8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- **NP-completeness.** $O(n^k)$ algorithm unlikely.
- **PSPACE-completeness.** $O(n^k)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Poly-time reductions

Desiderata. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of Y in a single step
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus

- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_p Y$ with $Y \leq_p X$.
Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Which of the following poly-time reductions are known?

A. $\text{FIND-MAX-FLOW} \leq_p \text{FIND-MIN-CUT}.$

B. $\text{FIND-MIN-CUT} \leq_p \text{FIND-MAX-FLOW}.$

C. Both A and B.

D. Neither A nor B.
Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem. $\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

[Diagram showing a graph with black and white nodes, indicating an independent set of size 6 and a vertex cover of size 4]
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v) \in E \).
- \(S \) independent \(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.
 \[\Rightarrow \text{either } u \in V - S, \text{ or } v \in V - S, \text{ or both.} \]
- Thus, \(V - S \) covers \((u, v) \).

\[\text{\blacksquare} \]
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\iff \]

- Let \(V - S \) be any vertex cover of size \(n - k \).
- \(S \) is of size \(k \).
- Consider an arbitrary edge \((u, v) \in E \).
- \(V - S \) is a vertex cover \(\Rightarrow \) either \(u \in V - S \), or \(v \in V - S \), or both.
 \[\Rightarrow \] either \(u \notin S \), or \(v \notin S \), or both.
- Thus, \(S \) is an independent set. \(\blacksquare \)
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
U = \{1, 2, 3, 4, 5, 6, 7\} \\
S_a = \{3, 7\} \quad S_b = \{2, 4\} \\
\boxed{S_c = \{3, 4, 5, 6\}} \quad S_d = \{5\} \\
S_e = \{1\} \quad \boxed{S_f = \{1, 2, 6, 7\}} \\
k = 2
\]

a set cover instance
Intractability: quiz 4

Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

A. 1
B. 2
C. 3
D. None of the above.
Vertex cover reduces to set cover

Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER}. \)

Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E) \) and \(k \), we construct a \(\text{SET-COVER} \) instance \((U, S, k) \) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.

- Universe \(U = E \).
- Include one subset for each node \(v \in V: S_v = \{ e \in E : e \text{ incident to } v \} \).

\[
\begin{align*}
U & = \{1, 2, 3, 4, 5, 6, 7\} \\
S_a & = \{3, 7\} \\
S_b & = \{2, 4\} \\
S_c & = \{3, 4, 5, 6\} \\
S_d & = \{5\} \\
S_e & = \{1\} \\
S_f & = \{1, 2, 6, 7\}
\end{align*}
\]
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. □

"yes" instances of VERTEX-COVER are solved correctly

Vertex cover instance (k = 2)

Set cover instance (k = 2)

- $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
- $S_a = \{ 3, 7 \}$
- $S_b = \{ 2, 4 \}$
- $S_c = \{ 3, 4, 5, 6 \}$
- $S_d = \{ 5 \}$
- $S_e = \{ 1 \}$
- $S_f = \{ 1, 2, 6, 7 \}$
Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \iff Let $Y \subseteq S$ be a set cover of size k in (U, S, k).
- Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G.

\[\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} \\
S_b &= \{ 2, 4 \} \\
\text{boxed } S_c &= \{ 3, 4, 5, 6 \} \\
S_d &= \{ 5 \} \\
S_e &= \{ 1 \} \\
\text{boxed } S_f &= \{ 1, 2, 6, 7 \}
\end{align*} \]

- “no” instances of VERTEX-COVER are solved correctly

- vertex cover instance (k = 2)
- set cover instance (k = 2)
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to $P \neq NP$ conjecture.
3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\begin{align*}
\Phi &= (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\end{align*}$$
3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |Φ|$.

Pf. ⇒ Consider any satisfying assignment for Φ.

• Select one true literal from each clause/triangle.
• This is an independent set of size $k = |Φ|$.

"yes" instances of 3-SAT are solved correctly

$k = 3$

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).

- \(S \) must contain exactly one node in each triangle.
- Set these literals to \textit{true} (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied. \(\blacksquare \)

\[
G
\]

\[
k = 3
\]

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
Review

Basic reduction strategies.
- Simple equivalence: $\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}$.
- Special case to general case: $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
- Encoding with gadgets: $3\text{-SAT} \leq_p \text{INDEPENDENT-SET}$.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.

Pf idea. Compose the two algorithms.

Ex. $3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
Decision, search, and optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
Search Problems vs. Decision Problems

Vertex-Cover. Does there exist a vertex cover of size \(\leq k \)?

Find-Vertex-Cover. Find a vertex cover of size \(\leq k \).

