
 .
 - , -
 . -
 : , ,
 .
 , . -
 ,
 . -
 (1 ,2]), -
 . (, ,
 , .)

 , - (-
) ,
() , , -
 « » (-
 , .). -
 .

 f{n) g{n) ,
f(n) ^ (g(n)+2)* g(n) < (f(n) +2)*.

 « ».
 . ()

 « - ,
 , , (,)», (,) — - ,
 , . (-
 , , —
 , ; , -). -
 , .

 . -
 .
 , .

 1. 500-
 . (
).

 2. .
 , -
 ().

 3. , -
 . (, , .)

 4. . (
).

 5. . ().
 6. 1 100 -

 , -
 . -
 .

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some fixed, large, finite alphabet Z.
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-
ministic recognition devices, unless
the contrary is explicitly stated.

i. Tautologies and Polynomial Re-
Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on I. Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of Z
followed by a number in binary
notation to distinguish that
symbol. Thus a formula of length
n can only have about n/logn
distinct function and predicate
symbols. The logical connectives
are & (and), v (or), and ~(not).

The set of tautologies
(denoted by {tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that {tautologies} is
a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [I].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguished states called
the query state, yes state, and n._o_
state, respectively. If M is a
query machine and T is a set of
strings, then a T-computation of M
is a computation of M in which
initially M is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if uET and the no state
if u~T. We think of an "oracle",
which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(Iwl) steps
(lwl is the length of w~ and ends
in an accepting state iff wcS.

It is not hard to see that
P-reducibility is a transitive re-
lation. Thus the relation E on

-151-

Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem,

others fall like dominoes.

Recipe. To prove that Y ∈ NP-complete:

・Step 1. Show that Y ∈ NP.

・Step 2. Choose an NP-complete problem X.

・Step 3. Prove that X ≤ P Y.

Proposition. If X ∈ NP-complete, Y ∈ NP, and X ≤ P Y, then Y ∈ NP-complete.

Pf. Consider any problem W ∈ NP. Then, both W ≤ P X and X ≤ P Y.

・By transitivity, W ≤ P Y.

・Hence Y ∈ NP-complete. ▪ by definition of
NP-complete

30

by assumption

Reductions: quiz 4

Suppose that X ∈ NP-COMPLETE, Y ∈ NP, and X ≤ P Y. Which can you infer?

A. Y is NP-complete.

B. If Y ∉ P, then P ≠ NP.

C. If P ≠ NP, then neither X nor Y is in P.

D. All of the above.

31

Y is NP-complete

recipe for proving that Y is NP-complete

X and Y are NP-complete

SAT poly-time reduces to all of
these problems (and many, many more)

Implications of Karp

32

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT poly-tim
e reduces

to INDEPENDENT-SET

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

Implications of Cook–Levin

33

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

INDEP
EN

DEN
T-S

ET

poly-
tim

e r
ed

uce
s

to CIRCUIT-
SAT

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

All of these problems (and many, many more)
poly-time reduce to SAT.

Implications of Karp + Cook–Levin

34

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT and INDEPENDENT-SET

poly-tim
e reduce to

one another

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

All of these problems are NP-complete; they are
manifestations of the same really hard problem.

35

I’D TELL YOU ANOTHER
NP-COMPLETE JOKE,

BUT ONCE YOU’VE HEARD
ONE,

YOU’VE HEARD THEM
ALL.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

・Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.

・Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.

・Sequencing problems: HAMILTON-CYCLE, TSP.

・Partitioning problems: 3D-MATCHING, 3-COLOR.

・Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in P or NP-complete.

NP-intermediate? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ….

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that

are neither in P nor NP-complete.

