7. NETWORK FLow lII , 7. NETWORK FLow lli

PEARSON

Addison
Wesley

» assignment problem » assignment problem

» input-queued switching

\ Alyorithm Desir

\ : \ z
‘l\ JON KLEINBERG - EVA TARDOS ~ JON KLEINBERG - EVA TARDOS

\
|\

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 7/25/17 11:04 AM

Assignment problem Assignment problem
Input. Weighted, complete bipartite graph G=(XU Y, E) with IXI=1Y]I. Input. Weighted, complete bipartite graph G=(XU Y, E) with IXI=1Y]I.
Goal. Find a perfect matching of min weight. Goal. Find a perfect matching of min weight.

min-cost perfect matching
M ={0-2',1-0'2-1"}
costM) =3 +5+4 =12

Princeton writing seminars Locating objects in space

Goal. Given m seminars and n = 12m students who rank their top 8 choices, Goal. Given n objects in 3d space, locate them with 2 sensors.
assign each student to one seminar so that:

» Each seminar is assigned exactly 12 students. Solution.

» Students tend to be “happy” with their assigned seminar. » Each sensor computes line from it to each particle.

* Let ¢;=distance between line i from censor 1 and line j from sensor 2.

Solution. * Due to measurement errors, we might have ¢; > 0.

* Create one node for each student i and 12 nodes for each seminar j. * Solve assignment problem to locate n objects.

* Solve assignment problem where ¢; is some function of the ranks:

f(rank(i,j)) if i ranks j
Cij = e . . VOL. 12, NO. 3, MAY-1UNE 1989 J. GUIDANCE 357
00 if 4 does not rank j
Algorithm for Ranked Assignments with Applications to
Multiobject Tracking

Title Course # Professor Day/Time Location
Wiliam L. 3regan
Hairersity of Nelvaska, Liscoln, Nebraska

19805, The WRI168 Scott, Andrea M/W 1:30pm-2:50pm Hargadon G002

America and the Melting Pot WRI 157 Skinazi, Karen T/TH 8:30am-9:50am Butler 026 e s e i s, el o i e i
acureanty, 3 conservative bond can be ca) o lictes hom maay of the raned set ar beter ¢
America and the Melting Pot WRI 158 Skinazi, Karen T/TH 11:00am-12:20pm Hargadon G004 o P_-':"“‘! Ao m"“ e ‘«t‘m oy “FM e in o Rttt mw.f wes A
anmca prcbes, s 2o u »

American Mysticism WRI191 Laufenberg, George T/TH 7:30pm-8:50pm 99 Alexander 101 T pacsture s el o intitics mew obct fracks a3 well a8 for

establisted tracking blters. Knewedpe of the ranked se: of ipmAcet [
American Revolutions WRI 184 Grosghal, Dov M/W 8:30am-9:50am Butler 026 it Vs o s i, 1R S o e 1 e e tentutive tacks i

sertain ose-call stuntions,
Animal Mind, The WRI 101 Gould, James M/W 8:30am-9:50am Blair T3
Art of Adventure, The WRI151 Moffitt, Anne T/TH 11:00am-12:20pm Butler 027

Kidney exchange Kidney exchange

If a donor and recipient have a different blood type, they can exchange their
kidneys with another donor and recipient pair in a similar situation.

Can also be done among multiple pairs (or starting with an altruistic donor).

- Q

THE KIDNEY CHAIN ig

How a single organ donation changed 20 lives and
created the longest-running transplant chain o
BARBARA
BUNNELL 56 HECKMAN, 34 SARVO,54
Toledo, Ohio Toledo, Ohio

REYNALDO JEAN RAYMOND. AVAROBY, 54
ESPINOZA, 59 STAYLOR, 53 STAYLOR, 53 Marysville, Ohio JANI 2
Germantown, Md. Charleston, 5.C. Charleston, 5.C. Chillicothe, Ohio Miamisburg, Ohio Huber Heights, Ohio.

BILL TIMSHAIN, 43
CORAM,55 Lincolnton, N.C.
Lincolnton, N.C.