Theorem. \(\text{Vertex-Cover} \equiv_p \text{Find-Vertex-Cover} \).

Pf. \(\leq_p \) Decision problem is a special case of search problem. □

Pf. \(\geq_p \)

To find a vertex cover of size \(\leq k \):

- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{ v \} \) has a vertex cover of size \(\leq k - 1 \). (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{ v \} \). □

delete \(v \) and all incident edges
Optimization Problems vs. Search Problems

Find-Vertex-Cover. Find a vertex cover of size \(\leq k \).

Find-Min-Vertex-Cover. Find a vertex cover of minimum size.

Theorem. \(\text{Find-Vertex-Cover} \equiv_p \text{Find-Min-Vertex-Cover} \).

Pf. \(\leq_p \) Search problem is a special case of optimization problem.

Pf. \(\geq_p \) To find vertex cover of minimum size:

- Binary search (or linear search) for size \(k^* \) of min vertex cover.
- Solve search problem for given \(k^* \).
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- **sequencing problems**
- partitioning problems
- graph coloring
- numerical problems

Section 8.5
Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

![Diagram of a graph with vertices 1, 2, 3, 4, 5 and their corresponding primed vertices, showing no Hamilton cycle exists.]
Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. $\text{DIRECTED-HAMILTON-CYCLE} \leq_p \text{HAMILTON-CYCLE}.$

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow
- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order). □

Pf. \Leftarrow
- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - $\ldots, \text{black}, \text{white}, \text{blue}, \text{black}, \text{white}, \text{blue}, \text{black}, \text{white}, \text{blue}, \ldots$
 - $\ldots, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \ldots$
- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. □
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT \leq_p DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.
- Construct \(G \) to have \(2^n \) Hamilton cycles.
- Intuition: traverse path \(i \) from left to right \(\iff \) set variable \(x_i = true \).
Which is truth assignment corresponding to Hamilton cycle below?

A. $x_1 = true, x_2 = true, x_3 = true$

B. $x_1 = true, x_2 = true, x_3 = false$

C. $x_1 = false, x_2 = false, x_3 = true$

D. $x_1 = false, x_2 = false, x_3 = false$
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 2 edges per literal.

```
x_i = true  \iff \text{node for clause } C_j \text{ is connected in this way if } x_i \text{ appears in clause } C_j
```

```
x_i = false \iff \text{node for clause } C_k \text{ is connected in this way if } \overline{x_i} \text{ appears in clause } C_k
```
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

- Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
- Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 - if \(x_i^* = true \), traverse row \(i \) from left to right
 - if \(x_i^* = false \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle (and we splice in \(C_j \) exactly once) •
3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Leftarrow

• Suppose G has a Hamilton cycle Γ.
• If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{ C_j \}$
• Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{ C_1, C_2, \ldots, C_k \}$.
• Set $x_i^* = true$ if Γ' traverses row i left-to-right; otherwise, set $x_i^* = false$.
• traversed in “correct” direction, and each clause is satisfied. □
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

KNAPSACK

packing and covering

sequencing

partitioning

numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- *partitioning problems*
- graph coloring
- numerical problems
3-dimensional matching

3D-Matching. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>instructor</th>
<th>course</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

\[
X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \}
\]

\[
T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \}
\]

\[
T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \},
\]

\[
T_7 = \{ x_3, y_1, z_3 \}, \quad T_8 = \{ x_3, y_1, z_1 \}, \quad T_9 = \{ x_3, y_2, z_1 \}
\]

an instance of 3d-matching (with $n = 3$)

Remark. Generalization of bipartite matching.
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. 3-Sat \leq_p 3D-MATCHING.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.
Construction. (part 1)

• Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.

A gadget for variable x_i ($k = 4$)
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable \(x_i \) with \(2k \) core elements and \(2k \) tip ones.
- No other triples will use core elements.
- In gadget for \(x_i \), any perfect matching must use either all gray triples (corresponding to \(x_i = true \)) or all blue ones (corresponding to \(x_i = false \)).

![Diagram](image-url)
Construction. (part 2)

- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

$$C_1 = x_1 \lor \overline{x_2} \lor x_3$$
3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)
- There are $2nk$ tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets: same as clause gadget but with $2nk$ triples, connected to every tip.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X\), \(Y\), and \(Z\)?

A. \(X = \text{black},\ Y = \text{white},\ \text{and}\ Z = \text{blue}\).

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]

clause 1 gadget

\(x_1\)

\(x_2\)

\(x_3\)

true

false

clause 1 tips

core

cleanup gadget

...
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?
Intractability: quiz 6

How difficult to solve 2-COLOR?