36

On the Structure of Polynomial Time Reducibility

RICHARD E. LADNER

Umvers~ty of Wash~r~g~on, Seattle, Washington

ABSTRACT Two notions of polynomml time reduclbihty, denoted here by ~ T e and <.~P, were de-
fined by Cook and Karp, respectively The abstract propertms of these two relatmns on the domain
of computable sets are investigated. Both relations prove to be dense and to have minimal pairs.
Further , there is a strictly ascending sequence with a minimal pair of upper bounds to the sequence.
Our method of showing density ymlds the result that if P ~ NP then there are members of NP -- P
that are not polynomml complete

KEY WORDS AND PHRASES polynomial time computation, Turing reduc~billty, many-one reducibility

CR CATEGORIES 5 25

1. Introduction

Cook [3] and Karp [6] have introduced two notions of polynomial time reducibility. They
show quite effectively that the notion of reducibility is a useful tool in classifying the
complexity of problems. They show that a wide class of important problems all have the
same time complexity (modulo a polynomial) by showing that all the problems are re-
ducible to each other in polynomial time We propose to study the abstract properties of
their two reducibilities thought of just as relations between problems. We pay particular
attention to properties that might shed some light on the question of whether or not every
problem computable in nondeterministic polynomial time is also computable in determi-
nistic polynomial time. We notice further that the properties we show are true of poly-
nomial time reducibility hold true also of a wide variety of subrecursive reducibilities,
including log space, elementary, and primitive recursive. We fix the alphabet 2~ = {0, 1}
as the alphabet in which all problems are encoded, so that a problem is simply a subset
of Z*. We let < be the natural order on Z* (k < 0 < l < 0 0 < 0 1 < - • -), where), represents
the empty string. In general we consider only solvable problems, that is, computable sub-
sets of Z*. If x E Z* we let Ix I denote the length of x When confusion will not arise
we adopt the habit of identifying a problem with its characteristic function, namely, if
A C Z* then A (x) = 1 if x E A and A (x) = 0 if x ~ A. Our basic model of computa-
tion is the multitape Turing machine. All such machines are assumed to be deterministic
unless otherwise specified. A Turing machine T (determimstic or nondetermimstic) runs
~n polynomial time if there is a polynomial function q such that for every input of length
n any computation sequence of T halts in q(n) or fewer moves. Define P (NP) to be the
class of problems recognized by deterministic (nondeterministic) Turmg machines which
run in polynomial time.

Copyright O 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of thin material is granted provided that ACM's copyright notice is
given and that reference is made to the pubhcatlon, to its date of msue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery
Thin research was supported m part by the National Scmnce Foundatmn under Grant GJ-34745x.
Many of the results presented here are found In a different form in "Polynomml time reduclbihty,"
Proe Fifth Annum ACM Symp on Theory of Computing, 1973, pp 122-129, and in "Subreeurslve
reduclbdmes," Tech Rep #73-03-13, Department of Computer Scmnce, U. of Washington, Seattle,
Wash.
Author's address. Department of Computer Semnce, University of Washington, Seattle, WA 98195.

Journal of the Association for Computing Machinery, Vol 22, No 1, January 1975, pp 155-171

More hard computational problems

Garey and Johnson. Computers and Intractability.

・Appendix includes over 300 NP-complete problems.

・Most cited reference in computer science literature.

37

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.

Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.

Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, …, an, compute

Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley–Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.
38

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]

・Prime intellectual export of CS to other disciplines.

・6,000 citations per year (more than “compiler”, “OS”, “database”).

・Broad applicability and classification power.

NP-completeness can guide scientific inquiry.

・1926: Ising introduces simple model for phase transitions.

・1944: Onsager finds closed-form solution to 2D-ISING in tour de force.

・19xx: Feynman and other top minds seek solution to 3D-ISING.

・2000: Istrail proves 3D-ISING ∈ NP-complete. a holy grail of
statistical mechanics

search for closed formula appears doomed

39

You NP-complete me

40

8. INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard

SECTION 8.9

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-SAT.

・Can prove a CNF formula is satisfiable by specifying an assignment.

・How could we prove that a formula is not satisfiable?

42

SAT. Given a CNF formula Φ, is there a satisfying truth assignment?

UN-SAT. Given a CNF formula Φ, is there no satisfying truth assignment?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 2. HAMILTON-CYCLE vs. NO-HAMILTON-CYCLE.

・Can prove a graph is Hamiltonian by specifying a permutation.

・How could we prove that a graph is not Hamiltonian?

43

HAMILTON-CYCLE. Given a graph G = (V, E), is there a simple

cycle Γ that contains every node in V ?

NO-HAMILTON-CYCLE. Given a graph G = (V, E), is there no

simple cycle Γ that contains every node in V ?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAMILTON-CYCLE ?