ANONYMOU ANONYMOUS
RECIPIENT DONOR

weight= 3 +5+7+ 8+ 4 =27 weight= 2 +5+8+6+1+9=31

Applications

Natural applications.
» Match jobs to machines.
» Match personnel to tasks.
* Match PU students to writing seminars.

Non-obvious applications.
* Vehicle routing.
» Kidney exchange.
+ Signal processing.
» Earth-mover’s distance.
* Multiple object tracking.
+ Virtual output queueing.
* Handwriting recognition.
» Locating objects in space.
+ Approximate string matching.
» Enhance accuracy of solving linear systems of equations.

Alternating path

Def. An alternating path P with respect to a matching M is an alternating
sequence of unmatched and matched edges, starting from an unmatched
node x € X and going to an unmatched node y €Y.

Key property. Can use P to increase by one the cardinality of the matching.
Pf. SetM'= M® P.

N

symmetric difference

matching M alternating path P matching M’

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;
flow corresponds to edges in a matching M.

Residual graph G,, simplifies to:
e If (x,y) & M, then (x,y) is in G,,.
e If (x,y) €M, then (y,x) is in G,,. ©

*Q O O O
<Q O O O

Augmenting path simplifies to:
* Edge from s to an unmatched node x € X,
» Alternating sequence of unmatched and matched edges,
* Edge from unmatched node yEe Y to .

Assignment problem: successive shortest path algorithm

Cost of alternating path. Pay c(x,y) to match x—y; receive c(x,y) to unmatch.

P=2-2'-1-1'
cost(P) =2-6+10=6

Shortest alternating path. Alternating path from any unmatched node x € X
to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
+ Start with empty matching.
» Repeatedly augment along a shortest alternating path.

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost s~¢ path in G,,.

lo_yg)\

\%\@

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G,, contains no
negative cycles = can compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cycles)
= can compute using Dijkstra.

Equivalent assignment problem

Duality intuition. Subtracting a constant p(y) to the cost of every edge
incident to node y € Y does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. =

original costs c(x, y) modified costs c’(x, y)

@ 15 pO) =5 @ 10

- subtract 5 from all edges pe
- incident to node 0' -
5 0
@ N ® —> @ \ ®
2
A d A d
9 -~ 4 >

pw=6 () 6 \ (1) ear=s
2

=2 @) 1 @ ee)-=3

Equivalent assignment problem

Duality intuition. Adding a constant p(x) to the cost of every edge
incident to node x € X does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x. =

original costs c(x, y) modified costs c’(x, y)

p@=3 (0) 15 @ s

7 10
g o add 3 to all edges 6 pe
: - incident to node 0 -
@ 6 N\ @ —_ @ \ @
2 B N
9 ” pe
4
@& ©) @ @
X Y X Y

Reduced costs

Reduced costs. Forx€ X,y €Y, define c?(x,y) = p(x) + c(x,y) — p().
Observation 1. Finding a min-cost perfect matching with reduced costs is

equivalent to finding a min-cost perfect matching with original costs.

original costs c(x, y) reduced costs cP(x, y)

p@ =0 (0) 15 p(0) = 11 O
7

9 = cp(1,2) = p(1) + 2 - p(2")

@ 5
. _ .
@

X Y X Y

Compatible prices

Compatible prices. For each node v € X U Y, maintain prices p(v) such that:

* cr(x,y)= 0 for all (x,y) & M.
* cr(x,y)= 0 for all (x,y) € M.

Observation 2. If prices p are compatible with a perfect matching M,
then M is a min-cost perfect matching.

Pf. Matching M has O cost. =

Successive shortest path algorithm

reduced costs cP(x, y)

4
1

0

A

0

0
@ o
X

Initialization.
* M=g@.

* ForeachveXUY:p®y) < 0.

p(2) =0

original costs c(x, y)

p(0) = 0

»(2'

p2) = 0

Successive shortest path algorithm

SUCCESSIVE-SHORTEST-PATH (X, Y, ¢)

compatible with M

M < Q. prices p are
I cP(X, y) =c(x,y) =0

FOREACHVv EX U Y: p(v) < 0.

WHILE (M is not a perfect matching)
d < shortest path distances using costs c”.

P < shortest alternating path using costs c?.

