8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. Intractability 1

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- **NP-completeness.** $O(n^k)$ algorithm unlikely.
- **PSPACE-completeness.** $O(n^k)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

A computational model supplemented by special piece of hardware that solves instances of Y in a single step.
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_p Y$ with $Y \leq_p X$.
Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Intractability: quiz 2

Which of the following poly-time reductions are known?

A. \textsc{Find-Max-Flow} \leq_p \textsc{Find-Min-Cut}.

B. \textsc{Find-Min-Cut} \leq_p \textsc{Find-Max-Flow}.

C. Both A and B.

D. Neither A nor B.
Poly-time reductions

Design algorithms. If \(X \leq_p Y \) and \(Y \) can be solved in polynomial time, then \(X \) can be solved in polynomial time.

Establish intractability. If \(X \leq_p Y \) and \(X \) cannot be solved in polynomial time, then \(Y \) cannot be solved in polynomial time.

Establish equivalence. If both \(X \leq_p Y \) and \(Y \leq_p X \), we use notation \(X \equiv_p Y \). In this case, \(X \) can be solved in polynomial time iff \(Y \) can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?

![Graph with an independent set of size 6]
Vertex cover

Vertex-Cover. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

![Graph with vertex cover and independent set]
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}\).

Pf. We show \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).
Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_p VERTEX-COVER.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let S be any independent set of size k.
- $V - S$ is of size $n - k$.
- Consider an arbitrary edge $(u, v) \in E$.
- S independent \Rightarrow either $u \notin S$, or $v \notin S$, or both.
 \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
- Thus, $V - S$ covers (u, v).

Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\iff \]

- Let \(V - S \) be any vertex cover of size \(n - k \).
- \(S \) is of size \(k \).
- Consider an arbitrary edge \((u, v) \in E \).
- \(V - S \) is a vertex cover \(\Rightarrow \) either \(u \in V - S \), or \(v \in V - S \), or both.
 \[\Rightarrow \text{either } u \notin S, \text{ or } v \notin S, \text{ or both.} \]
- Thus, \(S \) is an independent set. \(\blacksquare \)
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} \quad S_b = \{ 2, 4 \} \\
\color{blue}{S_c} &= \{ 3, 4, 5, 6 \} \quad S_d = \{ 5 \} \\
S_e &= \{ 1 \} \quad \color{blue}{S_f} = \{ 1, 2, 6, 7 \} \\
k &= 2
\end{align*}
\]

a set cover instance
Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

$U = \{1, 2, 3, 4, 5, 6, 7\}$

$S_a = \{1, 4, 6\}$

$S_b = \{1, 6, 7\}$

$S_c = \{1, 2, 3, 6\}$

$S_d = \{1, 3, 5, 7\}$

$S_e = \{2, 6, 7\}$

$S_f = \{3, 4, 5\}$
Vertex cover reduces to set cover

Theorem. $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$.

Pf. Given a VERTEX-COVER instance $G = (V, E)$ and k, we construct a SET-COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

Example:

- $U = \{1, 2, 3, 4, 5, 6, 7\}$
- $S_a = \{3, 7\}$
- $S_b = \{2, 4\}$
- $S_c = \{3, 4, 5, 6\}$
- $S_d = \{5\}$
- $S_e = \{1\}$
- $S_f = \{1, 2, 6, 7\}$
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.
- Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. □

Vertex cover instance (k = 2)

Set cover instance (k = 2)

- $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
- $S_a = \{ 3, 7 \}$
- $S_b = \{ 2, 4 \}$
- $S_c = \{ 3, 4, 5, 6 \}$
- $S_d = \{ 5 \}$
- $S_e = \{ 1 \}$
- $S_f = \{ 1, 2, 6, 7 \}$
Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).

Pf. \(\Leftarrow \) Let \(Y \subseteq S \) be a set cover of size \(k \) in \((U, S, k) \).
- Then \(X = \{ v : S_v \in Y \} \) is a vertex cover of size \(k \) in \(G \). ■

Example:

- **Vertex cover instance** (\(k = 2 \))
 - \(U = \{ 1, 2, 3, 4, 5, 6, 7 \} \)
 - \(S_a = \{ 3, 7 \} \)
 - \(S_b = \{ 2, 4 \} \)
 - \(S_c = \{ 3, 4, 5, 6 \} \)
 - \(S_e = \{ 1 \} \)
 - \(S_f = \{ 1, 2, 6, 7 \} \)

- **Set cover instance** (\(k = 2 \)}
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

\(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to $P \neq NP$ conjecture.
3-satisfiability reduces to independent set

Theorem. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance \((G,k)\) of \text{INDEPENDENT-SET} that has an independent set of size \(k = |\Phi|\) iff \(\Phi\) is satisfiable.