・SAT ∈ NP-complete and SAT ≡ P UN-SAT.

・HAMILTON-CYCLE ∈ NP-complete and HAMILTON-CYCLE ≡ P NO-HAMILTON-CYCLE.

・But neither UN-SAT nor NO-HAMILTON-CYCLE are known to be in NP.

44

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.

Ex. SAT, HAMILTON-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem

with the yes and no answers reversed.

Ex. X = { 4, 6, 8, 9, 10, 12, 14, 15, … }
 X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP. Complements of decision problems in NP.

Ex. UN-SAT, NO-HAMILTON-CYCLE, and PRIMES.

45

ignore 0 and 1
(neither prime nor composite)

NP = co-NP ?

Fundamental open question. Does NP = co-NP?

・Do yes instances have succinct certificates iff no instances do?

・Consensus opinion: no.

Theorem. If NP ≠ co-NP, then P ≠ NP.

Pf idea.

・P is closed under complementation.

・If P = NP, then NP is closed under complementation.

・In other words, NP = co-NP.

・This is the contrapositive of the theorem.

46

Good characterizations

Good characterization. [Edmonds 1965] NP ∩ co-NP.

・If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier

・Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching?

・If yes, can exhibit a perfect matching.

・If no, can exhibit a set of nodes S such that | neighbors(S) | < | S |.

47

JOURNAL OF RESEARCH of the National Bureau of Standards-B. Mathematics and Mathematical Physics
Vol. 69B, Nos. 1 and 2, January-June 1965

Minimum Partition of a Matroid Into Independent
Subsets!

Jack Edmonds

(December 1, 1964)

A matroid M is a finite se t M of e le me nts with a famil y of subsets, called independent, such th a t
(I) every subset of an independe nt se t is independent, and (2) for e ve ry subset A of M , all maximal
indepe nde nt s ubsets of A have the sa me cardinality , called the rank r\A) of A. It is proved that a
matroid can be partitioned into as few as k sets , each inde pende nt , if and only if every s ubse t A has
cardinality at mos t k . r(A).

1.0. Introduction

Matroids can be regarded as a ce rtain abstraction
of matri ces [8].2 They represent the properti es of
matrices whic h are invariant under ele me ntary row
operations but whic h are not invariant under ele men-
tary column operations - namely properties of depend-
ence among the columns_ For any matrix over any
field , there is a matroid whose elements correspond
to the columns of the matrix and whose independe nt

, sets of ele ments correspond to the linearly inde pe ndent
sets of columns_ A matroid M is completely deter-
mined by its elements and its indepe ndent sets of
ele ments.

The same letter will be used to denote a matroid
and its set of elements. The le tter I with various sub
or superscripts will be used to denote an independent
set.

The interes t of matroids does not li e only in how they
generalize some known theorems of linear algebra.
There are examples, which I shall r eport elsewhere,
of matroids whic h do not arise from any matrix over
any field- so matroid theory does truly generalize an
aspec t of matrices. However, matroid theory is jus-
tifi ed by new problems in matrix theory itself - in fact
by problems in the special matrix theory of graphs

, (networks). It happens that an axiomatic matroid set-
ting is most natural for viewing these proble ms and that
matrix machinery is clumsy and superfluous for view-
ing them. The situation is somewhat similar to the
superfluity of (real) matrices to the theory of linear op-
erators, though there a quite different aspect of mat-
rices is superfluous. When it comes to implementing
either theory, matrices are often the way to do it.

Matroid theory so far has been motivated mainly
by graphs, a special class of matrices. A graph G may
be regarded as a matrixN(G) of zeroes and ones, mod 2,

I Sponsored by the Army Researc h Office (Durham), Presented at the Seminar on
Malroids, Nat ional Bureau of Standards, Aug. 3J-Sept. 11 , 1964. I am much indebted
10 Alfred Lehman for e ncouraging my inte res t in the subjec t.

Z Figures in brackets ind icate the references at the end of thi s pape r.

wh ic h has exactly two ones in each column. The
columns are the edges of the graph and the rows are
the nodes of the gr ap h. An edge and a node are said
to meet if there is a one located in that column and
that row. Of course a grap h can also be regarded
vi sually as a geometri c netwo rk . It is often helpful
to visualize state ments on matroids for the case of
graphs, though it can be misleading. Matroids do
not contain objects correspondin g to nodes or rows .