M < updated matching after augmenting along P.

FOREACHVE X U Y : p(v) < p(v) + d(v).

RETURN M.

Successive shortest path algorithm

Initialization.
c M=0.
* ForeachveXUY:p®y) < 0.

reduced costs cP(x, y)
p(0) = 0 p(0) = 0

p(2) =0 p2) =0

20

Successive shortest path algorithm

Step 1.

* Compute shortest path distances d(v) from s to v using c?(x, y).

* Update matching M via shortest path from s to .
* ForeachveXxUY: p(v) < p()+d).

d(0) =0

d(s) =0 d(1)=0

d@)=0

shortest path distances d(v)

Successive shortest path algorithm

d0") =5

d(1) =4

@ §<o—~
o= /

d@2) =1

dit) =1

Step 1.

* Compute shortest path distances d(v) from s to v using c?(x, y).

* Update matching M via shortest path from s to .
* ForeachveXxUY: p(v) < p()+d).

p(0) = 0

reduced costs cP(x, y)

p(0) =5

matching
2-2'

21

23

Successive shortest path algorithm

Step 1.

* Compute shortest path distances d(v) from s to v using c?(x, y).

* Update matching M via shortest path from s to .
* ForeachveXxUY: p(v) < p®)+d).

d(s) =0

alternating path

Successive shortest path algorithm

d@2) =1

dit) =1

matching
2-2'

Step 2.

* Compute shortest path distances d(v) from s to v using c?(x, y).

* Update matching M via shortest path from s to .
* ForeachveXxUY: p(v) < p®)+d).

d(s) =0

d(0) =0

d@2) =1

shortest path distances d(v)

d(0") =0

d@2) =1

d(t) =0

matching
2-2'

22

24

Successive shortest path algorithm

Step 2.

* Compute shortest path distances d(v) from s to v using c?(x, y).

* Update matching M via shortest path from s to .

* ForeachveEXUY: p(v) < p») +d©v).

shortest path distances d(v)
d) =0

d) =0

4 matching
0 2-2' 1-0'
@ &
d2) =1 d2) =1
Successive shortest path algorithm
Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p»)+d©v).
shortest path distances d(v)
d(0) =0 d0') =6
10
@
1
d(s) =0 d(1) =6 o d1) =1 d@®) =1
@ @< ® ©
5 matching
0 2-2' 1-0'
@ &

d@2) =1

d@2) =1

25

27

Successive shortest path algorithm

Step 2.

* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .

* ForeachveEXUY: p(v) < p»)+d©v).

© =0 reduced costs cP(x, y)
p(0) =

p(1) =0 9
©. OS]
5
0
0
p2) =1

Successive shortest path algorithm

p(0) = 5

p(1) =5

@

p2) =2

©

matching

2-2' 1-

0

Step 3.

* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .

* ForeachvEXUY: p(v) < p») +d©v).

shortest path distances d(v)

d) =0

d(0) =6

d@2) =1

dt) =1

matching

1-0' 0-2'

2-1'

26

28

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveEXUY: p(v) < p») +d©v).

reduced costs cP(x, y)
p(0) =0 p(0) =11

@©

IS

p(1) =6 p(1) =6

® OS: ® ©

0 matching

@ g @ 1-0' 0-2' 2-1'

P@) =2 p@) =3 =

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path
distances in G,, with costs c». All edges (x,y) on shortest path have cr+d(x, y) =
0.

forward or reverse edges

Pf. Let (x,y) be some edge on shortest path.
* If (x,y) €M, then (y,x) on shortest path and d(x) = d(y) — cr(x,y);
If (x,y) & M, then (x,y) on shortest path and d(y) = d(x) + c»(x,y).
* In either case, d(x) + c?(x,y) — d(y) = 0.
* By definition, c(x,y) = p(x) + c(x,y) — p().
Substituting for cr(x, y) yields (p(x) + d(x)) + c(x, y) — (p(y) + d(»)) = 0.
* In other words, c?*d(x,y)=0. =

Given prices p, the reduced cost of edge (x,y) is
c(x,y) = px) + c(x,y) = p(y).

