8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.
• Greedy.
• Divide and conquer.
• Dynamic programming.
• Duality.
• Reductions.
• Local search.
• Randomization.

Algorithm design antipatterns.
• NP-completeness. \(O(n^4) \) algorithm unlikely.
• PSPACE-completeness. \(O(n^4) \) certification algorithm unlikely.
• Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>

Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_P Y$ with $Y \leq_P X$.

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Intractability: quiz 1

Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.

Intractability: quiz 2

Which of the following poly–time reductions are known?

A. FIND-MAX-FLOW \leq_p FIND-MIN-CUT.
B. FIND-MIN-CUT \leq_p FIND-MAX-FLOW.
C. Both A and B.
D. Neither A nor B.

Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \not\leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

8. INTRACTABILITY I

poly-time reductions
packing and covering problems
constraint satisfaction problems
sequencing problems
partitioning problems
graph coloring
numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?

Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

Intractability: quiz 3

Consider the following graph G. Which are true?

- **A.** The white vertices are a vertex cover of size 7.
- **B.** The black vertices are an independent set of size 3.
- **C.** Both A and B.
- **D.** Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_p VERTEX-COVER.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.
Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set} \equiv_p \textsc{Vertex-Cover}.

\textbf{Pf.} We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\begin{itemize}
 \item Let \(S \) be any independent set of size \(k \).
 \item \(V - S \) is of size \(n - k \).
 \item Consider an arbitrary edge \((u,v) \in E \).
 \item \(S \) independent \(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.
 \item \(\Rightarrow \) either \(u \in V - S \), or \(v \in V - S \), or both.
 \item Thus, \(V - S \) covers \((u,v)\). \n\end{itemize}

Set cover

\textbf{Set-Cover.} Given a set \(U \) of elements, a collection \(S \) of subsets of \(U \), and an integer \(k \), are there \(\leq k \) of these subsets whose union is equal to \(U \)?

Sample application.

\begin{itemize}
 \item \(m \) available pieces of software.
 \item Set \(U \) of \(n \) capabilities that we would like our system to have.
 \item The \(i \)-th piece of software provides the set \(S_i \subseteq U \) of capabilities.
 \item Goal: achieve all \(n \) capabilities using fewest pieces of software.
\end{itemize}

\[
U = \{1, 2, 3, 4, 5, 6, 7\} \\
S_a = \{3, 7\} \\
S_b = \{2, 4\} \\
S_c = \{3, 4, 5, 6\} \\
S_d = \{5\} \\
S_e = \{1\} \\
S_f = \{1, 2, 6, 7\} \\
k = 2
\]

a set cover instance

Intractability: quiz 4

Given the universe \(U = \{1, 2, 3, 4, 5, 6, 7\} \) and the following sets, which is the minimum size of a set cover?

\begin{itemize}
 \item \textbf{A.} 1
 \item \textbf{B.} 2
 \item \textbf{C.} 3
 \item \textbf{D.} None of the above.
\end{itemize}

\[
U = \{1, 2, 3, 4, 5, 6, 7\} \\
S_a = \{1, 4, 6\} \\
S_b = \{1, 6, 7\} \\
S_c = \{1, 2, 3, 6\} \\
S_d = \{1, 3, 5, 7\} \\
S_e = \{2, 6, 7\} \\
S_f = \{3, 4, 5\}
\]
Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k)\) contains a set cover of size \(k \).

Construction.
- Universe \(U = \{ e \} \) and \(\{ s \} \), we construct a vertex cover instance \((U, S, k)\) that has a set cover of size \(k \).

Proof. Let \(X \subseteq V \) be a vertex cover of size \(k \).
- Then \(Y = \{ s : v \in X \} \) is a set cover of size \(k \).

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \).

Proof. Let \(Y \subseteq S \) be a set cover of size \(k \).
- Then \(X = \{ v : s \in Y \} \) is a vertex cover of size \(k \).
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

\(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

3-satisfiability reduces to independent set

Theorem. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of \text{INDEPENDENT-SET} that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

Construction.

\(\bullet \) \(G \) contains 3 nodes for each clause, one for each literal.
\(\bullet \) \(G \) connects 3 literals in a clause in a triangle.
\(\bullet \) \(G \) connects literal to each of its negations.

K = 3

\(\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \)

3-satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to \(\mathbf{P} \neq \mathbf{NP} \) conjecture.

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to \(\mathbf{P} \neq \mathbf{NP} \) conjecture.

3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).

\(\bullet \) Select one true literal from each clause/triangle.
\(\bullet \) This is an independent set of size \(k = |\Phi| \). □

"yes" instances of 3-SAT are solved correctly

https://www.facebook.com/pg/npcompleteteens

3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).

\(\bullet \) Select one true literal from each clause/triangle.
\(\bullet \) This is an independent set of size \(k = |\Phi| \). □
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).
- \(S \) must contain exactly one node in each triangle.
- Set these literals to \(\text{true} \) (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied.

> "no" instances of 3-SAT are solved correctly

\[
\begin{align*}
\Phi = & \left(x_1 \lor x_2 \lor x_3 \right) \\
& \land \left(x_1 \lor \overline{x_2} \lor x_5 \right) \\
& \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\end{align*}
\]

Review

Basic reduction strategies.
- Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
- Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
- Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Decision, search, and optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

Search problems vs. decision problems

VERTEX-COVER. Does there exist a vertex cover of size \(\leq k \)?

FIND-VERTEX-COVER. Find a vertex cover of size \(\leq k \).

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{FIND-VERTEX-COVER} \).

Pf. \(\leq_p \) Decision problem is a special case of search problem.