Theorem 1 on "minimum partitions," the subj ect of
thi s paper , was discovered in the process of unifying
results described in the next paper, " On Lehman's
Switching Game and a Theorem of Tutte and Nash-
Williams" (denoted here as "Part II"), which is a direct
sequel. Theore m 1 is shown there to be closely re-
lated to those res ults. Lately, I have learned that
Theorem 1 for the case of graphs (see sec. 1.7) was
anticipated by Nas h-Williams [5].

By borrowing from work of others, I inte nd that this
paper toge ther with possible seq uels be partly exposi-
tory and technically almos t self-contained.

1.1. The Problem
Various aspec ts of matroids - in par ti cular, the first

pair of axioms we cite - hold intrin sic interes t which
is quite separate from linear algebra.

AXIOM 1: Every subset of an independent set of
elements is independent.

Any finite collection of elements and family of so-
called independent sets of these ele me nts whic h sati s-
fies axiom 1 we shall call an independe nce syste m.
This also happens to be the definiti on of an abs tract
simplicial complex, though the topology of complexes
will not concern us-

It is easy to describe implicitly large independe nce
systems which are apparently very unwieldy to an-
alyze. First example: given a graph G, defin e an
independent set of nodes in G to be such that no edge
of G meets two nodes of the set. Second example :
define an independe nt set of edges in G to be such th at

67

Good characterizations

48

no node meets two edges of the set. Third example:
define an independent set of edges in G to be such that
the edges of the set, as column vectors of N(G), are
linearly independent. The third example is the pro-
totype of the systems we shall study here.

A minimum coloring of the nodes of a graph G is a
partition of the nodes into as few sets (colors) as pos-
sible so that each set is independent. A good char-
acterization of the minimum colorings of the nodes in
a graph is unknown (unless the graph is bipartite, i.e.,
the nodes can be colored with two colors). To find
one would undoubtedly settle the "four color"
conjecture.

A problem closely related to minimum coloring is
the "packing problem." That is to find a good char-
acterization (and an algorithm) for maximum cardinal-
ity independent sets. More generally the "weighted
packing problem" is, where each element of the system
carries a real numerical weight, to characterize the
independent sets whose weight-sums are maximum.
The packing problem for the systems of the first
example is also very much unsolved (unless the graph
is bipartite).

The minimum coloring problem for the systems of
the second example is unsolved (unless the graph is
bipartite). Its solution would also undoubtedly set-
tle the four-color conjecture. However the packing
problem, and more generally the weighted packing
problem, is solved for the second example by the ex-
tensive theory of "matchings in graphs."

For the third example the packing problem is in a
sense trivial. It is well known that the system of
linearly independent sets of edges in a graph, and
more generally the system of linearly independent
sets of columns in a matrix, satisfies the following:

AXIOM 2: For any subset A of the elements, all maxi-
mal independent sets contained in A contain the same
number of elements.

A matroid is a (finite) system of elements and sets
of elements which satisfies axioms I and 2.

For any independence system, any subsystem con-
sisting of a subset A of the elements and all of the
independent sets contained in A is an independence
system. Thus, a matroid is an independence system
where the packing problem is postulated to be trivial
for the system and all of its subsystems. For me, hav-
ing spent much labor on packing problems, it is
pleasant to study such systems. Matroids have a
surprising richness of structure, as even the special
case of graphic matroids shows.

Clearly, a subsystem of a matroid M is a matroid.
We call it a submatroid and we use the same symbol
to denote it and its set of elements. The rank, rCA),
of a set A of elements in M or the rank, rCA), of the
submatroid A of M is the number of elements in each
maximal independent set contained in A, i.e ., the num-
ber of elements in a bas e of A.

The main result of this paper is a solution of the
minimum coloring problem for the independent sets
of a matroid. Another paper will treat the weighted
packing problem for matroids.

68

1.2. Ground Rules

One is tempted to surmise that a minimum coloring
can be effected for a system by some simple process
like extracting a maximal independent set to take on
the first color, then extracting a maximal independent
set of what is left to take on the second color, and so
on till all elements are colored. This is usually far
from being successful even for matroids, though it
is precisely matroids for which a similar sort of mono-
tonic procedure always yields a maximum cardinality
independent set and, as we shall see, in another paper,
also always yields a maximum weight-sum independent
set when the elements carry arbitrary real weights.