31

Successive shortest path algorithm

Termination.
* M is a perfect matching.
* Prices p are compatible with M.

reduced costs cP(x, y)

p(0) = 0 p(0) = 11
4
Q! (0)
0
=6 p(1) = 6

= ©

0 matching

Grg e 1-0' 0-2' 2-1'

P@) =2 P@) =3 =

Maintaining compatible prices

Lemma 2. Let p be compatible prices for M. Let d be shortest path
distances in G,, with costs c». Then p’ =p +d are also compatible prices for M.

Pf. (x.y)EM
* (y,x) is the only edge entering x in G,,. Thus, (y,x) on shortest path.
* By LEMMA 1, cr+d(x,y) =0.

Pf. (x,y) &M
« (x,y) is an edge in G, = d(y) < d(x) + c?(x,y).
» Substituting c(x, y) = p(x) + c(x,y) — p(y) = 0 yields
(P +dx) + c(x,y) — (p(y) +d(y) = 0.
* In other words, cr*+d(x,y) = 0. =

Prices p are compatible with matching M:
+ er(x,y) = 0 for all (x,y) & M.
* cer(x,y) = 0 for all (x,y) € M.

32

Maintaining compatible prices

Lemma 3. Let p be compatible prices for M and let M' be matching obtained
by augmenting along a min cost path with respect to c»+¢. Then p'=p +d are
compatible prices for M.

Pf.
* By LEMMA 2, the prices p + d are compatible for M.
» Since we augment along a min-cost path, the only edges (x,y) that swap
into or out of the matching are on the min-cost path.
* By LEMMA 1, these edges satisfy cr+d(x,y) = 0.
* Thus, compatibility is maintained. =

Prices p are compatible with matching Mm:
« er(x,y) = 0 for all (x,y) & M.
* cer(x,y) = 0 for all (x,y) € M.

33

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n nodes
and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm
solves the problem in O(n2 + mnlog n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(mn!2 log(nC)) time
algorithm for the problem when the costs are integers between 0 and C.

SIAM 1. CoMpUT ©1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, pp. 1013-1036, October 1959 o1t

FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*

HAROLD N. GABOW+t AxDp ROBERT E. TARJAN}

Abstract. This paper presents algori for the assi problem, the t
problem, and the mini cost flow problem of ions research. The algorithms find a minimum-
cost solution, yet run in time close to the best-known bounds for the corresponding problems without

costs. For example, the problem (i matching in a bipartite
graph) can be solved in O(v/nmlog(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarj each scaled problem an approximate
optimum solution is found, rather than an exact optimum.

35

Successive shortest path algorithm: analysis

Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices. =

Theorem. The algorithm returns a min-cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible prices.
Optimality follows from OBSERVATION 2. =

Theorem. The algorithm can be implemented in O#3) time.
Pf.
* Each iteration increases the cardinality of M by 1 = n iterations.
* Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n2) time
using (dense) Dijkstra. =

34

History

Thorndike 1950. Formulated in a modern way by a psychologist.

PSYCHOMETRIKA—VYOL. 15, N0. 3
SEPTEMBER, 1350

THE PROBLEM OF CLASSIFICATION OF PERSONNEL*

ROBERT L. THORNDIKE
TEACHERS COLLEGE, COLUMBIA UNIVERSITY

The personnel classification problem arises in its pure form
when all job applicants must be used, being divided among a num-
ber of job categories. The use of tests for classification involves
problems of two types: (1) problems concerning the design, choice,
and weighting of tests into a battery, and- (2) problems of estab-
lishing the optimum administrative procedure of using test results
for assignment. A consideration of the first pioblem emphasizes
the desirability of using simple, factorially pure tests which may
be expected to have a wide range of validities for different job
categories. In the use of test results for assignment, an irnitial
problem is that of expressing predictions of success in different jobs
in comparable score units. These units should take account of pre-
dictor validity and of job importance. Procedures are desccibed for
handling assiPnment either in terms of daily guotas or in terms
of a stable predicted yield.

Assign individuals to jobs to maximize average success of all individuals.
36

History

Thorndike 1950. Formulated in a modern way by a psychologist.