Construction.
- \(G\) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \Rightarrow Consider any satisfying assignment for Φ.
- Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$. \blacksquare

“yes” instances of 3-SAT are solved correctly

$k = 3$

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$$
3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \[\iff\]

Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining literals consistently).
- All clauses in Φ are satisfied. \[\blacksquare\]

\[
G
\]

\[
\begin{align*}
\Phi &= \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\end{align*}
\]

"no" instances of 3-Sat are solved correctly
Basic reduction strategies.

- Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
- Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
- Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
SEARCH PROBLEMS VS. DECISION PROBLEMS

VERTEX-COVER. Does there exist a vertex cover of size \(\leq k \)?

FIND-VERTEX-COVER. Find a vertex cover of size \(\leq k \).

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{FIND-VERTEX-COVER} \).

\textbf{Pf.} \(\leq_p \) Decision problem is a special case of search problem. ▪

\textbf{Pf.} \(\geq_p \)

To find a vertex cover of size \(\leq k \):

- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \).
 (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{v\} \). ▪

\begin{itemize}
 \item delete \(v \) and all incident edges
\end{itemize}
Optimization problems vs. Search problems

Find-Vertex-Cover. Find a vertex cover of size $\leq k$.

Find-Min-Vertex-Cover. Find a vertex cover of minimum size.

Theorem. \texttt{Find-Vertex-Cover} \equiv_p \texttt{Find-Min-Vertex-Cover}.

Pf. \leq_p Search problem is a special case of optimization problem. □

Pf. \geq_p To find vertex cover of minimum size:
- Binary search (or linear search) for size k^* of min vertex cover.
- Solve search problem for given k^*. □
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

```
  1  1'
  2  2'
  3  3'
  4  4'
  5
```

no
Directed Hamilton cycle reduces to Hamilton cycle

Directed-Hamilton-Cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. Directed-Hamilton-Cycle \leq_p Hamilton-Cycle.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow
- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order). □

Pf. \Leftarrow
- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - \ldots, black, white, blue, black, white, blue, black, white, blue, \ldots
 - \ldots, black, blue, white, black, blue, white, black, blue, white, \ldots
- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. □
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-Sat $\leq_p \text{DIRECTED-HAMILTON-CYCLE}$.

Pf. Given an instance Φ of 3-Sat, we construct an instance G of $\text{DIRECTED-HAMILTON-CYCLE}$ that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = \text{true}$.
Which is truth assignment corresponding to Hamilton cycle below?

A. $x_1 = true, x_2 = true, x_3 = true$
B. $x_1 = true, x_2 = true, x_3 = false$
C. $x_1 = false, x_2 = false, x_3 = true$
D. $x_1 = false, x_2 = false, x_3 = false$
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.
Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

\begin{itemize}
 \item Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
 \item Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 \begin{itemize}
 \item if \(x_i^* = true \), traverse row \(i \) from left to right
 \item if \(x_i^* = false \), traverse row \(i \) from right to left
 \item for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle (and we splice in \(C_j \) exactly once)
 \end{itemize}
\end{itemize}
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Leftarrow \)

- Suppose \(G \) has a Hamilton cycle \(\Gamma \).
- If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)
 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G - \{ C_j \} \)
- Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G - \{ C_1, C_2, \ldots, C_k \} \).
- Set \(x_i^* = true \) if \(\Gamma' \) traverses row \(i \) left-to-right; otherwise, set \(x_i^* = false \).
- traversed in “correct” direction, and each clause is satisfied. \(\blacksquare \)
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAME-CYCLE

KNAPSACK

packing and covering

sequencing

partitioning

numerical
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.6
3-dimensional matching

3D-Matching. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>instructor</th>
<th>course</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \}$$

$$T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \}$$

$$T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \}$$

$$T_7 = \{ x_3, y_1, z_3 \}, \quad T_8 = \{ x_3, y_1, z_1 \}, \quad T_9 = \{ x_3, y_2, z_1 \}$$

an instance of 3d-matching (with $n = 3$)

Remark. Generalization of bipartite matching.
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. 3-$\text{Sat} \leq_{P} 3D$-Matching.

Pf. Given an instance Φ of 3-Sat, we construct an instance of $3D$-Matching that has a perfect matching iff Φ is satisfiable.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
Construction. (part 1)

- Create gadget for each variable \(x_i \) with \(2k \) core elements and \(2k \) tip ones.
- No other triples will use core elements.
- In gadget for \(x_i \), any perfect matching must use either all gray triples (corresponding to \(x_i = true \)) or all blue ones (corresponding to \(x_i = false \)).
3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)

- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

Each clause assigned its own 2 adjacent tips

$C_1 = x_1 \lor \overline{x_2} \lor x_3$

Construction. (part 3)

- There are $2nk$ tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets:
 same as clause gadget but with $2nk$ triples, connected to every tip.

$$C_1 = x_1 \lor \overline{x_2} \lor x_3$$

![Diagram showing the construction of clause and cleanup gadgets](image-url)
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z?