Consider the class of matroids implicit in the class
MF of all matrices over fields of integers modulo primes.
(For large enough prime, this class includes the
matroid of any matrix over the rational field.) We
seek a good algorithm for partitioning the columns
(elements of the matroid) of anyone of the matrices
(matroids) into as few sets as possible so that each set
is independent. Of course, by carrying out the mono-
tonic coloring procedure described above in all possible
ways for a given matrix, one can be assured of encoun-
tering such a partition for the matrix, but this would
entail a horrendous amount of work. We seek an al-
gorithm for which the work involved increases only
algebraically with the size of the matrix to which it is
applied, where we regard the size of a matrix as in-
creasing only linearly with the number of columns,
the number of rows, and the characteristic of the field.
As in most combinatorial problems, finding a finite
algorithm is trivial but finding an algorithm which
meets this condition for practical feasibility is not
trivial.

We seek a good characterization of the minimum
number of independent sets into which the columns
of a matrix of Mr can be partitioned. As the criterion
of "good" for the characterization we apply the "prin-
ciple of the absolute supervisor." The good charac-
terization will describe certain information about the
matrix which the supervisor can require his assistant
to search out along with a minimum partition and
which the supervisor can then use with ease to verify
with mathematical certainty that the partition is in-
deed minimum. Having a good characterization does
not mean necessarily that there is a good algorithm.
The assistant might have to kill himself with work to
find the information and the partition.

Theorem 1 on partitioning matroids provides the
good characterization in the case of matrices of Mr.
The proof of the theorem yields a good algorithm in
the case of matrices of Mr. (We will not elaborate on
how.) The theorem and the proof apply as well to
all matroids via the matroid axioms. However, the
"goodness" for matrices depends on being able to
carry out constructively with ease those matrix opera-
tions which correspond to the existential assertions
of the theory. A fundamental problem of matroid
theory is to find a good representation for general
matroids - good perhaps relative to the rank and the
number of elements in the matroids. There is a very

Good characterizations

Observation. P ⊆ NP ∩ co-NP.

・Proof of max-flow min-cut theorem led to stronger result that max-flow

and min-cut are in P.

・Sometimes finding a good characterization seems easier than finding an

efficient algorithm.

Fundamental open question. Does P = NP ∩ co-NP?

・Mixed opinions.

・Many examples where problem found to have a nontrivial good

characterization, but only years later discovered to be in P.

49

Linear programming is in NP ∩ co-NP

LINEAR-PROGRAMMING. Given A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, and α ∈ ℜ, does there

exist x ∈ ℜn such that Ax ≤ b, x ≥ 0 and cT x ≥ α ?

Theorem. [Gale–Kuhn–Tucker 1948] LINEAR-PROGRAMMING ∈ NP ∩ co-NP.

Pf sketch. If (P) and (D) are nonempty, then max = min.

50

€

(D) min yT b
s. t. AT y ≥ c

y ≥ 0

€

(P) max cT x
s. t. Ax ≤ b

x ≥ 0

Linear programming is in NP ∩ co-NP

LINEAR-PROGRAMMING. Given A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, and α ∈ ℜ, does there

exist x ∈ ℜn such that Ax ≤ b, x ≥ 0 and cT x ≥ α ?

Theorem. [Khachiyan 1979] LINEAR-PROGRAMMING ∈ P.

51

 20 1980 , 1

 519.852

 . .

()

 , -
 .

 m > 2 ^ 2
 .. ., x h ..., :

(0.1) (1 1- ;..+ { < {, i = l , 2 , . . . , ,

 a i h b{.

 , . . 0 1,
 .

 § 1—4 L -
 R n -
 (0.1).
0 (+ 2) , -
 O (L) . -
 0 (n 3 (n + m) L) + , —, X, : , , max,
 (L) . -
 , ,
 R n -
 [*>2] .

 1. [3]
 ,
0(n3(n2+m)L) ()-
0(+ 2) . , , -
 [3] : (L)-
 .

 § 5 , § 1—4, -
 , -
 a i h bi. -
 .