A. $O(m + n)$ using BFS or DFS.

B. $O(mn)$ using maximum flow.

C. $\Omega(2^n)$ using brute force.

D. Not even Tarjan knows.
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than \(k \) registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between \(u \) and \(v \) if there exists an operation where both \(u \) and \(v \) are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is \(k \)-colorable.

Fact. \(\text{3-Color} \leq_p \text{K-Register-Allocation} \) for any constant \(k \geq 3 \).
3-satisfiability reduces to 3-colorability

Theorem. $\text{3-Sat} \leq_p \text{3-Color}$.

Pf. Given 3-Sat instance Φ, we construct an instance of 3-Color that is 3-colorable iff Φ is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

\[\text{to be described later} \]
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to true (and *white* to false).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
- (v) ensures at least one literal in each clause is *black*.

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

3-satisfiability reduces to 3-colorability
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \iff Suppose 3-SAT instance Φ is satisfiable.

- Color all *true* literals *black* and all *false* literals *white*.
- Pick one *true* literal; color node below that node *white*, and node below that *blue*.
- Color remaining middle row nodes *blue*.
- Color remaining bottom nodes *black or white*, as forced. □

\[a \text{ literal set to true in 3-SAT assignment} \]

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]
Poly-time reductions

constraint satisfaction

3-Sat

- INDEPENDENT-SET
 - VERTX-COVER
 - SET-COVER

- DIR-HAM-CYCLE
 - HAM-CYCLE

- 3-COLOR

- SUBSET-SUM
 - KNAPSACK

packing and covering sequencing partitioning numerical
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
My hobby

NP-Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution–NonCommercial 2.5
Subset sum

Subset-Sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505.$

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Subset sum

Theorem. \(3\text{-}SAT \leq_p \text{SUBSET-SUM.} \)

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of \text{SUBSET-SUM} that has solution iff \(\Phi \) is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:

- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1;

 sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

\[
\begin{array}{llllll}
& x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
& 0 & 0 & 0 & 1 & 0 & 0 \\
& 0 & 0 & 0 & 2 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 1 & 0 \\
& 0 & 0 & 0 & 0 & 2 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 1 \\
& 0 & 0 & 0 & 0 & 0 & 2 \\
\hline
W & 1 & 1 & 1 & 4 & 4 & 4
\end{array}
\]

3-SAT instance

subset-sum instance
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).

- If \(x_i^* = true \), select integer in row \(x_i \); otherwise, select integer in row \(\neg x_i \).
- Each \(x_i \) digit sums to 1.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) and \(\neg x_i \) rows.
- Select dummy integers to make \(C_j \) digits sum to 4.

\[C_1 = \neg x_1 \vee x_2 \vee x_3 \]

\[C_2 = x_1 \vee \neg x_2 \vee x_3 \]

\[C_3 = \neg x_1 \vee \neg x_2 \vee \neg x_3 \]

\[
\begin{array}{cccccc}
\text{W} & 1 & 1 & 1 & 4 & 4 & 4 & 111,444 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 & 100,010 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 & 100,101 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 & 10,100 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 & 1,001 \\
\end{array}
\]
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \iff Suppose there exists a subset S^* that sums to W.

- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i^* = \text{true}$; otherwise, assign $x_i^* = \text{false}$.

Digit C_j forces subset S^* to select at least one literal in clause. □

\[
\begin{align*}
\text{3-SAT instance} & \\
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

\[
\begin{array}{cccccc}
\text{subset-sum instance} \\
\hline
\text{row} & x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
0 & 0 & 0 & 1 & 0 & 0 & 100 \\
0 & 0 & 0 & 2 & 0 & 0 & 200 \\
0 & 0 & 0 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & 0 & 2 & 0 & 20 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline
W & 1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{array}
\]
SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

KNAPSACK. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(n \, U)$ dynamic programming algorithm for **KNAPSACK**.

Challenge. Prove **SUBSET-SUM \leq_P KNAPSACK**.

Pf. Given instance (w_1, \ldots, w_n, W) of **SUBSET-SUM**, create **KNAPSACK** instance:
Poly-time reductions

- Constraint satisfaction
 - 3-SAT
 - 3-SAT poly-time reduces to INDEPENDENT-SET
 - INDEPENDENT-SET
 - VERTEX-COVER
 - SET-COVER
 - DIR-HAM-CYCLE
 - 3-COLOR
 - SUBSET-SUM
 - KNAPSACK

- Packing and covering
- Sequencing
- Partitioning
- Numerical
Karp’s 20 poly-time reductions from satisfiability

![Diagram of reductions from satisfiability to other problems]

Dick Karp (1972)

1985 Turing Award

Figure 1 - Complete Problems