There are, as has been indicated, a finite number of permuta-
tions in the assignment of men to jobs. When the classification prob-
lem as formulated above was presented to a mathematician, he
pointed to this fact and said that from the point of view of the mathe-

\ matician there was no problem. Since the number of permutations
was finite, one had only to try them all and choose the best. He dis-

- missed the problem at that point. This is rather cold comfort to the
psychologist, however, when one considers that only ten men and
ten jobs mean over three and a half million permutations! Trying
‘out all the permutatlons may be a mathematical solutlon to the prob-

anticipated theory of computational complexity!

History

Jacobi (1804-1851). Introduces a bound on the order of a system of m
ordinary differential equations in m unknowns and reduces it to....

De investigando ordine systematis aequationum
differentialium vulgarium cujuscunque.
(Ex. ill. C. G. J. Jacobi manuseriptis postbumis in medium protulit*) C. W. Borchardt.)

1.
Investigatio ad solvendum problema inacqualitatum reducitar.
Systema sequationum diflrentilium valgarium st non canonicun®
s iones altissima variabil o tali modo con-
tinent, ut horum valores ex iis petere non liceat. 1d quod fit, quoties aequationes
nonnullae altissimis illis differentialibus carentes in systemate proposilo vel
ipsae inveniuntur vel eliminatione ex eo obtinentur. Eo casu numerus Con-

Looking for the order of a system of arbitrary ordinary differential equations

stantium Arbitrariarum, quas integratio completa inducit, sice ordo s,-lmalu
semper minor est sunma_altissi ordinum, ad quos dif

in il ierentiaibus propositis_ascendunt Qm ordo
systematis itur, si per di iationes et iones contingil systema
propositum redigere in aliud forma canonica gaudens eique acquivalens, ita ut
de systemate canonico eliam ad propositum reditus pateal. Nom summa al-
tissimorum ordinum, ad quos in systemate canonico differe a singularum
variabilium dependentium ascendunt, eliam systemalis propositi non canonici
ordo erit. Ad quem ordinem investigandum non tamen opus est ea ad formam

ducti sed res per sequentes absolvi potest.
Ponamus inter variabilem independentem ¢ alque n variabiles depen-
dentes z,, ,, ... «, haberi n aequationes diferentiales:
1) w=0, =0, ... =0
silque
Y

altissimus ordo, ad quem in sequatione w,= 0 differentialia varibilis =, ascen-

37

39

History

Kuhn 1955. First poly-time algorithm; named “Hungarian” algorithm to
honor two Hungarian mathematicians (Kénig and Egervary).

Munkres 1957. Reviewed algorithm; observed O(#) implementation.

Edmonds—Karp, Tomizawa 1971. Improved to O#3).

THE HUNGARIAN METHOD FOR THE ASSIGNMENT PROBLEM!

H. W. Kuhn
Bryn Mawr College

Assuming that numerical scores are available for the perform-
ance of each of n persons on each of n jobs, the "assignment problem"
is the quest for an assignment of persons to jobs so that the sum of the
n scores so obtainedis aslarge as possible. It is shownthat ideas latent
in the work of two Hungarian ticians may be ited to yield
a new method of solving this problem.

anticipated development of combinatorial optimization

History

Jacobi (1804-1851). The assignment problem! Moreover, he provides a
polynomial-time algorithm.

Problema.
nn i W in schema Quadrati, ila ut Problem.
Habcantr » serics horisontales cl n serics verlicales quarum quacque est n We dispose nn arbitrary quantities h in a square table in such a
. Ex illis eligantur n i e in sericbus " e

way that we have n horizontal series and n vertical
one n terms. Among th
that is all disposed in different horizontal and
may be done in 1.2...n ways; and among th
that gives the mazimum of the sum of the n chosen numbers

horisontalibus simul alque verlicalibus diversis positac, quod fieri potest 1.2...n
modis; ex omnibus illis modis quacrendus est is qui summam n mumerorum
electorum suppeditet mazimam.