(0.2) L = [2J L O G 2 (1
 uii

 1 + 1) + Yilog2 (1 bi 1+1} + log2 + 1

Primality testing is in NP ∩ co-NP

Theorem. [Pratt 1975] PRIMES ∈ NP ∩ co-NP.

52

SIAM J. COMPUT.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTf

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a, string, is of length bounded by a polynomial
in log n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property thatshort proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log n operations of a Turing machine
for any fixed

The proof system used for certifying primes is as follows.
AXIOM. (x, y, 1).
INFERENCE RULES.

R1 (p, x, a), q - (p, x, qa) provided xtp- 1)/q (mod p) and ql(P 1).

R2: (p,x,p- 1)p providedxp- ,___ (modp).

THEOREM 1. p is a theorem p is a prime.
THEOREM 2. p is a theorem p has a proof of [4 log p lines.

Key words, primes, membership, nondeterministic, proof, NP-complete, computational complexity

1. Proofs. We know of no efficient method that will reliably tell whether
a given number is prime or composite. By "efficient", we mean a method for which
the time is at most a polynomial in the length of the number written in positional
notation. Thus the cost of testing primes and composites is very high. In contrast,
the cost of selling composites (persuading a potential customer that you have one)
is very low--in every case, one multiplication suffices. The only catch is that the
salesman may need to work overtime to prepare his short sales pitch; the effort
is nevertheless rewarded when there are many customers.

At a meeting of the American Mathematical Society in 1903, Frank Cole
used this property of composites to add dramatic impact to the presentation of
his paper. His result was that 267 1 was composite, contradicting a two-centuries-
old conjecture of Mersenne. Although it had taken Cole "three years of Sundays"
to find the factors, once he had done so he could, in a few minutes and without
uttering a word, convince a large audience of his result simply by writing down
the arithmetic for evaluating 267 and 193707721 x 761838257287.

We now show that the primes are to a lesser extent similarly blessed; one
may certify p with a proof of at most [4 log2 p] lines, in a system each of whose
inference rules are readily applied in time O(log3 p). The method is based on the
Lucas-Lehmer heuristic (Lehmer (1927)) for testing primeness.

In the system to be described, theorems take one of two forms:
(i) "p", asserting.that p is prime, or
(ii) "(p, x, a)", asserting that we are making progress towards establishing

that p is a prime and that x is a primitive root (mod p); a is a progress indicator

* Received by the editors May 24, 1974.
f Project MAC Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. This

research was supported by the National Science Foundation under Grant GJ-34671.
Edmonds (1965) discusses a similar situation with a "supervisor and his hard-working assistant".

214

Theorem. [Pratt 1975] PRIMES ∈ NP ∩ co-NP.

Pf sketch. An odd integer s is prime iff there exists an integer 1 < t < s s.t.

Primality testing is in NP ∩ co-NP

€

t s−1 ≡ 1 (mod s)
t (s−1) / p ≠ 1 (mod s)

for all prime divisors p of s-1

CERTIFIER (s)
__

CHECK s – 1 = 2 × 2 × 3 × 36473.

CHECK 17s–1 = 1 (mod s).

CHECK 17(s–1) / 2 ≡ 437676 (mod s).

CHECK 17(s–1) / 3 ≡ 329415 (mod s).

CHECK 17(s–1) / 36,473 ≡ 305452 (mod s).
__

use repeated squaring

53

prime factorization of s–1
also need a recursive certificate

to assert that 3 and 36,473 are prime

 instance s 437677

 certificate t 17, 22 × 3 × 36473

Primality testing is in P

Theorem. [Agrawal–Kayal–Saxena 2004] PRIMES ∈ P.

54

Annals of Mathematics, 160 (2004), 781–793

PRIMES is in P

By Manindra Agrawal, Neeraj Kayal, and Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that

determines whether an input number is prime or composite.

1. Introduction

Prime numbers are of fundamental importance in mathematics in general,

and number theory in particular. So it is of great interest to study different

properties of prime numbers. Of special interest are those properties that

allow one to determine efficiently if a number is prime. Such efficient tests are

also useful in practice: a number of cryptographic protocols need large prime

numbers.