A. $X = black$, $Y = white$, and $Z = blue$.

$$C_1 = x_1 \lor \overline{x_2} \lor x_3$$
Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple. \(\blacksquare\)
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?

![Graph](yes_instance.png)
Intractability: quiz 6

How difficult to solve 2-COLOR?

A. $O(m + n)$ using BFS or DFS.
B. $O(mn)$ using maximum flow.
C. $\Omega(2^n)$ using brute force.
D. Not even Tarjan knows.
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_P K-REGISTER-ALLOCATION for any constant $k \geq 3$.
3-satisfiability reduces to 3-colorability

Theorem. \(3\text{-SAT} \leq_p 3\text{-COLOR}. \)

Pf. Given 3-SAT instance \(\Phi \), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi \) is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

\[\text{to be described later} \]
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to true (and *white* to false).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
- (v) ensures at least one literal in each clause is *black*. □

3-satisfiability reduces to 3-colorability

$suppose,\ for\ the\ sake\ of\ contradiction,\ that\ all\ 3\ literals\ are\ white\ in\ some\ 3$-coloring

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]

contradiction (not a 3-coloring)
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \iff Suppose 3-SAT instance Φ is satisfiable.

- Color all *true* literals *black* and all *false* literals *white*.
- Pick one *true* literal; color node below that node *white*, and node below that *blue*.
- Color remaining middle row nodes *blue*.
- Color remaining bottom nodes *black* or *white*, as forced. ■

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$
Poly-time reductions

constraint satisfaction

3-Sat

3-Sat poly-time reduces to INDEPENDENT-SET

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

DIR-HAM-CYCLE

HAM-CYCLE

3-COLOR

SUBSET-SUM

KNAPSACK

packing and covering

sequencing

partitioning

numerical
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
My hobby:

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

APPELLIZERS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

SANDWICHES

Barbeque | 6.55 |

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

...EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO -

AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
Subset sum

Subset-Sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in **binary** encoding.
Subset sum

Theorem. 3-SAT \leq_P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has a solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:

 - Include one digit for each variable x_i and one digit for each clause C_j.
 - Include two numbers for each variable x_i.
 - Include two numbers for each clause C_j.
 - Sum of each x_i digit is 1;
 - sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

3-SAT instance

dummies to get clause columns to sum to 4

\[
\begin{array}{ccccccc}
\text{Subset-Sum instance} & & & & & & \\
W & 1 & 1 & 4 & 4 & 4 & 111,444 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 & 100,010 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 & 100,101 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 & 10,100 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 & 1,001 \\
\hline
0 & 0 & 0 & 1 & 0 & 0 & 100 \\
0 & 0 & 0 & 2 & 0 & 0 & 200 \\
0 & 0 & 0 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & 0 & 2 & 0 & 20 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline
\end{array}
\]
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose 3-SAT instance Φ has satisfying assignment x^*.

- If $x_i^* = \text{true}$, select integer in row x_i; otherwise, select integer in row $\neg x_i$.
- Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- Select dummy integers to make C_j digits sum to 4. □

$\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}$

3-SAT instance

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

W

SUBSET-SUM instance

100,010
100,101
10,100
10,011
1,110
1,001
100
200
10
20
1
2
111,444
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\iff \) Suppose there exists a subset \(S^* \) that sums to \(W \).

- Digit \(x_i \) forces subset \(S^* \) to select either row \(x_i \) or row \(\neg x_i \) (but not both).
- If row \(x_i \) selected, assign \(x_i^* = \text{true} \); otherwise, assign \(x_i^* = \text{false} \).

Digit \(C_j \) forces subset \(S^* \) to select at least one literal in clause. ■

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

3-SAT instance

dummies to get clause columns to sum to 4

\(x_1 \)	\(x_2 \)	\(x_3 \)	\(C_1 \)	\(C_2 \)	\(C_3 \)		
\(x_1 \)	1	0	0	0	1	0	100,010
\(\neg x_1 \)	1	0	0	1	0	1	100,101
\(x_2 \)	0	1	0	1	0	0	10,100
\(\neg x_2 \)	0	1	0	0	1	1	10,011
\(x_3 \)	0	0	1	1	0	1	1,110
\(\neg x_3 \)	0	0	1	0	0	1	1,001

\[
\begin{align*}
W &= 1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{align*}
\]

SUBSET-SUM instance
SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

KNAPSACK. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(n U)$ dynamic programming algorithm for KNAPSACK.

Challenge. Prove SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance (w_1, \ldots, w_n, W) of SUBSET-SUM, create KNAPSACK instance:
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

KNAPSACK

packing and covering

sequencing

partitioning

numerical
Karp’s 20 poly-time reductions from satisfiability

FIGURE 1 - Complete Problems

Dick Karp (1972)
1985 Turing Award