Dispositis quantitatibus A{ in figuram quadraticam

kK b,

P W, ..,

............ WoohH

R o U
earum systema appellabo schema propositum; omne schema inde ortum ad- RO,

dendo singulis ejusdem seriei horizontalis terminis eandem quantitatem apellabo
schema derivatum. Sil

©
addenda terminis i seriei horizontalis, quo facto singula 1.2...n
aggregala transversalia, inter quae maximum eligendum est, eadem augebuntur
quantitate

quanti

P4l = I,
quippe ad singula aggregala formanda e quaque serie horizontali unus eligendus
est terminus. Qua de re si statuitur

MO = p

alque aggregatum (ransversale maximum e terminis A{” formatum
KO oA = B,

fit valor aggregali transverselis maximi e terminis p{’ formati

PO+t pl” = HEL

we can add to each term of the same horizontal series a same quantity, and
we call £0) the quantity added to the terms of the i" horizontal series. This
being done, each of the 1.2...n transversal sums among which we need to
find a maximum is increased by the same quantity

O+l =L

because, in order to form these sums, we need to pick a term in each hori-
zontal series. Hence, if we pose
B 4 0 =

and that the maximal transversal sum of the terms Ay is

S N T
this makes that the value of the maximal sum formed with the pf’ is

P 4 pf)) = H 4 L

Jacobi formulated the assignment problem; proposed and analyzed the Hungarian algorithm

38

40

Input-queued switching

Input-queued switch.
7. NETWORK FLow Il * n input ports and »n output ports in an n-by-n crossbar layout.
» At most one cell can depart an input at a time.

« At most one cell can arrive at an output at a time.

> inpuf-queuec/ swifching * Cell arrives at input x and must be routed to output y.

Application. High-bandwidth switches.

X, o]
inputs
X2
X3
Y1 Y2 Y3
outputs

FIFO queuing FIFO queuing
FIFO queueing. Each input x maintains one queue of cells to be routed. FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead
of it that is destined for a different output. of it that is destined for a different output.

Fact. FIFO can limit throughput to 58% even when arrivals are uniform i.i.d.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 12, DECEMBER 1987 1347
v Bl y: X o) Input Versus Output Queueing on a Space-Division
. Packet Switch
MARK J. KAROL, memgeR, tege, MICHAEL G. HLUCHYJ, memseR, (g, AND SAMUEL P. MORGAN, FELLOW, IEEE
FIFO yooX

Abstract—Two simple models of queueing on an N x N space-division
packet switch are examined. The switch operates synchronously with
fixed-length packets; during each time slot, packets may arrive on any
inputs addressed (0 any outputs. Because packet arrivals (o the switch are
unscheduled, more than one packet may arrive for the same output
0| % during the same time slot, making queueing unavoidable. Mean queue
yioy3 y3 3 lengths are always greater for queueing on inputs than for queueing on
outputs, and the output queues saturate only as the utilization approaches
unity. Input queues, on the other hand, saturate at a utilization that
depends on N, but is approximately (2 — V2) = 0.586 when N is large. If
output trunk utilization is the primary consideration, it is possible to
slightly increase utilization of the output trunks—up to (1 - e-') = 0.632
as N — co—by dropping interfering packets at the end of each time slot,
Y1 Y2 Y3 rather than storing them in the input queues. This improvement is
possible, however, only when the utilization of the input trunks exceeds a
second critical threshold—approximately In (1 + ~/2) = 0.881 for Jarge
N.

outputs
43

Virtual output queueing

Virtual output queueing (VOQ). Each input x maintains n queues of cells,
one for each output y.

Maximum-size matching. Find a max cardinality matching.
Fact. VOQ achieves 100% throughput when arrivals are uniform i.i.d.
but can starve input-queues when arrivals are nonuniform.

2y »
vioy3 X O
voQ 2oy
Y3 y3 y3lys
X3
Y2y
3

Y1 Y2 Y3

outputs
45

Input-queued switching

Maximum-weight matching. Find a min cost perfect matching between
inputs x and outputs y, where c(x,y) equals:

* [LQF] The number of cells waiting to go from input x to output y.

» [OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are
independent (even if not uniform).

Achieving 100% Throughput
in an Input-Queued Switch
Practice. v

+ Assignment problem too slow in practice.
« Difficult to implement in hardware.
+ Provides theoretical framework:

use maximal (weighted) matching.

46