Pf. \(\geq_p \)

To find a vertex cover of size \(\leq k \):
- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{ v \} \) has a vertex cover of size \(\leq k - 1 \).
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{ v \} \).

- delete \(v \) and all incident edges
Optimization Problems vs. Search Problems

Find-Vertex-Cover. Find a vertex cover of size \(\leq k \).

Find-Min-Vertex-Cover. Find a vertex cover of minimum size.

Theorem. \textsc{Find-Vertex-Cover} \(\equiv_p \) \textsc{Find-Min-Vertex-Cover}.

Pf. \(\leq_p \) Search problem is a special case of optimization problem. •

Pf. \(\geq_p \) To find vertex cover of minimum size:
- Binary search (or linear search) for size \(k^* \) of min vertex cover.
- Solve search problem for given \(k^* \). •

Hamilton Cycle

Hamilton-Cycle. Given an undirected graph \(G = (V, E) \), does there exist a cycle \(\Gamma \) that visits every node exactly once?

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Directed Hamilton cycle reduces to Hamilton cycle

Theorem. \(\text{DIRECTED-HAMILTON-CYCLE} \leq_P \text{HAMilton-CYCLE} \).

Pf. Given a directed graph \(G = (V, E) \), construct a graph \(G' \) with \(3n \) nodes.

\[\text{directed graph } G \]

\[\text{undirected graph } G' \]

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.

- Construct \(G \) to have \(2^n \) Hamilton cycles.
- Intuition: traverse path \(i \) from left to right \(\iff \) set variable \(x_i = \text{true} \).

\[\text{directed graph } G \]
Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

A. \(x_1 = true, x_2 = true, x_3 = true \)

B. \(x_1 = true, x_2 = true, x_3 = false \)

C. \(x_1 = false, x_2 = false, x_3 = true \)

D. \(x_1 = false, x_2 = false, x_3 = false \)

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.

- For each clause: add a node and 2 edges per literal.

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

- Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
- Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 - if \(x_i = true \), traverse row \(i \) from left to right
 - if \(x_i = false \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle (and we splice in \(C_j \) exactly once)

\(\blacksquare \)
3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \iff
- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, ..., C_k\}$.
- Set $x_i^j = true$ if Γ' traverses row i left-to-right; otherwise, set $x_i^j = false$.
- traversed in "correct" direction, and each clause is satisfied.

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-dimensional matching

3D-MATCHING. Given n instructors, m courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Course</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

\[X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \} \]

\[T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \} \]

\[T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \} \]

\[T_6 = \{ x_3, y_1, z_3 \}, \quad T_7 = \{ x_3, y_1, z_2 \} \]

\[T_8 = \{ x_3, y_2, z_1 \} \]

an instance of 3d-matching (with $n = 3$)

Remark. Generalization of bipartite matching.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.

Construction. (part 1)

- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = \text{true}$) or all blue ones (corresponding to $x_i = \text{false}$).
3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)
- Create gadget for each clause \(C_j\) with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of \(x_1\) or (ii) blue core of \(x_2\) or (iii) grey core of \(x_3\).

\[
\text{clause 1 gadget } \quad C_1 = x_1 \lor \overline{x_2} \lor x_3
\]

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?

A. \(X = \text{black}, Y = \text{white},\) and \(Z = \text{blue}\).
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple. •

3-colorability

3-COLOR. Given an undirected graph \(G\), can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?

Intractability: quiz 6

How difficult to solve 2-COLOR?

- **A.** \(O(m + n)\) using BFS or DFS.
- **B.** \(O(mn)\) using maximum flow.
- **C.** \(\Omega(2^n)\) using brute force.
- **D.** Not even Tarjan knows.
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_p K-REGISTER-ALLOCATION for any constant $k \geq 3$.

3-satisfiability reduces to 3-colorability

Construction.
(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_i, add a gadget of 6 nodes and 13 edges.

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
* WLOG, assume that node T is colored black, F is white, and B is blue.
* Consider assignment that sets all black literals to true (and white to false).
* (iv) ensures each literal is colored either black or white.
* (ii) ensures that each literal is white if its negation is black (and vice versa).
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

6-node gadget

Pf. \Leftarrow Suppose graph G is 3-colorable.
- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.
- Color all true literals black and all false literals white.
- Pick one true literal; color node below that node white, and node below that blue.
- Color remaining middle row nodes blue.
- Color remaining bottom nodes black or white, as forced.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

Poly-time reductions

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

suppose, for the sake of contradiction, that all 3 literals are white in some 3-coloring
contradiction (not a 3-coloring)

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

3-SAT

constraint satisfaction

packing and covering
sequencing
partitioning
numerical

8. **INTRACTABILITY**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. 3-SAT \(\leq_p \) SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:
- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two digits for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose there exists a subset S^* that sums to W.
- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i = true$; otherwise, assign $x_i = false$.

Digit C_j forces subset S^* to select at least one literal in clause.

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose there exists a subset S^* that sums to W.
- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i = true$; otherwise, assign $x_i = false$.

Digit C_j forces subset S^* to select at least one literal in clause.

Subset sum reduces to knapsack

Subset-Sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Knapsack. Given a set of items X, weights $w_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(nU)$ dynamic programming algorithm for Knapsack.

Challenge. Prove Subset-Sum \leq_P Knapsack.

Pf. Given instance (w_1, \ldots, w_n, W) of Subset-Sum, create Knapsack instance:
Poly-time reductions

Karp's 20 poly-time reductions from satisfiability

Dick Karp (1972)
1985 Turing Award