Let PRIMES denote the set of all prime numbers. The definition of prime

numbers already gives a way of determining if a number n is in PRIMES: try

dividing n by every number m ≤ √
n—if any m divides n then it is compos-

ite, otherwise it is prime. This test was known since the time of the ancient

Greeks—it is a specialization of the Sieve of Eratosthenes (ca. 240 BC) that

generates all primes less than n. The test, however, is inefficient: it takes

Ω(
√

n) steps to determine if n is prime. An efficient test should need only a

polynomial (in the size of the input = #log n$) number of steps. A property

that almost gives an efficient test is Fermat’s Little Theorem: for any prime

number p, and any number a not divisible by p, ap−1 = 1 (mod p). Given an

a and n it can be efficiently checked if an−1 = 1 (mod n) by using repeated

squaring to compute the (n − 1)th power of a. However, it is not a correct

test since many composites n also satisfy it for some a’s (all a’s in case of

Carmichael numbers [Car]). Nevertheless, Fermat’s Little Theorem became

the basis for many efficient primality tests.

Since the beginning of complexity theory in the 1960s—when the notions

of complexity were formalized and various complexity classes were defined—

*The last two authors were partially supported by MHRD grant MHRD-CSE-20010018.

Annals of Mathematics, 160 (2004), 781–793

PRIMES is in P

By Manindra Agrawal, Neeraj Kayal, and Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that

determines whether an input number is prime or composite.

1. Introduction

Prime numbers are of fundamental importance in mathematics in general,

and number theory in particular. So it is of great interest to study different

properties of prime numbers. Of special interest are those properties that

allow one to determine efficiently if a number is prime. Such efficient tests are

also useful in practice: a number of cryptographic protocols need large prime

numbers.

Let PRIMES denote the set of all prime numbers. The definition of prime

numbers already gives a way of determining if a number n is in PRIMES: try

dividing n by every number m ≤ √
n—if any m divides n then it is compos-

ite, otherwise it is prime. This test was known since the time of the ancient

Greeks—it is a specialization of the Sieve of Eratosthenes (ca. 240 BC) that

generates all primes less than n. The test, however, is inefficient: it takes

Ω(
√

n) steps to determine if n is prime. An efficient test should need only a

polynomial (in the size of the input = #log n$) number of steps. A property

that almost gives an efficient test is Fermat’s Little Theorem: for any prime

number p, and any number a not divisible by p, ap−1 = 1 (mod p). Given an

a and n it can be efficiently checked if an−1 = 1 (mod n) by using repeated

squaring to compute the (n − 1)th power of a. However, it is not a correct

test since many composites n also satisfy it for some a’s (all a’s in case of

Carmichael numbers [Car]). Nevertheless, Fermat’s Little Theorem became

the basis for many efficient primality tests.

Since the beginning of complexity theory in the 1960s—when the notions

of complexity were formalized and various complexity classes were defined—

*The last two authors were partially supported by MHRD grant MHRD-CSE-20010018.

Factoring is in NP ∩ co-NP

FACTORIZE. Given an integer x, find its prime factorization.

FACTOR. Given two integers x and y, does x have a nontrivial factor < y ?

Theorem. FACTOR ≡ P FACTORIZE.

Pf.

・≤ P trivial.

・≥ P binary search to find a factor; divide out the factor and repeat. ▪

Theorem. FACTOR ∈ NP ∩ co-NP.

Pf.

・Certificate: a factor p of x that is less than y.

・Disqualifier: the prime factorization of x (where each prime factor is

less than y), along with a Pratt certificate that each factor is prime. ▪

55

Is factoring in P ?

Fundamental question. Is FACTOR ∈ P ?

Challenge. Factor this number.

56

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704 
($30,000 prize if you can factor)

Exploiting intractability

Modern cryptography.

・Ex. Send your credit card number to Amazon.

・Ex. Digitally sign an e-document.

・Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.

・To use: generate two random n-bit primes and multiply.

・To break: suffices to factor a 2n-bit integer.

57
RSA algorithm

RSA sold 
for $2.1 billion or design a t-shirt

Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n3) steps

on a “quantum computer.”

2001. Factored 15 = 3 𐄂 5 (with high probability) on a quantum computer.

2012. Factored 21 = 3 𐄂 7.

Fundamental question. Does P = BQP ?

58

SIAM REVIEW c∞ 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 303–332

Polynomial-Time Algorithms for
Prime Factorization and
Discrete Logarithms on a
Quantum Computer§

Peter W. Shor†

Abstract. A digital computer is generally believed to be an e±cient universal computing device; that
is, it is believed to be able to simulate any physical computing device with an increase in
computation time by at most a polynomial factor. This may not be true when quantum
mechanics is taken into consideration. This paper considers factoring integers and finding
discrete logarithms, two problems that are generally thought to be hard on classical com-
puters and that have been used as the basis of several proposed cryptosystems. E±cient
randomized algorithms are given for these two problems on a hypothetical quantum com-
puter. These algorithms take a number of steps polynomial in the input size, for example,
the number of digits of the integer to be factored.

Keywords. algorithmic number theory, prime factorization, discrete logarithms, Church’s thesis,
quantum computers, foundations of quantum mechanics, spin systems, Fourier trans-
forms

AMS subject classifications. 81P10, 11Y05, 68Q10, 03D10

PII. S0036144598347011

1. Introduction. One of the first results in the mathematics of computation,
which underlies the subsequent development of much of theoretical computer science,
was the distinction between computable and noncomputable functions shown in the
papers of Church [1936], Post [1936], and Turing [1936]. The observation that several
apparently diÆerent definitions of what it meant for a function to be computable
yielded the same set of computable functions led to the proposal of Church’s thesis,
which says that all computing devices can be simulated by a Turing machine. This
thesis greatly simplifies the study of computation, since it reduces the potential field
of study from any of an infinite number of potential computing devices to Turing
machines. Church’s thesis is not a mathematical theorem; to make it one would
require a precise mathematical description of a computing device. Such a description,
however, would leave open the possibility of some practical computing device that did
not satisfy this precise mathematical description and thus would make the resulting
theorem weaker than Church’s original thesis.

With the development of practical computers, it became apparent that the dis-
tinction between computable and noncomputable functions was much too coarse; com-

§Published electronically April 23, 1999. This paper originally appeared in SIAM Journal on
Computing, Volume 26, Number 5, 1997, pages 1484 to 1509.

http://www.siam.org/journals/sirev/41-2/34701.html
†AT&T Labs–Research, Room C237, 180 Park Avenue, Florham Park, NJ 07932 (shor@

research.att.com).

303

quantum analog of P
(bounded error quantum polynomial time)

8. INTRACTABILITY II

‣ P vs. NP

‣ NP-complete

‣ co-NP

‣ NP-hard

A note on terminology

Note. The term x does not necessarily imply that a problem is in NP,

just that every problem in NP poly-time reduces to x.

60

A note on terminology

Knuth’s original suggestions.

・Hard.

・Tough.

・Herculean.

・Formidable.

・Arduous.

61

assign a real number between 0 and 1 to each choice

so common that it is unclear whether
it is being used in a technical sense

A note on terminology

Some English word write-ins.

・Impractical.

・Bad.

・Heavy.

・Tricky.

・Intricate.

・Prodigious.

・Difficult.

・Intractable.

・Costly.

・Obdurate.

・Obstinate.

・Exorbitant.

・Interminable.

62

A note on terminology

Hard-boiled. [Ken Steiglitz] In honor of Cook.

Hard-ass. [Al Meyer] Hard as satisfiability.

Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Donald Knuth] Ulysses was known for his persistence.

63

“ creative research workers are as full of ideas for new terminology

 as they are empty of enthusiasm for adopting it. ”

 — Donald Knuth

A note on terminology: acronyms

PET. [Shen Lin] Probably exponential time.

・If P ≠ NP, provably exponential time.

・If P = NP, previously exponential time.

GNP. [Al Meyer] Greater than or equal to NP in difficulty.

・And costing more than the GNP to solve.

64

A note on terminology: made-up words

Exparent. [Mike Paterson] Exponential + apparent.

Perarduous. [Mike Paterson] Throughout (in space or time) + completely.

Supersat. [Al Meyer] Greater than or equal to satisfiability.

Polychronious. [Ed Reingold] Enduringly long; chronic.

65

A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time

reduces to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]

A problem such that every problem in NP poly-time reduces to it.

66

